CN111156989B - 基于指向自动测定的空间碎片实时天文定位方法 - Google Patents

基于指向自动测定的空间碎片实时天文定位方法 Download PDF

Info

Publication number
CN111156989B
CN111156989B CN201911409036.4A CN201911409036A CN111156989B CN 111156989 B CN111156989 B CN 111156989B CN 201911409036 A CN201911409036 A CN 201911409036A CN 111156989 B CN111156989 B CN 111156989B
Authority
CN
China
Prior art keywords
star
stars
image
space debris
theoretical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911409036.4A
Other languages
English (en)
Other versions
CN111156989A (zh
Inventor
张晓祥
黄剑
惠建江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purple Mountain Observatory of CAS
Original Assignee
Purple Mountain Observatory of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purple Mountain Observatory of CAS filed Critical Purple Mountain Observatory of CAS
Priority to CN201911409036.4A priority Critical patent/CN111156989B/zh
Publication of CN111156989A publication Critical patent/CN111156989A/zh
Application granted granted Critical
Publication of CN111156989B publication Critical patent/CN111156989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/02Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means
    • G01C21/025Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means with the use of startrackers

Abstract

本发明公开了一种基于指向自动测定的空间碎片实时天文定位方法,包括:理论星图生成;恒星及空间碎片星象;实测星图生成;理论星图及实测星图匹配;指向及像面旋转测定;恒星检索;底片模型优选;空间碎片天文定位。本发明能够根据观测视场大小自动优选底片模型,按照图像上给定时间,自动测定图像中心指向及像面旋转角,实现恒星理论坐标和实测坐标的自动匹配,从而实现空间碎片的实时天文定位;降低了望远镜轴系加工精度要求和外场安装调试要求,减少了测站环境温度参输入要求,减少了观测前需要指向标校的要求;在无精密天文经纬度不能实现望远镜指向标校的情况下,能够自动测定望远镜两轴零点差,也能实现空间碎片实时天文定位。

Description

基于指向自动测定的空间碎片实时天文定位方法
技术领域
本发明涉及空间碎片定位技术领域,具体而言涉及一种基于指向自动测定的空间碎片实时天文定位方法。
背景技术
在科研、军事等许多领域,都需要对空间碎片进行监视,一方面测定空间碎片的每一个观测时刻在天空中的位置及其变化,确定空间碎片的运行轨道,从而获取空间碎片精确的信息。基于此需求,空间碎片的精确测量是非常重要的基础环节,没有空间碎片的精确测量,空间碎片轨道识别,编目定轨,及精密定轨都无法实现。
通常为了实现空间碎片天文定位,必须实事先完成以下三件事:(1)人工测量获得像面旋转角。(2)通过观测几十颗恒星获得望远镜指向修正模型。(3)优选底片常数模型。
上述的第二件事需要经常做,而且需要较为精确的测站温度、相对湿度、及大气压强。即使如此,在仰角较低的天区,受大气折射改正精度影响,望远镜指向误差修正精度偏低。
基于现有天文定位方法的不足,本发明给出一种基于指向自动测定的空间目标实时天文定位方法,它能够根据观测视场大小自动优选底片模型,按照图像上给定时间和图像中心指向,无需指向信息输入,自动测定图像中心指向及像面旋转角,实现恒星理论坐标和实测坐标的自动匹配,从而实现空间碎片的实时天文定位。
发明内容
本发明目的在于提供一种基于指向自动测定的空间碎片实时天文定位方法,能够根据观测视场大小自动优选底片模型,按照图像上给定时间,自动测定图像中心指向及像面旋转角,实现恒星理论坐标和实测坐标的自动匹配,从而实现空间碎片的实时天文定位。对于固定站址(有精密的天文经纬度)的望远镜,该方法降低了望远镜轴系加工精度要求,降低望远镜外场安装调试要求,减少了测站环境温度参输入要求,减少了观测前需要指向标校的要求。对于可移动望远镜,该方法在无精密天文经纬度不能实现望远镜指向标校的情况下,能够自动测定望远镜两轴零点差,也能实现空间碎片实时天文定位。更重要的是该方法能够在没有天文经纬度的移动站址上(只有地理经纬度)上实现高精度天文定位。
为达成上述目的,结合图1,本发明提出一种基于指向自动测定的空间碎片实时天文定位方法,所述实时天文定位方法包括以下步骤:
S1:生成天文定位恒星星库、和用于表述天文定位恒星星库所包含的所有恒星自身信息的第一索引数据;
基于天文定位恒星星库,生成全天区理论星图、和用于表述全天区理论星图所包含的恒星之间角距信息的第二索引数据;
S2:接收至少一帧包括空间碎片和背景恒星的图像,获得图像上在预设检测门限内的恒星和空间碎片的星象信息,所述星象信息包括每个恒星和空间碎片的二维平面坐标(x,y)、像素个数、灰度和,按照像素个数减少的顺序对所有星象进行排序;其中,设图像的左上角为坐标原点(0,0),图像右侧为x轴增加方向,图像下侧为y轴增加方向,x为图像中星象所在位置在x轴方向上与坐标原点的距离,y为图像中星象所在位置在y轴方向上与坐标原点的距离;
S3:按照给定门限,从图像中选择N1颗恒星星象,定义成第一候选恒星,结合第一候选恒星在图像上的二维平面坐标和望远镜的焦距,计算得到任意两颗第一候选恒星之间的角距,选择三颗第一候选恒星组成三角形星图,生成恒星实测星图;
S4:根据全天区理论星图和第二索引数据,确定候选星图的上下界限,获取最大角距
Figure BDA0002349470900000021
最小角距
Figure BDA0002349470900000022
中间角距
Figure BDA0002349470900000023
依次计算上下界限中任意三颗定标星i,j,k组成的三角形的角距,设计算得到的角距由大到小顺序为
Figure BDA0002349470900000024
根据下述匹配条件,将计算得到的角距
Figure BDA0002349470900000025
对应
Figure BDA0002349470900000026
Figure BDA0002349470900000027
进行匹配判断,直至匹配成功N3颗恒星:
第j颗定标星和第k颗定标星之间满足下式:
Figure BDA0002349470900000028
任意三颗i,j,k定标星之间满足下式:
Figure BDA0002349470900000029
其中,ε1和ε2均为预设的角距门限;
S5:设匹配成功的N3颗恒星在图像上的二维平面坐标为(xi,yi),i=1,2,…N3,对应的理论二维平面坐标坐标为(Xi,Yi),i=1,2,…N3
利用下式,采用最小二乘方法,计算出系数a,b,c,d,e,f,从而得到中心指向偏差及像面旋转角:
Figure BDA00023494709000000210
S6:结合天文定位恒星星库和第一索引数据,根据图像对应的拍摄信息和全天区星图指向测定结果(αpp),检索出视场中满足给定星等门限的所有恒星的相关信息,所述满足给定星等门限的恒星的相关信息包括其所对应的二维平面坐标理论值(X,Y)、赤经和赤纬理论值(αss)、理想坐标理论值(ξss)、理论星等M,按照理论星等由小到大的顺序对检索出的恒星进行排序;
S7:根据图像对应视场大小,结合匹配成功的N3颗恒星在图像上的二维平面坐标(xi,yi),及理想坐标
Figure BDA0002349470900000035
i=1,2,…N3,进行常数模型计算,根据恒星的定位精度,自动优选底片常数模型。
进一步的实施例中,步骤S1中,所述生成天文定位恒星星库、和用于表述天文定位恒星星库所包含的所有恒星自身信息的第一索引数据是指:
将给定星等的全天区恒星按照赤经增加及赤纬增加的顺序分区存放,并形成索引,生成天文定位恒星星库及索引数据。
进一步的实施例中,所述基于天文定位恒星星库,生成全天区理论星图、和用于表述全天区理论星图所包含的恒星之间角距信息的第二索引数据是指:
按照给定星等门限,选择全天区N2颗恒星星象,定义成第二候选恒星,结合第二候选恒星的赤经和赤纬,计算得到任意两颗第二候选恒星之间的角距,按照给定角距门限,任选三颗第二候选恒星组成三角形星图,生成全天区理论星图,并按照每个三角形的角距大小进行排序,生成相应的索引数据。
进一步的实施例中,步骤S1中,采用下式计算任意两颗第二候选恒星之间的角距:
Figure BDA0002349470900000031
其中,(αuu)是第u颗第二候选恒星的赤经和赤纬,(αvv)是第v颗第二候选恒星的赤经和赤纬,
Figure BDA0002349470900000032
是第u颗和第v颗第二候选恒星之间的角距。
进一步的实施例中,步骤S4中,采用下述公式计算任意两颗第一候选恒星之间的角距:
Figure BDA0002349470900000033
其中,f是望远镜的焦距,(xj,yj)是第j颗第一候选恒星的二维平面坐标,(xk,yk)是第k颗第一候选恒星的二维平面坐标。
进一步的实施例中,步骤S6中,所述理想坐标(ξss)满足以下公式:
Figure BDA0002349470900000034
进一步的实施例中,步骤S6中,所述图像对应的拍摄信息包括图像的拍摄时间、指向信息、测站经纬度、测站海拔高度、测站温度、测站湿度、大气压强、给定视场大小。
进一步的实施例中,步骤S7中,结合匹配成功的定标星数量,分别选用六常数模型、十二常数模型、十四常数模型进行常数模型计算,其中:
所述六常数模型对应至少3个以上的定标星:
Figure BDA0002349470900000041
所述十二常数模型对应至少6个以上的定标星:
Figure BDA0002349470900000042
所述十四常数模型对应至少7个以上的定标星:
Figure BDA0002349470900000043
进一步的实施例中,步骤S7还包括:自动存储优选底片常数模型。
进一步的实施例中,所述实时天文定位方法还包括:
S8:根据空间碎片的二维平面坐标实测值(xT,yT),采用以下公式获得空间碎片的赤经和赤纬(αTT):
Figure BDA0002349470900000044
其中,(ξTT)为空间碎片的理想坐标,由(xT,yT)代入六常数、十二常数或者十四常数模型获得。
以上本发明的技术方案,与现有相比,其显著的有益效果在于,
(1)能够根据观测视场大小自动优选底片模型,按照图像上给定时间和图像中心指向,自动测定图像中心指向及像面旋转角,实现恒星理论坐标和实测坐标的自动匹配,从而实现空间碎片的实时天文定位。
(2)对于固定站址(有精密的天文经纬度)的望远镜,该方法降低了望远镜轴系加工精度要求,降低望远镜外场安装调试要求,减少了测站环境温度参输入要求,减少了观测前需要指向标校的要求。对于可移动望远镜,该方法在无精密天文经纬度不能实现望远镜指向标校的情况下,也能实现空间碎片实时天文定位。因此该方法是一种的非常好的空间碎片实时天文定位方法。
(3)该方法能够在没有天文经纬度的移动站址上(只有地理经纬度)上实现高精度天文定位,实际处理效果好,能够广泛地应用到科研、及工程领域中。
(4)计算机系统能够实时给出图像上的空间碎片天文定位结果、恒星天文定位结果、指向像面旋转测定结果、恒星检索结果。这些结果应用场景广泛,例如,可以提供给可以通过显示系统显示出来,以及存储在计算机系统的存储介质中,也可以供空间碎片编目定轨及精密定轨使用,还可以根据指向测定结果修正空间碎片的预报位置,有利于提高空间碎片的捕获和跟踪成功率。
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。另外,所要求保护的主题的所有组合都被视为本公开的发明主题的一部分。
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。
附图说明
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1是本发明的基于指向自动测定的空间碎片实时天文定位方法的流程图。
具体实施方式
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。
结合图1,本发明提及一种基于指向自动测定的空间碎片实时天文定位方法,所述实时天文定位方法包括以下步骤:
S1:生成天文定位恒星星库、和用于表述天文定位恒星星库所包含的所有恒星自身信息的第一索引数据。
基于天文定位恒星星库,生成全天区理论星图、和用于表述全天区理论星图所包含的恒星之间角距信息的第二索引数据。
S2:接收至少一帧包括空间碎片和背景恒星的图像,获得图像上在预设检测门限内的恒星和空间碎片的星象信息,所述星象信息包括每个恒星和空间碎片的二维平面坐标(x,y)、像素个数、灰度和,按照像素个数减少的顺序对所有星象进行排序;其中,设图像的左上角为坐标原点(0,0),图像右侧为x轴增加方向,图像下侧为y轴增加方向,x为图像中星象所在位置在x轴方向上与坐标原点的距离,y为图像中星象所在位置在y轴方向上与坐标原点的距离。
S3:按照给定门限,从图像中选择N1颗恒星星象,定义成第一候选恒星,结合第一候选恒星在图像上的二维平面坐标和望远镜N1的焦距,计算得到任意两颗第一候选恒星之间的角距,选择三颗第一候选恒星组成三角形星图,生成恒星实测星图。
S4:根据全天区理论星图和第二索引数据,确定候选星图的上下界限,获取最大角距
Figure BDA0002349470900000051
最小角距
Figure BDA0002349470900000052
中间角距
Figure BDA0002349470900000053
依次计算上下界限中任意三颗定标星i,j,k组成的三角形的角距,设计算得到的角距由大到小顺序为
Figure BDA0002349470900000054
根据下述匹配条件,将计算得到的角距
Figure BDA0002349470900000055
对应
Figure BDA0002349470900000056
Figure BDA0002349470900000057
进行匹配判断,直至匹配成功N3颗恒星:
第j颗定标星和第k颗定标星之间满足下式:
Figure BDA0002349470900000058
任意三颗i,j,k定标星之间满足下式:
Figure BDA0002349470900000061
其中,ε1和ε2均为预设的角距门限。
S5:设匹配成功的N3颗恒星在图像上的二维平面坐标为(xi,yi),i=1,2,…N3,对应的理论二维平面坐标坐标为(Xi,Yi),i=1,2,…N3
利用下式,采用最小二乘方法,计算出系数a,b,c,d,e,f,从而得到中心指向偏差及像面旋转角:
Figure BDA0002349470900000062
S6:结合天文定位恒星星库和第一索引数据,根据图像对应的拍摄信息和全天区星图指向测定结果(αpp),检索出视场中满足给定星等门限的所有恒星的相关信息,所述满足给定星等门限的恒星的相关信息包括其所对应的二维平面坐标理论值(X,Y)、赤经和赤纬理论值(αss)、理想坐标理论值(ξss)、理论星等M,按照理论星等由小到大的顺序对检索出的恒星进行排序。
S7:根据图像对应视场大小,结合匹配成功的N3颗恒星在图像上的二维平面坐标(xi,yi),及理想坐标
Figure BDA0002349470900000063
i=1,2,…N3,进行常数模型计算,根据恒星的定位精度,自动优选底片常数模型。
简单来说,本发明的技术方案包括以下几个工作步骤:
(1)理论星图生成。
(2)恒星及空间碎片星象。
(3)实测星图生成。
(4)理论星图及实测星图匹配。
(5)指向及像面旋转测定。
(6)恒星检索。
(7)底片模型优选。
(8)空间碎片天文定位。
在实际应用中,针对采集到连续的观测图像,通过空间目标检测获得每一帧图像上恒星及空间碎片的星象信息之后,依次采用上述8个步骤,获得空间碎片的天文定位及测光数据。更优化和更具体描述以上各步骤如下:
一、理论星图生成
按照给定星等的全天区恒星按照赤经增加及赤纬增加的顺序,分区存放,并形成索引,生成天文定位恒星星库及第一索引数据,用于恒星检索使用。按照给定星等门限,选择全天区N2颗恒星星象,根据恒星的赤经和赤纬信息,采用下式计算任意两颗恒星之间的角距:
Figure BDA0002349470900000071
其中,(αuu)是第u颗第二候选恒星的赤经和赤纬,(αvv)是第v颗第二候选恒星的赤经和赤纬
按照给定门限,比如最小及最大角距,任选三颗恒星组成三角形星图,生成全天区理论星图,并按照每个三角形的角距大小进行排序。生成全天区理论星图库及相应的第二索引数据,供星图检索使用。
二、恒星及空间碎片星象
按照空间碎片检测方法,获得图像上在检测门限内恒星及空间碎片的星象信息,包括其二维平面坐标(x,y)、像素个数、灰度和,按照像素个数减少的顺序对图像进行排序。优选的,可以采用现有技术中的任意一种空间碎片获取方法来获得图像上在检测门限内恒星及空间碎片的星象信息。
三、实测星图生成
按照给定门限,选择N1颗恒星星象,根据恒星星象的二维平面坐标(x,y),望远镜的焦距为f。采用下式计算任意两颗恒星之间的角距,人选三颗恒星组成三角形星图,生成恒星实测星图。采用下述公式计算任意两颗第一候选恒星之间的角距:
Figure BDA0002349470900000072
其中,(xj,yj)是第j颗第二候选恒星的二维平面坐标,(xk,yk)是第k颗第二候选恒星的二维平面坐标。
四、理论星图及实测星图匹配
对于图像上任意三颗定标星i,j,k组成角距大小顺序为
Figure BDA0002349470900000073
的三角形,根据理论星图的索引,快速实现候选星图的上下界n,对上下界限中三角形对应角距大小顺序为
Figure BDA0002349470900000074
Figure BDA0002349470900000075
进行匹配判断。
由于f可能不是太准,但是第j颗定标星和第k颗定标星之间依然能够满足下式:
Figure BDA0002349470900000076
任意三颗i,j,k定标星之间满足下式:
Figure BDA0002349470900000077
Figure BDA0002349470900000078
五、指向及像面旋转测定。
假设匹配成功了N3颗恒星,图像上星象二维平面坐标(xi,yi),i=1,2,…N3,星象的理论二维平面坐标坐标(Xi,Yi),i=1,2,…N3
利用下式,采用最小二乘方法,计算出系数a,b,c,d,e,f,从而得到中心指向偏差及像面旋转角:
Figure BDA0002349470900000081
六、恒星检索。
根据图像对应的时间和全天区星图指向测定结果(αpp),测站经纬度、海拔高度,测站温度、湿度、大气压强,给定视场大小,检索出视场中满足给定星等门限的恒星信息,包括二维平面坐标理论值(X,Y)、赤经和赤纬理论值(αss)、理想坐标理论值(ξss)、理论星等M,并按照理论星等增加的顺序进行排序。所述理想坐标(ξss)满足以下公式:
Figure BDA0002349470900000082
七、底片模型优选。
根据图像对应视场大小,假设匹配成功了N3颗恒星,图像上星象二维平面坐标(xi,yi),及理想坐标
Figure BDA0002349470900000083
i=1,2,…N3。采用以下六常数、十二常数、十四常数模型计算,根据恒星的定位精度,自动优选底片常数模型(只需优选一次,自动存储优选结果)。
六常数模型(需要3个以上的定标星)
Figure BDA0002349470900000084
十二常数模型(需要6个以上的定标星)
Figure BDA0002349470900000085
十四常数模型(需要7个以上的定标星)
Figure BDA0002349470900000086
八、空间碎片天文定位。
根据空间碎片的二维平面坐标实测值(xT,yT),采用以下公式获得空间碎片的赤经和赤纬(αTT):
Figure BDA0002349470900000087
其中,(ξTT)为空间碎片的理想坐标,由(xT,yT)代入六常数、十二常数或者十四常数模型获得。
计算机系统根据上述输入数据,实时给出了图像上的空间碎片天文定位结果、恒星天文定位结果、指向像面旋转测定结果、恒星检索结果。这些结果可以提供给可以通过显示系统显示出来,以及存储在计算机系统的存储介质中,可以供空间碎片编目定轨及精密定轨使用,可以根据指向测定结果修正空间碎片的预报位置,有利于提高空间碎片的捕获和跟踪成功率。
在本公开中参照附图来描述本发明的各方面,附图中示出了许多说明的实施例。本公开的实施例不必定义在包括本发明的所有方面。应当理解,上面介绍的多种构思和实施例,以及下面更加详细地描述的那些构思和实施方式可以以很多方式中任意一种来实施,这是因为本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (10)

1.一种基于指向自动测定的空间碎片实时天文定位方法,其特征在于,所述实时天文定位方法包括以下步骤:
S1:生成天文定位恒星星库、和用于表述天文定位恒星星库所包含的所有恒星自身信息的第一索引数据;
基于天文定位恒星星库,生成全天区理论星图、和用于表述全天区理论星图所包含的恒星之间角距信息的第二索引数据;
S2:接收至少一帧包括空间碎片和背景恒星的图像,获得图像上在预设检测门限内的恒星和空间碎片的星象信息,所述星象信息包括每个恒星和空间碎片的二维平面坐标(x,y)、像素个数、灰度和,按照像素个数减少的顺序对所有星象进行排序;其中,设图像的左上角为坐标原点(0,0),图像右侧为x轴增加方向,图像下侧为y轴增加方向,x为图像中星象所在位置在x轴方向上与坐标原点的距离,y为图像中星象所在位置在y轴方向上与坐标原点的距离;
S3:按照给定门限,从图像中选择N1颗恒星星象,定义成第一候选恒星,结合第一候选恒星在图像上的二维平面坐标和望远镜的焦距,计算得到任意两颗第一候选恒星之间的角距,选择三颗第一候选恒星组成三角形星图,生成恒星实测星图;
S4:根据全天区理论星图和第二索引数据,确定候选星图的上下界限,获取最大角距
Figure FDA0002865039210000011
最小角距
Figure FDA0002865039210000012
中间角距
Figure FDA0002865039210000013
依次计算上下界限中任意三颗定标星i,j,k组成的三角形的角距,设计算得到的角距由大到小顺序为
Figure FDA0002865039210000014
根据下述匹配条件,将计算得到的角距
Figure FDA0002865039210000015
对应
Figure FDA0002865039210000016
Figure FDA0002865039210000017
进行匹配判断,直至匹配成功N3颗恒星:
第j颗定标星和第k颗定标星之间满足下式:
Figure FDA0002865039210000018
任意三颗i,j,k定标星之间满足下式:
Figure FDA0002865039210000019
其中,ε1和ε2均为预设的角距门限;
S5:设匹配成功的N3颗恒星在图像上的二维平面坐标为(xi,yi),i=1,2,...N3,对应的理论二维平面坐标为(Xi,Yi),i=1,2,...N3
利用下式,采用最小二乘方法,计算出系数a,b,c,d,e,f,从而得到中心指向偏差及像面旋转角:
Figure FDA0002865039210000021
S6:结合天文定位恒星星库和第一索引数据,根据图像对应的拍摄信息和全天区星图指向测定结果(αp,δp),检索出视场中满足给定星等门限的所有恒星的相关信息,所述满足给定星等门限的恒星的相关信息包括其所对应的二维平面坐标理论值(X,Y)、赤经和赤纬理论值(αs,δs)、理想坐标理论值(ξs,ζs)、理论星等M,按照理论星等由小到大的顺序对检索出的恒星进行排序;
S7:根据图像对应视场大小,结合匹配成功的N3颗恒星在图像上的二维平面坐标(xi,yi),及理想坐标
Figure FDA0002865039210000022
进行常数模型计算,根据恒星的定位精度,自动优选底片常数模型。
2.根据权利要求1所述的基于指向自动测定的空间碎片实时天文定位方法,其特征在于,步骤S1中,所述生成天文定位恒星星库和用于表述天文定位恒星星库所包含的所有恒星自身信息的第一索引数据是指:
将给定星等的全天区恒星按照赤经增加及赤纬增加的顺序分区存放,并形成索引,生成天文定位恒星星库及索引数据。
3.根据权利要求1所述的基于指向自动测定的空间碎片实时天文定位方法,其特征在于,所述基于天文定位恒星星库,生成全天区理论星图、和用于表述全天区理论星图所包含的恒星之间角距信息的第二索引数据是指:
按照给定星等门限,选择全天区N2颗恒星星象,定义成第二候选恒星,结合第二候选恒星的赤经和赤纬,计算得到任意两颗第二候选恒星之间的角距,按照给定角距门限,任选三颗第二候选恒星组成三角形星图,生成全天区理论星图,并按照每个三角形的角距大小进行排序,生成相应的索引数据。
4.根据权利要求3所述的基于指向自动测定的空间碎片实时天文定位方法,其特征在于,步骤S1中,采用下式计算任意两颗第二候选恒星之间的角距:
Figure FDA0002865039210000023
其中,(αu,δu)是第u颗第二候选恒星的赤经和赤纬,(αv,δv)是第v颗第二候选恒星的赤经和赤纬,
Figure FDA0002865039210000024
是第u颗和第v颗第二候选恒星之间的角距。
5.根据权利要求1所述的基于指向自动测定的空间碎片实时天文定位方法,其特征在于,步骤S4中,采用下述公式计算任意两颗第一候选恒星之间的角距:
Figure FDA0002865039210000025
其中,f是望远镜的焦距,(xj,yj)是第j颗第一候选恒星的二维平面坐标,(xk,yk)是第k颗第一候选恒星的二维平面坐标。
6.根据权利要求1所述的基于指向自动测定的空间碎片实时天文定位方法,其特征在于,步骤S6中,所述理想坐标理论值(ξs,ζs)满足以下公式:
Figure FDA0002865039210000031
7.根据权利要求1所述的基于指向自动测定的空间碎片实时天文定位方法,其特征在于,步骤S6中,所述图像对应的拍摄信息包括图像的拍摄时间、指向信息、测站经纬度、测站海拔高度、测站温度、测站湿度、大气压强、给定视场大小。
8.根据权利要求1所述的基于指向自动测定的空间碎片实时天文定位方法,其特征在于,步骤S7中,结合匹配成功的定标星数量,分别选用六常数模型、十二常数模型、十四常数模型进行常数模型计算,其中:
所述六常数模型对应至少3个以上的定标星:
Figure FDA0002865039210000032
所述十二常数模型对应至少6个以上的定标星:
Figure FDA0002865039210000033
所述十四常数模型对应至少7个以上的定标星:
Figure FDA0002865039210000034
9.根据权利要求1所述的基于指向自动测定的空间碎片实时天文定位方法,其特征在于,步骤S7还包括:自动存储优选底片常数模型。
10.根据权利要求1所述的基于指向自动测定的空间碎片实时天文定位方法,其特征在于,所述实时天文定位方法还包括:
S8:根据空间碎片的二维平面坐标实测值(xT,yT),采用以下公式获得空间碎片的赤经和赤纬(αT,δT):
Figure FDA0002865039210000035
其中,(ξT,ζT)为空间碎片的理想坐标,由(xT,yT)代入六常数、十二常数或者十四常数模型获得。
CN201911409036.4A 2019-12-31 2019-12-31 基于指向自动测定的空间碎片实时天文定位方法 Active CN111156989B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911409036.4A CN111156989B (zh) 2019-12-31 2019-12-31 基于指向自动测定的空间碎片实时天文定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911409036.4A CN111156989B (zh) 2019-12-31 2019-12-31 基于指向自动测定的空间碎片实时天文定位方法

Publications (2)

Publication Number Publication Date
CN111156989A CN111156989A (zh) 2020-05-15
CN111156989B true CN111156989B (zh) 2021-03-16

Family

ID=70559946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911409036.4A Active CN111156989B (zh) 2019-12-31 2019-12-31 基于指向自动测定的空间碎片实时天文定位方法

Country Status (1)

Country Link
CN (1) CN111156989B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111156990B (zh) * 2019-12-31 2021-03-16 中国科学院紫金山天文台 基于指向自动测定的空间碎片实时天文定位和测光方法
CN111879298B (zh) * 2020-08-17 2022-04-15 中国科学院上海天文台 一种用于月球无人值守望远镜的自动指星方法
CN113188508B (zh) * 2021-04-28 2023-02-03 中国人民解放军63921部队 高精度测角和测距望远镜系统以及测角和测距方法
CN114998423B (zh) * 2022-06-08 2024-04-12 深圳市微视星辰科技有限公司 一种望远镜自主定向方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749545B2 (en) * 2010-03-11 2014-06-10 The Aerospace Corporation Space debris visualization
CN102506829B (zh) * 2011-11-15 2013-08-21 中国科学院紫金山天文台 快速星图匹配方法
CN102494674B (zh) * 2011-11-18 2013-06-05 中国科学院紫金山天文台 暗弱空间碎片高精度定位方法
CN104504674B (zh) * 2014-10-15 2017-05-31 西北工业大学 空间碎片星点提取与定位方法
DE202017101831U1 (de) * 2017-02-24 2018-02-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. System zur Bestimmung und/oder Vorhersage einer Position und/oder einer Flugbahn von orbitalen Objekten im Weltraum

Also Published As

Publication number Publication date
CN111156989A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
CN111156988B (zh) 基于指向误差自动测定的空间碎片天文定位和测光方法
CN111156989B (zh) 基于指向自动测定的空间碎片实时天文定位方法
CN101246590B (zh) 星载相机空间畸变图像几何校正方法
CN109708649B (zh) 一种遥感卫星的姿态确定方法及系统
US9478034B1 (en) Geoposition determination by starlight refraction measurement
CN102261921B (zh) 一种修正大气折射对星敏感器精度影响的方法
CN109459059B (zh) 一种星敏感器外场转换基准测定系统及方法
CN101539397B (zh) 物体三维姿态的精密光学测量方法
CN105548976A (zh) 船载雷达海上精度鉴定方法
CN112629431B (zh) 土木结构变形监测方法及相关设备
CN112731281B (zh) 一种空间碎片测角数据仿真方法
CN111156990B (zh) 基于指向自动测定的空间碎片实时天文定位和测光方法
CN111156991B (zh) 基于指向误差自动测定的空间碎片实时天文定位方法
CN112461231A (zh) 一种多星图融合的天文定位方法
CN113218577A (zh) 一种星敏感器星点质心位置精度的外场测量方法
CN114001756B (zh) 一种小视场星敏感器外场地面寻星方法
CN109708667A (zh) 一种基于激光陀螺的双动态目标跟踪引导方法
CN113819904A (zh) 一种基于天顶点矢量的偏振/vio三维姿态确定方法
CN103852079B (zh) 一种基于双星顶点剖分弧度集合模糊匹配的船舶天文导航方法
CN106595600B (zh) 立体测绘卫星姿态测定系统低频误差补偿方法及系统
CN109064510A (zh) 一种全站仪及其恒星图像的星点质心提取方法
CN110887474B (zh) 一种用于精密跟踪型望远镜的星图识别方法
CN1124470C (zh) 方位的精确测定方法
CN104458653B (zh) 一种测量大天顶距处的大气折射值的方法和系统
CN114858133B (zh) 一种恒星观测模式下姿态低频误差修正方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant