CN111160853A - Electronic compilation method for uranium ore drilling comprehensive histogram - Google Patents

Electronic compilation method for uranium ore drilling comprehensive histogram Download PDF

Info

Publication number
CN111160853A
CN111160853A CN201911300601.3A CN201911300601A CN111160853A CN 111160853 A CN111160853 A CN 111160853A CN 201911300601 A CN201911300601 A CN 201911300601A CN 111160853 A CN111160853 A CN 111160853A
Authority
CN
China
Prior art keywords
histogram
drilling
data
depth
comprehensive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911300601.3A
Other languages
Chinese (zh)
Inventor
刘洋
祝洪涛
王良玉
张明林
王殿学
翁海蛟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Industry Brigade 243
Original Assignee
Nuclear Industry Brigade 243
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Industry Brigade 243 filed Critical Nuclear Industry Brigade 243
Priority to CN201911300601.3A priority Critical patent/CN111160853A/en
Publication of CN111160853A publication Critical patent/CN111160853A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Data Mining & Analysis (AREA)
  • Operations Research (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

The invention discloses an electronic compiling method of a uranium ore drilling comprehensive histogram, which comprises the following steps: establishing a data structure based on the Access database; collecting drilling data; designing a drawing frame style according to the drawing specification of the comprehensive histogram; calling and processing database data, and drawing various picture contents; filling out the drilling nodules. The method has the following advantages: 1. the operation is simple and convenient; 2. the pattern of the drawing is uniform and standard; 3. a computer forms a picture, so that the working efficiency is improved; 4. the data is digitized, and the modification is convenient; 5. the electronic picture is convenient to store and search and utilize in the later period. The method is suitable for compiling the uranium ore drilling comprehensive histogram, and the working efficiency is greatly improved by establishing the drilling database and utilizing a computer to map.

Description

Electronic compilation method for uranium ore drilling comprehensive histogram
Technical Field
The invention belongs to the field of drawing uranium ore geological maps, and particularly relates to an electronic compilation method of a uranium ore drilling comprehensive histogram.
Background
In the past, a drilling comprehensive histogram in uranium mine geological exploration in China is drawn manually, and the method has the following defects:
(1) the manual drawing process is tedious, time-consuming and labor-consuming.
(2) The related drawings lack correlation, common drawing contents need to be drawn repeatedly, and repeated work is carried out.
(3) The drawings are all in paper form, so that the drawings are inconvenient to modify and difficult to store.
(4) Later-period searching and comprehensive utilization are difficult.
In order to promote the informatization of the uranium ore geological exploration work, a digital uranium ore exploration system is established, the demand of the uranium ore geological map electronization is met, paperless and automatic drawing of the map is realized, the drawing efficiency of the map is improved, later-stage searching and comprehensive utilization are facilitated, and the uranium ore geological exploration work is started.
Disclosure of Invention
The invention aims to provide an electronic compiling method for a uranium ore drilling comprehensive histogram, which can realize the electronization, standardization and informatization of the drilling comprehensive histogram, greatly reduce the labor intensity, improve the drawing efficiency of a uranium ore geological map, has simple and rapid operation, is easy to modify and store the output electronized map and is convenient for later-stage searching and comprehensive utilization.
The technical scheme of the invention is as follows: an electronic compilation method for a uranium mine drilling comprehensive histogram comprises the following steps:
step 1, setting a discrete data table as a basic unit for inputting different types of information based on an Access database according to the characteristics of drilling data of uranium ores, and dividing an input single item to establish a data structure;
step 2, acquiring drilling data required for drawing a comprehensive histogram through geological logging and geophysical logging, and inputting the acquired data into a corresponding data table in a classified mode for storage;
step 3, designing a drawing frame style according to the drawing specification of the comprehensive histogram;
step 4, calling and processing database data, and drawing each item of picture content at the corresponding position of each column;
and 5, filling in drilling nodules, and displaying the drilling nodules at the bottom of the geological description bar in a text form.
And in the step 1, a uranium ore drilling data table and a data structure are established on the basis of the Access database.
And in the step 3, the comprehensive histogram drawing specification is executed by referring to the part 2 EJ/T20003.2-2011 compiled and specified by the geological map of the uranium mine with the geospatial sandstone.
The step 3 comprises the following specific steps:
(1) and designing a top figure outline of the comprehensive histogram, wherein the content comprises a working area, a drilling hole number, a project responsible unit, a drilling construction unit, a drilling machine model and serial number, an orifice coordinate, a geological logging worker, a geophysical logging worker, a hydrological logging worker, a coordinate measuring worker, a curve interpreter, a auditing worker, a hole opening date, a final hole date and a drawing date.
The step 3 comprises the following specific steps:
(2) and designing upper expression columns of the comprehensive histogram, wherein the content comprises stratum names and codes, depth, core length, thickness, sampling rate, stratum changing depth, well logging interpretation results, core analysis results, core measurement curves, well logging curves, interpretation columns, recording columns, comprehensive columns, color, carbonate content, rock consolidation degree, sampling positions and numbers and lithology description, and the column width of each column is executed according to drawing specifications.
The step 3 comprises the following specific steps:
(3) and designing an integral frame of the comprehensive histogram, wherein the size of the frame is in millimeters, the width is determined by the column width, and the height is determined by the drilling depth.
The step 3 comprises the following specific steps:
(4) and designing a hole depth scale grid, drawing according to the height of the frame, and marking the corresponding hole depth at a fixed interval.
The step 3 comprises the following specific steps:
(5) and designing a curve bottom grid, and drawing in a centimeter grid form according to the column width and the frame height of the rock core measurement curve, the logging curve and the comprehensive histogram.
The data required for drawing each drawing content in the step 4 are all from corresponding data tables in the database, the drawing result can be influenced by changing the data in the database, the data calculation and processing process is automatically executed by a computer, and the generated drawing result can be modified through manual intervention.
The step 4 comprises the following specific steps:
(1) drawing a top figure outline of the comprehensive histogram according to the drilling design information and the drilling basic information, wherein the content is presented in a text form;
(2) according to the record layering record, marking the stratum name and code number corresponding to each layering in the stratum name and code number column;
(3) calculating actual hole depths corresponding to different lithologies of each turn according to the recorded layering records;
(4) combining the lithologic strata of adjacent rounds according to the actual hole depths corresponding to the lithologic characteristics of the rounds calculated in the step (3), keeping the lithologic characteristics of the strata unchanged, taking the top lithologic boundary of the upper part of the adjacent rounds as the depth starting point of the lithologic layer, and taking the bottom lithologic boundary of the lower part as the depth end point of the lithologic layer;
(5) judging the type of the ore section according to the well logging interpretation result by taking grade, thickness, meter percentage, burial depth and the content of the plain uranium as discrimination objects, drawing the primitive of the ore section in a column of the well logging interpretation result according to the depth position of the ore section, and marking the thickness and grade of the ore body on the right side of the primitive;
(6) drawing the sample section primitive in a core analysis result column according to a sample analysis result and a sampling position, and marking a sample number, a core length and an analysis grade on the right side of the primitive;
(7) according to the rock core geophysical prospecting record, the data is coordinated, the recorded value is converted into a horizontal coordinate, the measuring point position is converted into a vertical coordinate, the upper left corner of the overall frame of the comprehensive histogram is taken as an original point, the data points are projected into independent data points according to the coordinates, and the data points are connected to form a measuring curve;
(8) according to geophysical logging data, the data are coordinated, the method is similar to the step (7), the logging numerical value is converted into a horizontal coordinate, the measuring point depth is converted into a vertical coordinate, the upper left corner of the overall frame of the comprehensive histogram is taken as an original point, the data are projected into independent data points according to the coordinates, and the data points are connected to form a logging curve;
(9) according to the well logging interpretation result, drawing and interpreting a layered model of the histogram and filling lithology symbols according to the lithology and corresponding depth of the borehole interpreted by the well logging curve;
(10) merging the layered depth data according to the step (4), drawing a layered model of the compiled histogram and filling lithology symbols;
(11) integrating the interpretation histogram and the record histogram generated in the step (9) and the step (10), taking the record histogram as a main body, intercepting corresponding sections of the interpretation histogram at a core-free section according to depth, combining the sections into a comprehensive histogram, drawing column contents of color, carbonate content and rock consolidation degree according to record layering records, correcting the position of the layering boundary of the comprehensive histogram according to the record layering records, and correspondingly adjusting the column contents of color, carbonate content and rock consolidation degree according to the layering boundary;
(12) drawing sample section primitives in a sampling position and a numbering column according to the drilling sampling record and the sample section depth, and labeling sample numbers;
(13) and (4) presenting the lithology description in a lithology description column in a text form according to the recorded layered records and the depth position, and simplifying, combining or enriching and perfecting the lithology description by referring to the comprehensive histogram layering corrected in the step (11).
The invention has the beneficial effects that: 1. the operation is simple and convenient; 2. the pattern of the drawing is uniform and standard; 3. a computer forms a picture, so that the working efficiency is improved; 4. the data is digitized, and the modification is convenient; 5. the electronic picture is convenient to store and search and utilize in the later period. The method is suitable for compiling the uranium ore drilling comprehensive histogram, and the working efficiency is greatly improved by establishing the drilling database and utilizing a computer to map.
Drawings
FIG. 1 is an electronic compilation process of a uranium ore drilling comprehensive histogram;
FIG. 2 is a diagram of an Access database structure;
FIG. 3 is a drawing frame style;
fig. 4 is a comprehensive histogram of the completed drawing.
In fig. 3, a profile a, a column B, a whole frame C, a depth scale grid D, a curve bottom grid E, a profile a, a stratum name and code B, hierarchical information C, a logging interpretation result D, a core analysis result E, a logging curve F, a logging curve G, an interpretation histogram H, a logging histogram I, a comprehensive histogram J, a color, a carbonate content, a rock consolidation degree, a sampling position K, a sampling number K, and lithology L.
Detailed Description
The invention is described in further detail below with reference to the figures and the embodiments.
An electronic compilation method of a uranium ore drilling comprehensive histogram comprises the following steps (figure 1):
step 1, setting a discrete data table as a basic unit for inputting different types of information on the basis of an Access database according to the characteristics of drilling data of uranium ores, wherein the discrete data table mainly comprises a drilling design information table, a drilling basic information table, an address hierarchical record table, a rock core geophysical address record table, a geophysical logging data table, a logging interpretation result table, a drilling sampling record table and a sample analysis result table, and dividing and inputting single items to establish a data structure (figure 2), such as depth, rock core length, sampling rate, lithology length, rock name and the like;
step 2, acquiring drilling data required for drawing a comprehensive histogram through geological logging and geophysical logging, and inputting the acquired data into a corresponding data table in a classified manner for storage, wherein the drilling data adopted in the example is drilling data ZK5-1 in Tongliao area;
step 3, designing a drawing frame style (fig. 3) according to the drawing specification of the comprehensive histogram, and realizing the specific steps of the step 3 as follows:
step 3.1, designing a top diagram outline (figure 3-A) of the comprehensive histogram, wherein the content comprises a working area, a drilling number, a project responsible unit, a drilling construction unit, a drilling machine model and serial number, an orifice coordinate, a geological logging personnel, a geophysical logging personnel, a hydrological logging personnel, a coordinate measuring personnel, a curve interpreter, a auditor, a hole opening date, a final hole date and a drawing date;
step 3.2, designing upper part representation columns (figure 3-B) of the comprehensive histogram, wherein the content comprises stratum names and codes, depth, core length, thickness, sampling rate, stratum changing depth, well logging interpretation result, core analysis result, core measurement curve, well logging curve, interpretation column diagram, logging column diagram, comprehensive column diagram, color, carbonate content, rock consolidation degree, sampling position and number and lithology description, and the column width of each column is executed according to drawing standards;
step 3.3, designing a comprehensive histogram integral frame (fig. 3-C), wherein the size of the frame is in millimeter unit, the width is determined by column width, and the height is determined by drilling depth, and the specific calculation method is as follows:
W=w1+w2+w3+……
H=D*1000*k
w frame width; the column widths of the columns specified by the w1, w2 and w3 style specifications;
h, the height of the frame; d, drilling depth; k scale bar.
Step 3.4, designing a hole depth scale grid (shown in figure 3-D), drawing according to the height of the frame, and marking the corresponding hole depth at a fixed distance;
step 3.5, designing a curve bottom grid (shown in a figure 3-E), and drawing the curve bottom grid in a centimeter grid mode according to column widths and frame heights of a rock core measurement curve, a logging curve and a comprehensive histogram;
step 4, calling and processing database data, drawing each item of picture content (fig. 4) at the corresponding position of each column, and implementing the specific steps of step 4 as follows:
step 4.1, drawing a top figure outline (figure 4-A) of the comprehensive histogram according to the drilling design information and the drilling basic information, and presenting the content in a character form;
step 4.2, according to the record layering record, marking the stratum name and code number corresponding to each layering in the stratum name and code number column (figure 4-B);
step 4.3, calculating actual hole depths corresponding to different lithologies of each time according to the recorded layered records, wherein lithology starting and stopping data in the recorded layered records are the relative positions of the cores of the current time of the lithology, and the corresponding actual hole depths need to be further calculated, and the specific calculation method comprises the following steps:
Da=d-l+Pa
db ═ d-l + PbDa pore depth; db hole is deep; d, stopping depth for the second time; l, the core is long for the second time; beginning with the inferior lithology Pa; pb is regretted by lithology.
Step 4.4, according to the actual hole depths corresponding to different lithologies of each time obtained by calculation in the step 4.3, merging the lithologies and the strata of the same lithologies of the adjacent times, keeping the lithologies and the strata unchanged, taking the top lithologies of the upper lithologies of the adjacent times as the depth starting point of the lithologies and the bottom lithologies as the depth end point of the lithologies and the depth end point of the lithologies as the layer changing depth of the lithologies, and recalculating the core length, the thickness and the sampling rate of the rock according to the layer changing depth (fig. 4-C), wherein the specific calculation method comprises the following steps:
Tn=Dn-Dn-1
Ln=la+lb+lc+……
Fn=Ln/Tn*100%
tn stratum thickness of nth layer; dn nth layer commutation depth; the layer changing depth of the n-1 th layer of Dn-1;
the core length of the nth layer of Ln; the core length of each layer before the la, lb and lc are combined into lithological layering;
fn of the nth layer.
Step 4.5, judging the category of the ore section according to the well logging interpretation result by taking the grade, the thickness, the rice percentage, the burial depth and the content of the uranium in the square meter as discrimination objects, drawing the primitive of the ore section in a column of the well logging interpretation result according to the depth position of the ore section, and marking the thickness and the grade of the ore body on the right side of the primitive (figure 4-D), wherein the specific judging method of the category of the ore section comprises the following steps:
(1) abnormal section (yellow mineral section picture element)
In-situ leaching sandstone-type uranium ore: the grade is more than or equal to 0.005 percent and less than 0.01 percent;
hard rock type uranium ore with ① 0.01 percent more than or equal to 0.01 percent and grade less than 0.03 percent, ② percent more than 0.03 percent and rice percentage less than 0.021 percent;
(2) mineralizing section (blue mineral section picture element)
The grade of ① is more than or equal to 0.01 percent, the burial depth is less than or equal to 500m, the content of uranium per square meter is less than 1kg/m2, the grade of ② is more than or equal to 0.01 percent, the burial depth is more than 500m, the content of uranium per square meter is more than 1kg/m2 and less than 2kg/m 2;
hard rock type uranium ore with ① 0.03% or more and grade less than 0.05%, rice percentage more than 0.021, ②% or more and grade less than 0.05%, rice percentage less than 0.035;
(3) industrial mine (red mineral section picture element)
The grade of ① is more than or equal to 0.01 percent, the thickness of a permeable interlayer is less than or equal to 7m, the buried depth is less than or equal to 500m, and the content of uranium per square meter is more than or equal to 1kg/m2, the grade of ② is more than or equal to 0.01 percent, the thickness of the permeable interlayer is less than or equal to 7m, the buried depth is more than 500m, and the content of uranium per square meter is more than or equal to 2kg/m 2;
hard rock type uranium ore: the grade is more than or equal to 0.05 percent, the mining thickness is more than or equal to 0.7m, the thickness of the included stones is less than 0.7m, and the percentage of rice is more than or equal to 0.035 percent.
Step 4.6, drawing the sample section primitive in the core analysis result column according to the sample analysis result and the sampling position, and marking the sample number, the core length and the analysis grade on the right side of the primitive (figure 4-E);
step 4.7, according to the recording record of the core geophysical prospecting, the data is coordinated, the recording value is converted into a horizontal coordinate, the measuring point position is converted into a vertical coordinate, the upper left corner of the overall frame of the comprehensive histogram is taken as an original point, the data points are projected into independent data points according to the coordinates, the data points are connected to form a measuring curve (shown in a figure 4-F), and the specific conversion method of the data coordination is as follows:
Xb=(wm*(B-Bmin)/(Bmax-Bmin)+wa+wb+wc+……)/k
yb ═ d-l + pcXb abscissa; b, compiling numerical values; minimum value of Bmin scale; maximum value of Bmax scale; measuring the column width of a curve of the wm rock core;
the column width of each column on the left sides of wa, wb and wc; k scale bar;
yb ordinate; d, stopping depth for the second time; l, the core is long for the second time; pc test point position.
Step 4.8, according to geophysical prospecting logging data, the data is coordinated, the method is similar to the step 4.7, the logging numerical value is converted into a horizontal coordinate, the measuring point depth is converted into a vertical coordinate, the upper left corner of the overall frame of the comprehensive histogram is taken as an original point, the data points are projected into independent data points according to the coordinates, and the data points are connected to form a logging curve (fig. 4-G), wherein the specific conversion method of the data coordination is as follows:
Xc=(wn*(C-Cmin)/(Cmax-Cmin)+wa+wb+wc+……)/k
yc ═ DcXc abscissa; c, logging numerical values; cmin scale minimum; cmax scale maximum; the row width of the wn logging curve;
column widths of columns on the left sides of wa, wb and wc; k scale bar;
yc ordinate; dc Point depth.
Step 4.9, according to the well logging interpretation result, according to the lithology and the corresponding depth of the drilled hole interpreted by the well logging curve, drawing and interpreting a layered model of the histogram and filling lithology symbols (figure 4-H);
step 4.10 merging the layered depth data according to step 4.4, drawing a hierarchical model of the catalogued histogram and filling lithology symbols (fig. 4-I);
step 4.11, integrating the interpretation histogram and the recording histogram generated in the step 4.9 and the step 4.10, taking the recording histogram as a main body, intercepting corresponding sections of the interpretation histogram at a core-free section according to depth, combining the sections into a comprehensive histogram, drawing column contents of color, carbonate content and rock consolidation degree according to recording layering records, correcting the position of the layering boundary of the comprehensive histogram according to the corresponding logging curve of the recording layering records, and correspondingly adjusting the column contents of the color, the carbonate content and the rock consolidation degree according to the corresponding layering boundary (fig. 4-J);
step 4.12, drawing sample section primitives in the sampling positions and the number columns according to the depth of the sample sections according to the drilling sampling records, and marking sample numbers (figure 4-K);
step 4.13 according to the record layering record, the lithology description is presented in the lithology description column in a text form according to the depth position, and the lithology description is simplified, combined or enriched and perfected by referring to the comprehensive histogram layering corrected in the step 4.11 (figure 4-L);
and 5, filling in drilling nodules, and displaying the drilling nodules at the bottom of the geological description bar in a text form.
The present invention has been described in detail with reference to the drawings and examples, but the present invention is not limited to the examples described above, and various changes can be made within the knowledge of those skilled in the art without departing from the spirit of the present invention. The present invention may be practiced without these particulars.

Claims (10)

1. An electronic compilation method for a uranium ore drilling comprehensive histogram is characterized by comprising the following steps: the method comprises the following steps:
step 1, setting a discrete data table as a basic unit for inputting different types of information based on an Access database according to the characteristics of drilling data of uranium ores, and dividing an input single item to establish a data structure;
step 2, acquiring drilling data required for drawing a comprehensive histogram through geological logging and geophysical logging, and inputting the acquired data into a corresponding data table in a classified mode for storage;
step 3, designing a drawing frame style according to the drawing specification of the comprehensive histogram;
step 4, calling and processing database data, and drawing each item of picture content at the corresponding position of each column;
and 5, filling in drilling nodules, and displaying the drilling nodules at the bottom of the geological description bar in a text form.
2. The electronic compilation method for a uranium mine borehole synthetic histogram according to claim 1, wherein: and in the step 1, a uranium ore drilling data table and a data structure are established on the basis of the Access database.
3. The electronic compilation method for a uranium mine borehole synthetic histogram according to claim 1, wherein: and in the step 3, the comprehensive histogram drawing specification is executed by referring to the part 2 EJ/T20003.2-2011 compiled and specified by the geological map of the uranium mine with the geospatial sandstone.
4. The electronic compilation method for a uranium mine borehole synthetic histogram according to claim 1, wherein: the step 3 comprises the following specific steps:
(1) and designing a top figure outline of the comprehensive histogram, wherein the content comprises a working area, a drilling hole number, a project responsible unit, a drilling construction unit, a drilling machine model and serial number, an orifice coordinate, a geological logging worker, a geophysical logging worker, a hydrological logging worker, a coordinate measuring worker, a curve interpreter, a auditing worker, a hole opening date, a final hole date and a drawing date.
5. The electronic compilation method for a uranium mine borehole synthetic histogram according to claim 1, wherein: the step 3 comprises the following specific steps:
(2) and designing upper expression columns of the comprehensive histogram, wherein the content comprises stratum names and codes, depth, core length, thickness, sampling rate, stratum changing depth, well logging interpretation results, core analysis results, core measurement curves, well logging curves, interpretation columns, recording columns, comprehensive columns, color, carbonate content, rock consolidation degree, sampling positions and numbers and lithology description, and the column width of each column is executed according to drawing specifications.
6. The electronic compilation method for a uranium mine borehole synthetic histogram according to claim 1, wherein: the step 3 comprises the following specific steps:
(3) and designing an integral frame of the comprehensive histogram, wherein the size of the frame is in millimeters, the width is determined by the column width, and the height is determined by the drilling depth.
7. The electronic compilation method for a uranium mine borehole synthetic histogram according to claim 1, wherein: the step 3 comprises the following specific steps:
(4) and designing a hole depth scale grid, drawing according to the height of the frame, and marking the corresponding hole depth at a fixed interval.
8. The electronic compilation method for a uranium mine borehole synthetic histogram according to claim 1, wherein: the step 3 comprises the following specific steps:
(5) and designing a curve bottom grid, and drawing in a centimeter grid form according to the column width and the frame height of the rock core measurement curve, the logging curve and the comprehensive histogram.
9. The electronic compilation method for a uranium mine borehole synthetic histogram according to claim 1, wherein: the data required for drawing each drawing content in the step 4 are all from corresponding data tables in the database, the drawing result can be influenced by changing the data in the database, the data calculation and processing process is automatically executed by a computer, and the generated drawing result can be modified through manual intervention.
10. The electronic compilation method of a uranium mine drilling synthetic histogram according to claim 9, wherein the step 4 includes the specific steps of:
(1) drawing a top figure outline of the comprehensive histogram according to the drilling design information and the drilling basic information, wherein the content is presented in a text form;
(2) according to the record layering record, marking the stratum name and code number corresponding to each layering in the stratum name and code number column;
(3) calculating actual hole depths corresponding to different lithologies of each turn according to the recorded layering records;
(4) combining the lithologic strata of adjacent rounds according to the actual hole depths corresponding to the lithologic characteristics of the rounds calculated in the step (3), keeping the lithologic characteristics of the strata unchanged, taking the top lithologic boundary of the upper part of the adjacent rounds as the depth starting point of the lithologic layer, and taking the bottom lithologic boundary of the lower part as the depth end point of the lithologic layer;
(5) judging the type of the ore section according to the well logging interpretation result by taking grade, thickness, meter percentage, burial depth and the content of the plain uranium as discrimination objects, drawing the primitive of the ore section in a column of the well logging interpretation result according to the depth position of the ore section, and marking the thickness and grade of the ore body on the right side of the primitive;
(6) drawing the sample section primitive in a core analysis result column according to a sample analysis result and a sampling position, and marking a sample number, a core length and an analysis grade on the right side of the primitive;
(7) according to the rock core geophysical prospecting record, the data is coordinated, the recorded value is converted into a horizontal coordinate, the measuring point position is converted into a vertical coordinate, the upper left corner of the overall frame of the comprehensive histogram is taken as an original point, the data points are projected into independent data points according to the coordinates, and the data points are connected to form a measuring curve;
(8) according to geophysical logging data, the data are coordinated, the method is similar to the step (7), the logging numerical value is converted into a horizontal coordinate, the measuring point depth is converted into a vertical coordinate, the upper left corner of the overall frame of the comprehensive histogram is taken as an original point, the data are projected into independent data points according to the coordinates, and the data points are connected to form a logging curve;
(9) according to the well logging interpretation result, drawing and interpreting a layered model of the histogram and filling lithology symbols according to the lithology and corresponding depth of the borehole interpreted by the well logging curve;
(10) merging the layered depth data according to the step (4), drawing a layered model of the compiled histogram and filling lithology symbols;
(11) integrating the interpretation histogram and the record histogram generated in the step (9) and the step (10), taking the record histogram as a main body, intercepting corresponding sections of the interpretation histogram at a core-free section according to depth, combining the sections into a comprehensive histogram, drawing column contents of color, carbonate content and rock consolidation degree according to record layering records, correcting the position of the layering boundary of the comprehensive histogram according to the record layering records, and correspondingly adjusting the column contents of color, carbonate content and rock consolidation degree according to the layering boundary;
(12) drawing sample section primitives in a sampling position and a numbering column according to the drilling sampling record and the sample section depth, and labeling sample numbers;
(13) and (4) presenting the lithology description in a lithology description column in a text form according to the recorded layered records and the depth position, and simplifying, combining or enriching and perfecting the lithology description by referring to the comprehensive histogram layering corrected in the step (11).
CN201911300601.3A 2019-12-17 2019-12-17 Electronic compilation method for uranium ore drilling comprehensive histogram Pending CN111160853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911300601.3A CN111160853A (en) 2019-12-17 2019-12-17 Electronic compilation method for uranium ore drilling comprehensive histogram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911300601.3A CN111160853A (en) 2019-12-17 2019-12-17 Electronic compilation method for uranium ore drilling comprehensive histogram

Publications (1)

Publication Number Publication Date
CN111160853A true CN111160853A (en) 2020-05-15

Family

ID=70557528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911300601.3A Pending CN111160853A (en) 2019-12-17 2019-12-17 Electronic compilation method for uranium ore drilling comprehensive histogram

Country Status (1)

Country Link
CN (1) CN111160853A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112580119A (en) * 2020-11-20 2021-03-30 核工业二〇八大队 Method for compiling geological map of in-situ leaching sandstone type uranium ore series
CN113012257A (en) * 2021-03-12 2021-06-22 贵州省地质矿产勘查开发局 Variable scale drilling histogram drawing method for manganese ore

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936899A (en) * 2006-10-10 2007-03-28 武汉地大坤迪科技有限公司 Geological inspection column-like image drawing and compositing using CIS image document
CN102346917A (en) * 2011-11-01 2012-02-08 广东省电力设计研究院 Method and system for automatically drawing engineering geologic histogram
CN104915521A (en) * 2015-07-01 2015-09-16 中国地质大学(武汉) Drilling histogram compilation method based on field documentation data and automatic cartographic generalization
CN106202156A (en) * 2016-06-16 2016-12-07 中山大学 The log sheet of a kind of sing on web generalized information system generates method online

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936899A (en) * 2006-10-10 2007-03-28 武汉地大坤迪科技有限公司 Geological inspection column-like image drawing and compositing using CIS image document
CN102346917A (en) * 2011-11-01 2012-02-08 广东省电力设计研究院 Method and system for automatically drawing engineering geologic histogram
CN104915521A (en) * 2015-07-01 2015-09-16 中国地质大学(武汉) Drilling histogram compilation method based on field documentation data and automatic cartographic generalization
CN106202156A (en) * 2016-06-16 2016-12-07 中山大学 The log sheet of a kind of sing on web generalized information system generates method online

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘桂萍等: "基于GIS的综合地层柱状图成图技术研究与实现", 《金属矿山》 *
曹建文等: "砂岩型铀矿钻孔原始地质编录数据的采集与管理", 《东华理工大学学报(自然科学版)》 *
黄树桃等: "钻孔资料管理和自动成图技术研究", 《铀矿地质》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112580119A (en) * 2020-11-20 2021-03-30 核工业二〇八大队 Method for compiling geological map of in-situ leaching sandstone type uranium ore series
CN112580119B (en) * 2020-11-20 2023-03-17 核工业二〇八大队 Method for compiling geological map of in-situ leaching sandstone type uranium ore series
CN113012257A (en) * 2021-03-12 2021-06-22 贵州省地质矿产勘查开发局 Variable scale drilling histogram drawing method for manganese ore
CN113012257B (en) * 2021-03-12 2022-04-12 贵州省地质矿产勘查开发局 Variable scale drilling histogram drawing method for manganese ore

Similar Documents

Publication Publication Date Title
CN110647528A (en) Electronic compilation method for copper ore drilling comprehensive histogram
CN104915521B (en) Log sheet compilation method based on field catalog data and automated cartographic generalization
CN103279986B (en) Three-dimensional horizontal geologic profile figure preparation method and application thereof
CN106558100B (en) A kind of stratigraphic model method for automatic modeling based on borehole data
CN102360404B (en) Method for compiling geological display map of chamber
CN105469443A (en) Method for generating three-dimensional geological map based on geological route (PRB) process double modeling
CN111160853A (en) Electronic compilation method for uranium ore drilling comprehensive histogram
CN106504324A (en) A kind of two D profile of engineering geology integration method for drafting based on ActiveX technology
CN107180452A (en) The stratified geological objects modeling method of the multi-source data coupling on the stratum containing standard
CN107944086A (en) A kind of fast modeling method based on borehole data
CN102346917B (en) Method and system for automatically drawing engineering geologic histogram
CN105184865A (en) Geological map compilation method based on geological three-dimensional modeling process
CN111257962A (en) Method for positioning and predicting ore body by using three-dimensional geological modeling technology
CN109725347A (en) A kind of interlayer oxidation zone sandstone-type uranium three-dimensional geologic model building method
CN109270567A (en) A method of exploratory trench gamma-radiation dose rate isopleth map being made in uranium exploration
CN106599338A (en) Three-dimensional geologic modeling method for shale gas reservoirs
CN107798189A (en) One kind is based on the geophysical precisely dynamic anti-burst method of Transparent space
CN110322982A (en) A kind of high-level waste geology treatment gun drilling method for arranging
CN111192359A (en) Method for extracting lithology data of drill hole by utilizing geological profile drill hole space track form
CN104793263B (en) A kind of AUTOMATIC SORTING IN LAYERS BY WELL-LOGGING CURVES value and evaluation method
CN115861551A (en) Digital well construction method for in-situ leaching uranium mining
CN112580119B (en) Method for compiling geological map of in-situ leaching sandstone type uranium ore series
CN115035258A (en) Efficient urban three-dimensional geological modeling method based on CAD (computer-aided design) drilling histogram
CN101487387A (en) Lithologic delamination method for complex layered dam base
CN107194966A (en) A kind of discrimination method of two-dimentional geological section geological boundary and its attribute information

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200515

RJ01 Rejection of invention patent application after publication