CN111146875B - 低功率启动并有电压监视功能的自关断能量收集电路 - Google Patents

低功率启动并有电压监视功能的自关断能量收集电路 Download PDF

Info

Publication number
CN111146875B
CN111146875B CN201911211618.1A CN201911211618A CN111146875B CN 111146875 B CN111146875 B CN 111146875B CN 201911211618 A CN201911211618 A CN 201911211618A CN 111146875 B CN111146875 B CN 111146875B
Authority
CN
China
Prior art keywords
voltage
type mos
pole
chip
mos tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911211618.1A
Other languages
English (en)
Other versions
CN111146875A (zh
Inventor
张帅
唐晓庆
佘亚军
谢桂辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
719th Research Institute of CSIC
Original Assignee
719th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 719th Research Institute of CSIC filed Critical 719th Research Institute of CSIC
Priority to CN201911211618.1A priority Critical patent/CN111146875B/zh
Publication of CN111146875A publication Critical patent/CN111146875A/zh
Application granted granted Critical
Publication of CN111146875B publication Critical patent/CN111146875B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种低功率启动并有电压监视功能的自关断能量收集电路,将能量收集启动功率降低到了0.14μW,能够显著提高能量收集的灵敏度;本发明可用于微弱光照、低振动强度、微小温差等环境中的能量收集,而且本发明尤其适用于基于射频能量收集的场景中;经试验,本发明能够运行的最小射频输入功率‑22dBm@915MHz,能够有效扩展射频能量收集的空间范围;同时,通过增加电压监视功能,保证系统的用电正常。

Description

低功率启动并有电压监视功能的自关断能量收集电路
技术领域
本发明涉及微能量收集领域,更具体地说,涉及一种低功率启动并有电压监视功能的自关断能量收集电路。
背景技术
能量收集是实现无源物联网等低功耗电路系统长期免维护运行的一项关键技术。通过捕获环境中的这些能量,如照明、温差、振动和电磁波(射频能量),可以让低功耗电子器件正常工作。而在这些微功率能源中,来自射频发射器的能量具有独特的优势,包括随距离变化可预测和一致的功率,能够使得无源物联网远离电池和有线供电的束缚。
环境射频能量如今可以从全球数百亿个无线发射器获得,而且发射器的数量还在不断增长,包括移动电话、手持无线电设备、移动基站以及电视/无线广播台等,捕获这类能量有助于创建各种新的无源物联网设备。目前,专门用于射频能量收集的专用集成电路/模块还比较少见,来自美国的Powercast、TI和比利时的E-Peas提供了目前为数不多的商业解决方案。
P2110B是Powercast最具代表性的射频能量收集模块,启动电压1.25V,启动电流3.9μA,启动功率4.9μW,模块能够运行的最小射频输入功率-11dBm@915MHz。
TI公司的BQ25504和BQ25505是最具代表性的能量收集芯片,启动电压分别是0.33V和0.6V,启动电流分别是45μA和25μA,启动功率均为15μW。
AEM40940是E-Peas在2018年新推出的专用射频能量收集芯片,启动电压0.38V,启动电流7.9μA,启动功率仅为3μW。芯片能够运行的最小射频输入功率-19dBm@915MHz。
同时,现有的微能量收集管理系统在进行工作时,系统负载芯片以及其他芯片往往都是一直工作,在系统收集能量较慢时,很慢满足系统负载芯片的正常用电,从而导致系统工作异常。
发明内容
由于启动功率直接关系到(射频)能量收集的灵敏度,从而影响射频能量收集的有效范围。根据上述背景介绍,目前启动功率最小的能量收集解决方案也需要3μW。针对这一问题以及保证系统负载芯片用电正常,本发明提出了启动功率更小的一套解决方案——低功率启动并有电压监视功能的自关断能量收集电路,将能量收集启动功率降低到了0.14μW。
根据本发明的第一方面,本发明解决其技术问题,所采用的低功率启动并有电压监视功能的自关断能量收集电路包含:
第一储能器件,第一储能器件的一端接地,另一端用于连接RF转DC模块的输出端,其中RF转DC模块的输入端连接射频能量收集天线,用于将射频能量转换为直流电进行输出;
第一P型开关管,S极连接所述第一储能器件的所述另一端;
负载电阻,负载电阻的两端之间并联第一去耦电容,并联后一端接地,另一端连接第一P型开关管的D极;
第一上拉电阻,一端连接所述第一储能器件的所述另一端;
二极管,阳极连接第一上拉电阻的另一端,阴极连接第一P型开关管的D极,同时二极管的阳极连接第一P型开关管的G极;
第一电压监视芯片,具有输入端口以及指示输出端口,输入端口连接第一P型开关管的D极,指示输出端口连接第一上拉电阻的所述另一端,指示输出端口用于第一电压监视芯片正常工作时,在所述输入端口输入的电压大于电压阈值VThreshold时,输出高电平,否则输出低电平,且在所述输入端口输入的电压小于第一电压监视芯片能够正常运行的最小工作电压时,处于高阻态;
第二P型开关管,第二P型开关管的G极连接所述指示输出端口,S极连接所述第一储能器件的所述另一端;
第一N型开关管,第一N型开关管的D极连接所述指示输出端口;
输入电容,一端接地,另一端分别连接第二P型开关管的D极和第一N型开关管的S极;
DC/DC转换芯片,DC/DC转换芯片的两个电源输入端连接在输入电容的两端;DC/DC转换芯片的最小启动电压VIn_Startup小于或等于第一电压监视芯片的启动电压阈值VStartup
第二储能器件,一端接地,另一端连接DC/DC转换芯片的输出端;
第三P型MOS管(Q3),第三P型MOS管的S极连接第二储能器件的所述另一端,D极用于连接系统负载芯片的电源输入端子;所述系统负载芯片具有高/低电平输出端;
第四P型MOS管(Q4),第四P型MOS管的S极连接第二储能器件的所述另一端,G极连接第三P型MOS管的D极;
第二电压监视芯片,具有输入端子以及指示输出端子,第二电压监视芯片的输入端子连接第四P型MOS管的S极,指示输出端子用于第二电压监视芯片正常工作时,在所述输入端子输入的电压小于电压阈值Vth时,输出低电平,否则输出高电平,该高电平的电压等于输入端子上的输入电压,在第四P型MOS管导通时,该高电平即为第二储能器件的电压Vin;
第二上拉电阻(R3),第二上拉电阻的一端连接第二储能器件的所述另一端,另一端连接第三P型MOS管的G极;
第二N型MOS管(Q6),第二N型MOS管的D极连接第三P型MOS管的G极,S极接地;
第一分压限流电阻(R4),串联在第二电压监视芯片的指示输出端子和第二N型MOS管的G极之间;
第二分压限流电阻(R5),串联在第三P型MOS管的D极和第二N型MOS管的G极之间
第三上拉电阻,一端连接第三P型MOS管的D极,另一端连接第一N型开关管的G极,且第三上拉电阻的所述另一端用于连接所述高/低电平输出端;
第一P型开关管和第二P型开关管为PMOS或者PNP晶体管;
所述第一储能器件的漏电流ILeakage_C、第一电压监视芯片的静态电流IMonitor和负载电阻的漏电流ILeakage_R满足:ILeakage_C+IMonitor_+ILeakage_R≤200nA;DC/DC转换芯片的最小启动电压VIn_Startup、第一电压监视芯片的启动电压阈值VStartup满足:VIn_Startup≤VStartup≤0.7V。
根据本发明的另一方面,本发明为解决其技术问题,还提供了一种低功率启动并有电压监视功能的自关断能量收集电路中,包含:
第一储能器件,第一储能器件的一端接地,另一端用于连接RF转DC模块的输出端,其中RF转DC模块的输入端连接射频能量收集天线,用于将射频能量转换为直流电进行输出;
第一P型开关管,S极连接所述第一储能器件的所述另一端;
负载电阻,负载电阻的两端之间并联第一去耦电容,并联后一端接地,另一端连接第一P型开关管的D极;
第一上拉电阻,一端连接所述第一储能器件的所述另一端;
二极管,阳极连接第一上拉电阻的另一端,阴极连接第一P型开关管的D极,同时二极管的阳极连接第一P型开关管的G极;
第一电压监视芯片,具有输入端口以及指示输出端口,输入端口连接第一P型开关管的D极,指示输出端口连接第一上拉电阻的所述另一端,指示输出端口用于第一电压监视芯片正常工作时,在所述输入端口输入的电压大于电压阈值VThreshold时,输出高电平,否则输出低电平,且在所述输入端口输入的电压小于第一电压监视芯片能够正常运行的最小工作电压时,处于高阻态;
第二P型开关管,第二P型开关管的G极连接所述指示输出端口,S极连接所述第一储能器件的所述另一端;
第一N型开关管,第一N型开关管的D极连接所述指示输出端口;
输入电容,一端接地,另一端分别连接第二P型开关管的D极和第一N型开关管的S极;
DC/DC转换芯片,DC/DC转换芯片的两个电源输入端连接在输入电容的两端;DC/DC转换芯片的最小启动电压VIn_Startup小于或等于第一电压监视芯片的启动电压阈值VStartup
第二储能器件,一端接地,另一端连接DC/DC转换芯片的输出端;
第三P型MOS管(Q4),第三P型MOS管的S极连接第二储能器件的所述另一端,D极用于连接系统负载芯片的电源输入端子;所述系统负载芯片具有高/低电平输出端;
第四P型MOS管(Q5),第四P型MOS管的S极连接第二储能器件的所述另一端,G极连接第三P型MOS管的D极;
第二电压监视芯片,具有输入端子以及指示输出端子,第二电压监视芯片的输入端子连接第四P型MOS管的S极,指示输出端子用于第二电压监视芯片正常工作时,在所述输入端子输入的电压小于电压阈值Vth时,输出低电平,否则输出高电平,该高电平的电压等于输入端子上的输入电压,在第四P型MOS管导通时,该高电平即为第二储能器件的电压Vin;
第二上拉电阻,第二上拉电阻的一端连接第二储能器件的所述另一端,另一端连接第三P型MOS管的G极;
第二N型MOS管(Q6),第二N型MOS管的G极连接第二电压监视芯片的指示输出端子,D极连接第三P型MOS管的G极,S极接地;
第三N型MOS管(Q7),第三N型MOS管的G极连接第三P型MOS管的D极,D极连接第三P型MOS管的G极,S极接地;
第三上拉电阻,一端连接第三P型MOS管的D极,另一端连接第一N型开关管的G极,且第三上拉电阻的所述另一端用于连接所述高/低电平输出端;
第一P型开关管和第二P型开关管为PMOS或者PNP晶体管;
所述第一储能器件的漏电流ILeakage_C、第一电压监视芯片的静态电流IMonitor和负载电阻的漏电流ILeakage_R满足:ILeakage_C+IMonitor_+ILeakage_R≤200nA;DC/DC转换芯片的最小启动电压VIn_Startup、第一电压监视芯片的启动电压阈值VStartup满足:VIn_Startup≤VStartup≤0.7V。
进一步地,在本发明的低功率启动并有电压监视功能的自关断能量收集电路中,第一储能器件为钽电容,第一电压监视芯片为TPS3839,DC/DC转换芯片为TPS61098。
进一步地,在本发明的低功率启动并有电压监视功能的自关断能量收集电路中,系统负载芯片为MSP430FR5969,第二电压监视芯片为TPS3831、TPS3839、R3114或R3116。
进一步地,在本发明的低功率启动并有电压监视功能的自关断能量收集电路中,第一N型开关管NMOS,第一P型开关管的型号为SSM3J556MFV,第二P型开关管的型号为2SB815-7晶体管或者SSM3J46CTB,第一N型开关管的型号为SSM3K56MFV。
进一步地,在本发明的低功率启动并有电压监视功能的自关断能量收集电路中,负载电阻为10MΩ,第一去耦电容为0.1μF,第一上拉电阻大小为1.3MΩ,第三上拉电阻大小为1.3MΩ,输入电容为1μF,第一储能器件为0.1μF。
进一步地,在本发明的可在0.7V,200nA启动的有电压监视功能的微能量收集管理系统中,
当DC/DC转换芯片启动后,所述第一储能器件上的电压会开始下降,第二P型开关管由于自身G极和S极之间的VGS降低会开始逐渐断开,然后随着第二储能器件上电压的降低,后续的电路也会断开,此时一条由第三上拉电阻和第一N型开关管构成的反馈控制回路,将维持DC/DC转换芯片启动后储能器件与DC/DC转换芯片的导通状态;最后所述系统负载芯片启动运行并在完成一次任务后,控制所述高/低电平输出端口输出低电平,以将第一N型开关管由导通变为关断,从而DC/DC转换芯片关断,至此一个启动循环结束;能量收集过程继续进行,当第一储能器件的电压再次达到第一电压监视芯片的电压阈值时,启动下一个循环。
进一步地,在本发明的低功率启动并有电压监视功能的自关断能量收集电路中,
(1)第四P型MOS管的G极初始状态默认低电平,因此第二储能器件上的电压Vin满足:当0≤Vin<Vth_pmos5时,第二P型MOS管断开,当Vth_pmos5≤Vin<Vth时,第四P型MOS管导通,指示输出端子输出为低电平,此时第二N型MOS管断开,第三P型MOS管在第二上拉电阻作用下断开,因此所述电源输入端子的输入电压为0V,系统负载芯片没有供电,未能启动;其中,Vth_pmos5表示第四P型MOS管的开启阈值电压;
(2)当Vin≥Vth时,所述指示输出端子的输出变为高电平,此时第二N型MOS管的G极电压升至
Figure BDA0002294109190000081
R4、R5以及/>
Figure BDA0002294109190000082
依次为第一分压限流电阻的大小、第二分压限流电阻的大小以及所述指示输出端子输出的电压大小,且R4和R5被设置为满足:所述指示输出端子的输出变为高电平时,R5*Vin/(R4+R5)超过第二N型MOS管的最小导通电压;此时,第二N型MOS管导通,然后第三P型MOS管导通,系统负载芯片得以启动,第二N型MOS管的G极和第四P型MOS管的G极的电压升至Vin,第四P型MOS管断开;
(3)第四P型MOS管断开后电压监视芯片掉电,所述指示输出端子的输出又变低电平,此时第二N型MOS管的G极电压降至R4*Vin/(R4+R5),且R4和R5被设置为满足:所述指示输出端子输出变为低电平时,R5*Vin/(R4+R5)超过第二N型MOS管的最小导通电压;此时,第二N型MOS管仍然导通,故能够维持系统负载芯片的启动运行状态。
进一步地,在本发明的低功率启动并有电压监视功能的自关断能量收集电路中,R4=R5=10MΩ
进一步地,在本发明的低功率启动并有电压监视功能的自关断能量收集电路中,
(1)第四P型MOS管的G极初始状态默认低电平,因此第二储能器件上的电压Vin满足:当0≤Vin<Vth_pmos5时,第四P型MOS管断开,当Vth_pmos5≤Vin<Vth时,第四P型MOS管导通,指示输出端子输出为低电平,此时第第二N型MOS管断开,第三P型MOS管在上拉电阻作用下断开,因此所述电源输入端子的输入电压为0V,系统负载芯片没有供电,未能启动;其中,Vth_pmos5表示第四P型MOS管的开启阈值电压;
(2)当Vin≥Vth时,所述指示输出端子的输出变为高电平,第二N型MOS管导通,然后第三P型MOS管导通,因此所述电源输入端子的输入电压为Vin,此时一方面系统负载芯片得以启动,另一方面第二N型MOS管的G极电压升至Vin,第三N型MOS管导通;第四P型MOS管的G极电压升至Vin,第四P型MOS管断开;
(3)第四P型MOS管断开后电压监视芯片掉电,所述指示输出端子的输出又变低电平,第二N型MOS管断开,但第三N型MOS管仍然导通,故能够维持系统负载芯片的启动运行状态。
实施本发明的低功率启动并有电压监视功能的自关断能量收集电路,具有以下有益效果:本发明实现了将能量收集启动功率降低到了0.14μW,能够显著提高能量收集的灵敏度;本发明可用于微弱光照、低振动强度、微小温差等环境中的能量收集,而且本发明尤其适用于基于射频能量收集的场景中;经试验,本发明能够运行的最小射频输入功率-22dBm@915MHz,能够有效扩展射频能量收集的空间范围;同时,通过增加电压监视功能,保证系统的用电正常。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是低功率启动并有电压监视功能的自关断能量收集电路第一实施例的电路原理图。
图2是低功率启动并有电压监视功能的自关断能量收集电路第二实施例的电路原理图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
参考图1,其为低功率启动并有电压监视功能的自关断能量收集电路第一实施例的电路原理图。本实施例的可在0.7V,200nA启动的有电压监视功能的微能量收集管理系统包含:第一储能器件C1、第一P型开关管Q1、负载电阻R1、第一去耦电容C2、第一上拉电阻R2、二极管D1、电压监视芯片U1、第二P型开关管Q2、N型开关管Q3、输入电容C3、DC/DC转换芯片U2、第二储能器件C4、第三P型MOS管Q4、第四P型MOS管Q5、第二电压监视芯片U3、第二上拉电阻R3、第二N型MOS管Q6、第一分压限流电阻R4、第二分压限流电阻R5、第一去耦电容C5以及第三上拉电阻R6。
第一储能器件C1的下端接地,上端用于连接RF转DC模块RFDC的输出端(右端),其中RF转DC模块RFDC的输入端连接射频能量收集天线TX,用于将射频能量转换为直流电进行输出。第一储能器件C1可以是电容、超级电容、电池等具有电荷存储功能的器件,且应当具有低漏电流、低自放电的特性。该第一储能器件C1的容量需根据系统负载芯片U4启动运行一次的耗电量决定。本发明以220μF钽电容为例,漏电流ILeakage_C1小于10nA。
第一P型开关管Q1的S极连接所述储能器件C1的上端。
负载电阻R1的上、下两端之间并联第一去耦电容C2,并联后下端接地,上端连接第一P型开关管Q1的D极。
第一上拉电阻R2的上端连接储能器件C1的上端。
二极管D1的阳极连接第一上拉电阻R2的下端,阴极连接第一P型开关管Q1的D极,同时二极管D1的阳极连接第一P型开关管Q1的G极。
第一电压监视芯片U1具有输入端口VIN以及指示输出端口
Figure BDA0002294109190000101
输入端口VIN连接第一P型开关管Q1的D极,指示输出端口/>
Figure BDA0002294109190000102
连接第一上拉电阻R2的下端,指示输出端口
Figure BDA0002294109190000103
用于第一电压监视芯片U1正常工作时,在所述输入端口VIN输入的电压大于电压阈值VThreshold时,输出高电平,否则输出低电平,且在所述输入端口输入的电压小于第一电压监视芯片U1能够正常运行的最小工作电压VStartup(即启动电压阈值VStartup)时,处于高阻态。
在本实施例中,第一电压监视芯片U1由基准电压源、电阻分压网络和电压比较器组成,能够持续监测输入端口VIN的电压,当VIN达到预设的电压阈值VThreshold时,指示输出端口
Figure BDA0002294109190000111
能够输出高电平。此外由于第一电压监视芯片U1内部MOSFET的亚阈值特性,当0V<VIN<VStartup时,指示输出端口/>
Figure BDA0002294109190000112
为高阻态,而当VStartup<VIN<VThreshold时,指示输出端口/>
Figure BDA0002294109190000113
输出低电平。在本实施例中,VStartup=0.4V。
第二P型开关管Q2,第二P型开关管Q2的G极连接所述指示输出端口
Figure BDA0002294109190000114
S极连接所述第一储能器件C1的上端。
第一N型开关管Q3的D极连接第一电压监视芯片U1的指示输出端口
Figure BDA0002294109190000115
输入电容C3的下端接地,上端分别连接第二P型开关管Q2的D极和第一N型开关管Q3的S极。
需要注意的是,第一P型开关管Q1、第二P型开关管Q2应选择VGS尽量小的PMOS或VCE(sat)尽量低的NPN晶体管,本发明中第一P型开关管Q1选用了SSM3J556MFV,第二P型开关管Q2可选用SSM3J46CTB或2SB815-7。第一电压监视芯片U1应具有尽量低的静态电流,本发明以TPS3839系列电压监视芯片为例,静态电流IMonitor_U1典型值150nA。为了提高电压监视芯片U1的稳定性,其VIN端口可添加负载电阻R1和第一去耦电容C2,本发明以R1=10MΩ,C2=0.1μF为例,此时负载电阻R1的漏电流ILeakage_R小于40nA。二极管D1起到单向微导通的作用,可选用1N4148或者参考本发明,直接依靠第一电压监视芯片U1内部ESD二极管即可达到相同效果。上拉电阻R2的取值会稍微影响启动电路的电压阈值VStartup,本发明以R2=1.3MΩ为例。
基于上述特性,当0V<VStorage<某一电压值时(本实施例中约为0.7V,该值为电路的属性决定,非人为设定,后续以0.7V进行说明),第一电压监视芯片U1的指示输出端口
Figure BDA0002294109190000121
被第一上拉电阻R2上拉至高电平,且第一P型开关管Q1断开;此时由于二极管D1正向微导通,0V<VIN<0.4V。在本实施例中,当VStorage趋向于所述某一电压值0.7V时,此时二极管D1上流过的电流约为第一电压监视芯片U1的静态电流IMonitor和负载电阻R1的漏电流ILeakage_R之和,即190nA,第一上拉电阻R2上的电压190nA*R2≈0.25V,二极管D1两端的电压约为0.05V(二极管D1选用的硅管)。
而当VStorage≥0.7V的瞬间,VIN≥0.4V,指示输出端口
Figure BDA0002294109190000122
将输出低电平,第一P型开关管Q1将导通,第一电压监视芯片U1的VIN端口上的电压进一步升高。该正反馈过程导致第一电压监视芯片U1的指示输出端口/>
Figure BDA0002294109190000123
持续低电平,然后第二P型开关管Q2导通,DC/DC转换芯片U2开始启动,从而第二储能电容C4充电。
本发明利用了电压监视芯片U1内部MOSFET的亚阈值特性(当0V<VIN<0.4V时,指示端口为高阻态,而当0.4V<VIN<VThreshold时,指示端口输出低电平),设计了正反馈启动控制电路,用于锁存第二P型开关管Q2栅极/基极的低电平状态。
DC/DC转换芯片U2的两个电源输入端VIN和GND连接在输入电容C3的两端;DC/DC转换芯片U2的最小启动电压VIn_Startup小于或等于电压监视芯片U1的启动电压阈值VStartup。DC/DC转换芯片U2具有DC转DC变换功能,可以是开关升/降压或LDO电路。需注意该DC/DC转换芯片U2的最小启动电压VIn_Startup应当小于等于第一电压监视芯片U1的启动电压VStartup,且尽量具有较宽的输入电压范围和较高的电源转化效率。这里以开关升压电路TPS61098作为DC/DC转换芯片U2为例,最小启动电压可低于0.7V。此外,输入电容C3的取值也较为关键,太小会导致DC-DC不稳定,太大则会导致VStorage下降过快,使Q2由于VGS过小而提前断开,本发明以C3=1μF为例。
第二储能器件C4的一端接地,另一端连接DC/DC转换芯片U2的输出端。如此,可以通过两个电容对系统负载芯片U4进行供电。第二储能器件C4的下端接地,上端用于连接左端的DC/DC转换芯片U2,从而使得DC/DC转换芯片U2向第二储能器件C4充电,第二储能器件C4上的电压Vin逐渐升高,直至达到最大电压值,即DC/DC转换芯片U2输出的电压值。第二储能器件C4包括电容、电池以及超级电容。本实施例中,第二储能器件C4大于或者等于第一储能电容C1,在本发明的另一实施例中第二储能器件C4也可以小于第一储能电容C1。
第三P型MOS管Q4的S极连接第二储能器件C4的所述另一端,D极用于连接系统负载芯片U4的电源输入端子VCC;所述系统负载芯片U4具有高/低电平输出端I/O。
第四P型MOS管Q5,第四P型MOS管Q5的S极连接第二储能器件C4的所述另一端,G极连接第三P型MOS管Q4的D极。
第二电压监视芯片U3的具有输入端子VIN以及指示输出端子
Figure BDA0002294109190000131
第二电压监视芯片U3的输入端子VIN连接第四P型MOS管Q5的S极,指示输出端子/>
Figure BDA0002294109190000132
用于第二电压监视芯片U3正常工作时,在所述输入端子输入的电压小于电压阈值Vth时,输出低电平,否则输出高电平,该高电平的电压等于输入端子VIN上的输入电压,在第四P型MOS管Q5导通时,该高电平即为第二储能器件C4的电压Vin。第二电压监视芯片U3可以采用TPS3831、TPS3839、R3114、R3116。
第二上拉电阻R3的一端连接第二储能器件C4的所述另一端,另一端连接第三P型MOS管Q4的G极。
第二N型MOS管Q6的D极连接第三P型MOS管Q4的G极,S极接地。
第一分压限流电阻R4串联在第二电压监视芯片U3的指示输出端子
Figure BDA0002294109190000141
和第二N型MOS管Q6的G极之间。
第二分压限流电阻R5串联在第三P型MOS管Q4的D极和第二N型MOS管Q6的G极之间。
第三上拉电阻R6一端连接第三P型MOS管Q4的D极,另一端连接第一N型开关管Q3的G极,且第三上拉电阻R6的所述另一端用于连接所述高/低电平输出端I/O。本实施例中,第三上拉电阻R6大小为1.3MΩ。
第二去耦电容C5的下端接地,上端连接第三P型MOS管Q4的上端,且用于与系统负载芯片U4的电源输入端VCC和GND连接,第二去耦电容C5用于系统负载芯片U4的供电去耦,本发明以第二去耦电容C5=0.22μF为例。
第一P型开关管Q1和第二P型开关管Q2为PMOS或者PNP晶体管。
所述第一储能器件C1的漏电流ILeakage_C、第一电压监视芯片U1的静态电流IMonitor和负载电阻R1的漏电流ILeakage_R满足:ILeakage_C+IMonitor_+ILeakage_R≤200nA;DC/DC转换芯片U2的最小启动电压VIn_Startup、第一电压监视芯片U1的启动电压阈值VStartup满足:VIn_Startup≤VStartup≤0.7V。
当DC/DC转换芯片U2启动后,所述第一储能器件C1上的电压会开始下降,第二P型开关管Q2由于自身G极和S极之间的VGS降低会开始逐渐断开,然后随着第二储能器件C4上电压的降低,后续的电路也会断开(断开之前,电源具有电压监视功能,断开后不具有),此时一条由第三上拉电阻R6和第一N型开关管Q3构成的反馈控制回路,将维持DC/DC转换芯片U2启动后储能器件与DC/DC转换芯片U2的导通状态;最后所述系统负载芯片U4启动运行并在完成一次任务后,控制所述高/低电平输出端口I/O输出低电平,以将第一N型开关管Q3由导通变为关断,从而DC/DC转换芯片U2关断,至此一个启动循环结束;能量收集过程继续进行,当第一储能器件C1的电压再次达到第一电压监视芯片U1的电压阈值时,启动下一个循环。在本实施例中,系统负载芯片为MSP430FR5969,第一N型开关管Q3选用了VGS尽量低的场效应管SSM3K56MFV,上拉电阻R6=1.3MΩ。
电压监视部分的工作原理如下:
(1)第四P型MOS管Q5的G极初始状态默认低电平,因此第二储能器件C4上的电压Vin满足:当0≤Vin<Vth_pmos5时,第二P型MOS管断开,当Vth_pmos5≤Vin<Vth时,第四P型MOS管Q5导通,指示输出端子输出为低电平,此时第二N型MOS管Q6断开,第三P型MOS管Q4在第二上拉电阻R3作用下断开,因此所述电源输入端子(VCC)的输入电压为0V,系统负载芯片U4没有供电,未能启动;其中,Vth_pmos5表示第四P型MOS管Q5的开启阈值电压;
(2)当Vin≥Vth时,所述指示输出端子的输出变为高电平,此时第二N型MOS管Q6的G极电压升至
Figure BDA0002294109190000151
R4、R5以及/>
Figure BDA0002294109190000152
依次为第一分压限流电阻R4的大小、第二分压限流电阻R5的大小以及所述指示输出端子输出的电压大小,且R4和R5被设置为满足:所述指示输出端子的输出变为高电平时,R5*Vin/(R4+R5)超过第二N型MOS管的最小导通电压;此时,第二N型MOS管Q6导通,然后第三P型MOS管Q4导通,系统负载芯片U4得以启动,第二N型MOS管的G极和第四P型MOS管Q5的G极的电压升至Vin,第四P型MOS管Q5断开;
(3)第四P型MOS管Q5断开后电压监视芯片掉电,所述指示输出端子的输出又变低电平,此时第二N型MOS管Q6的G极电压降至R4*Vin/(R4+R5),且R4和R5被设置为满足:所述指示输出端子输出变为低电平时(零电平),R5*Vin/(R4+R5)超过第二N型MOS管Q6的最小导通电压;此时,第二N型MOS管Q6仍然导通,故能够维持系统负载芯片U4的启动运行状态。
在本实施例中,电压监视部分启动(Vin至C5之间的电路)后的电流消耗(不计算系统负载芯片以及其他系统负载)主要为:VCC/R3以及VCC/(R4+R5)。在本实施例中,第二上拉电阻R3、第一分压限流电阻R4和第二分压限流电阻R5的电阻越大,他们者消耗的功率越小,因此在本实施例中第二上拉电阻R3、第一分压限流电阻R4和第二分压限流电阻R5应当取较大的值,本实施例中,R3、R4和R5的大小满足:R3=R4=R5=10MΩ。
本实施例电压监视部分的电路特点是:电源阀门位于VCC供电端,确保了系统地平面的完整性;在系统启动后,利用VCC与第二电压监视片的指示输出端子
Figure BDA0002294109190000161
的电阻分压维持Q6导通,从而使Q4导通,持续为系统供电,且启动和维持无需系统负载中的数字逻辑控制;采用电压监视器集成芯片,因此集成度高、电路组成简单、成本低,而且将该部分运行功耗由uA级降到了最低150nA(电压监视芯片的功耗,即电压监视芯片未被关闭时的I_U1),在系统启动后,通过Q5关闭电压监视芯片的供电,将系统启动后该部分电流消耗降低到VCC/R3+VCC/(R4+R5)。
参考图2,其为低功率启动并有电压监视功能的自关断能量收集电路第二实施例的电路原理图。本实施例的可在0.7V,200nA启动的有电压监视功能的微能量收集管理系统包含:第一储能器件C1、第一P型开关管Q1、负载电阻R1、第一去耦电容C2、第一上拉电阻R2、二极管D1、电压监视芯片U1、第二P型开关管Q2、N型开关管Q3、输入电容C3、DC/DC转换芯片U2、第二储能器件C4、第三P型MOS管Q4、第四P型MOS管Q5、第二电压监视芯片U3、第二上拉电阻R3、第二N型MOS管Q6、第三N型MOS管Q7、第一去耦电容C5以及第三上拉电阻R4。
第一储能器件C1的下端接地,上端用于连接RF转DC模块RFDC的输出端(右端),其中RF转DC模块RFDC的输入端连接射频能量收集天线TX,用于将射频能量转换为直流电进行输出。第一储能器件C1可以是电容、超级电容、电池等具有电荷存储功能的器件,且应当具有低漏电流、低自放电的特性。该第一储能器件C1的容量需根据系统负载芯片U4启动运行一次的耗电量决定。本发明以220μF钽电容为例,漏电流ILeakage_C1小于10nA。
第一P型开关管Q1的S极连接所述储能器件C1的上端。
负载电阻R1的上、下两端之间并联第一去耦电容C2,并联后下端接地,上端连接第一P型开关管Q1的D极。
第一上拉电阻R2的上端连接储能器件C1的上端。
二极管D1的阳极连接第一上拉电阻R2的下端,阴极连接第一P型开关管Q1的D极,同时二极管D1的阳极连接第一P型开关管Q1的G极。
第一电压监视芯片U1具有输入端口VIN以及指示输出端口
Figure BDA0002294109190000171
输入端口VIN连接第一P型开关管Q1的D极,指示输出端口/>
Figure BDA0002294109190000172
连接第一上拉电阻R2的下端,指示输出端口
Figure BDA0002294109190000173
用于第一电压监视芯片U1正常工作时,在所述输入端口VIN输入的电压大于电压阈值VThreshold时,输出高电平,否则输出低电平,且在所述输入端口输入的电压小于第一电压监视芯片U1能够正常运行的最小工作电压VStartup(即启动电压阈值VStartup)时,处于高阻态。
在本实施例中,第一电压监视芯片U1由基准电压源、电阻分压网络和电压比较器组成,能够持续监测输入端口VIN的电压,当VIN达到预设的电压阈值VThreshold时,指示输出端口
Figure BDA0002294109190000174
能够输出高电平。此外由于第一电压监视芯片U1内部MOSFET的亚阈值特性,当0V<VIN<VStartup时,指示输出端口/>
Figure BDA0002294109190000175
为高阻态,而当VStartup<VIN<VThreshold时,指示输出端口/>
Figure BDA0002294109190000176
输出低电平。在本实施例中,VStartup=0.4V。
第二P型开关管Q2,第二P型开关管Q2的G极连接所述指示输出端口
Figure BDA0002294109190000181
S极连接所述第一储能器件C1的上端。
第一N型开关管Q3的D极连接第一电压监视芯片U1的指示输出端口
Figure BDA0002294109190000182
输入电容C3的下端接地,上端分别连接第二P型开关管Q2的D极和第一N型开关管Q3的S极。
需要注意的是,第一P型开关管Q1、第二P型开关管Q2应选择VGS尽量小的PMOS或VCE(sat)尽量低的NPN晶体管,本发明中第一P型开关管Q1选用了SSM3J556MFV,第二P型开关管Q2可选用SSM3J46CTB或2SB815-7。第一电压监视芯片U1应具有尽量低的静态电流,本发明以TPS3839系列电压监视芯片为例,静态电流IMonitor_U1典型值150nA。为了提高电压监视芯片U1的稳定性,其VIN端口可添加负载电阻R1和第一去耦电容C2,本发明以R1=10MΩ,C2=0.1μF为例,此时负载电阻R1的漏电流ILeakage_R小于40nA。二极管D1起到单向微导通的作用,可选用1N4148或者参考本发明,直接依靠第一电压监视芯片U1内部ESD二极管即可达到相同效果。上拉电阻R2的取值会稍微影响启动电路的电压阈值VStartup,本发明以R2=1.3MΩ为例。
基于上述特性,当0V<VStorage<某一电压值时(本实施例中约为0.7V,该值为电路的属性决定,非人为设定,后续以0.7V进行说明),第一电压监视芯片U1的指示输出端口
Figure BDA0002294109190000183
被第一上拉电阻R2上拉至高电平,且第一P型开关管Q1断开;此时由于二极管D1正向微导通,0V<VIN<0.4V。在本实施例中,当VStorage趋向于所述某一电压值0.7V时,此时二极管D1上流过的电流约为第一电压监视芯片U1的静态电流IMonitor和负载电阻R1的漏电流ILeakage_R之和,即190nA,第一上拉电阻R2上的电压190nA*R2≈0.25V,二极管D1两端的电压约为0.05V(二极管D1选用的硅管)。
而当VStorage≥0.7V的瞬间,VIN≥0.4V,指示输出端口
Figure BDA0002294109190000191
将输出低电平,第一P型开关管Q1将导通,第一电压监视芯片U1的VIN端口上的电压进一步升高。该正反馈过程导致第一电压监视芯片U1的指示输出端口/>
Figure BDA0002294109190000192
持续低电平,然后第二P型开关管Q2导通,DC/DC转换芯片U2开始启动,从而第二储能电容C4充电。
本发明利用了电压监视芯片U1内部MOSFET的亚阈值特性(当0V<VIN<0.4V时,指示端口为高阻态,而当0.4V<VIN<VThreshold时,指示端口输出低电平),设计了正反馈启动控制电路,用于锁存第二P型开关管Q2栅极/基极的低电平状态。
DC/DC转换芯片U2的两个电源输入端VIN和GND连接在输入电容C3的两端;DC/DC转换芯片U2的最小启动电压VIn_Startup小于或等于电压监视芯片U1的启动电压阈值VStartup。DC/DC转换芯片U2具有DC转DC变换功能,可以是开关升/降压或LDO电路。需注意该DC/DC转换芯片U2的最小启动电压VIn_Startup应当小于等于第一电压监视芯片U1的启动电压VStartup,且尽量具有较宽的输入电压范围和较高的电源转化效率。这里以开关升压电路TPS61098作为DC/DC转换芯片U2为例,最小启动电压可低于0.7V。此外,输入电容C3的取值也较为关键,太小会导致DC-DC不稳定,太大则会导致VStorage下降过快,使Q2由于VGS过小而提前断开,本发明以C3=1μF为例。
第二储能器件C4,一端接地,另一端连接DC/DC转换芯片U2的输出端。如此,可以通过两个电容对系统负载芯片U4进行供电。第二储能器件C4的下端接地,上端用于连接左端的DC/DC转换芯片U2,从而使得DC/DC转换芯片U2向第二储能器件C4充电,第二储能器件C4上的电压Vin逐渐升高,直至达到最大电压值,即DC/DC转换芯片U2输出的电压值。第二储能器件C4包括电容、电池以及超级电容。本实施例中,第二储能器件C4大于或者等于第一储能电容C1,在本发明的另一实施例中第二储能器件C4也可以小于第一储能电容C1。
第三P型MOS管Q4的S极连接第二储能器件C4的所述另一端,D极用于连接系统负载芯片U4的电源输入端子VCC;所述系统负载芯片U4具有高/低电平输出端I/O。
第四P型MOS管Q5的S极连接第二储能器件C4的所述另一端,G极连接第三P型MOS管Q4的D极。
第二电压监视芯片U3的具有输入端子VIN以及指示输出端子
Figure BDA0002294109190000201
第二电压监视芯片U3的输入端子VIN连接第四P型MOS管Q5的S极,指示输出端子/>
Figure BDA0002294109190000202
用于第二电压监视芯片U3正常工作时,在所述输入端子VIN输入的电压小于电压阈值Vth时,输出低电平,否则输出高电平,该高电平的电压等于输入端子VIN上的输入电压,在第四P型MOS管Q5导通时,该高电平即为第二储能器件C4的电压Vin。第二电压监视芯片U3可以采用TPS3831、TPS3839、R3114、R3116。
第二上拉电阻R3的一端连接第二储能器件C4的所述另一端,另一端连接第三P型MOS管Q4的G极。
第二N型MOS管Q6的G极连接第二电压监视芯片U3的指示输出端子,D极连接第三P型MOS管Q4的G极,S极接地。
第三N型MOS管Q7的G极连接第三P型MOS管Q4的D极,D极连接第三P型MOS管Q4的G极,S极接地。
第三上拉电阻R4的一端连接第三P型MOS管Q4的D极,另一端连接第一N型开关管Q3的G极,且第三上拉电阻R4的所述另一端用于连接所述高/低电平输出端I/O;本实施例中,第三上拉电阻R6大小为1.3MΩ。
第一P型开关管Q1和第二P型开关管Q2为PMOS或者PNP晶体管。
第二去耦电容C5的下端接地,上端连接第三P型MOS管Q4的上端,且用于与系统负载芯片U4的电源输入端VCC和GND连接,第二去耦电容C5用于系统负载芯片U4的供电去耦,本发明以第二去耦电容C5=0.22μF为例。
所述第一储能器件C1的漏电流ILeakage_C、第一电压监视芯片U1的静态电流IMonitor和负载电阻R1的漏电流ILeakage_R满足:ILeakage_C+IMonitor_+ILeakage_R≤200nA;DC/DC转换芯片U2的最小启动电压VIn_Startup、第一电压监视芯片U1的启动电压阈值VStartup满足:VIn_Startup≤VStartup≤0.7V。
当DC/DC转换芯片U2启动后,所述第一储能器件C1上的电压会开始下降,第二P型开关管Q2由于自身G极和S极之间的VGS降低会开始逐渐断开,然后随着第二储能器件C4上电压的降低,后续的电路也会断开(断开之前,电源具有电压监视功能,断开后不具有),此时一条由第三上拉电阻R4和第一N型开关管Q3构成的反馈控制回路,将维持DC/DC转换芯片U2启动后储能器件与DC/DC转换芯片U2的导通状态;最后所述系统负载芯片U4启动运行并在完成一次任务后,控制所述高/低电平输出端口I/O输出低电平,以将第一N型开关管Q3由导通变为关断,从而DC/DC转换芯片U2关断,至此一个启动循环结束;能量收集过程继续进行,当第一储能器件C1的电压再次达到第一电压监视芯片U1的电压阈值时,启动下一个循环。在本实施例中,系统负载芯片为MSP430FR5969,第一N型开关管Q3选用了VGS尽量低的场效应管SSM3K56MFV,上拉电阻R6=1.3MΩ。
电压监视部分的工作原理如下:
(1)第四P型MOS管Q5的G极初始状态默认低电平,因此第二储能器件C4上的电压Vin满足:当0≤Vin<Vth_pmos5时,第四P型MOS管Q5断开,当Vth_pmos5≤Vin<Vth时,第四P型MOS管Q5导通,指示输出端子输出为低电平,此时第二N型MOS管Q6断开,第三P型MOS管Q4在上拉电阻作用下断开,因此所述电源输入端子的输入电压为0V,系统负载芯片U4没有供电,未能启动;其中,Vth_pmos5表示第四P型MOS管Q5的开启阈值电压;
(2)当Vin≥Vth时,所述指示输出端子的输出变为高电平,第二N型MOS管Q6导通,然后第三P型MOS管Q4导通,因此所述电源输入端子的输入电压为Vin,此时一方面系统负载芯片U4得以启动,另一方面第二N型MOS管Q6的G极电压升至Vin,第三N型MOS管Q7导通;第四P型MOS管Q5的G极电压升至Vin,第四P型MOS管Q5断开;
(3)第四P型MOS管Q5断开后电压监视芯片掉电,所述指示输出端子的输出又变低电平,第二N型MOS管Q6断开,但第三N型MOS管Q7仍然导通,故能够维持系统负载芯片U4的启动运行状态。
在本实施例中,电压监视部分(Vin至C5之间的电路)启动后的电流消耗(不计算系统负载芯片以及其他系统负载)主要为:第二电压监视芯片U3所消耗的电流I_U3以及VCC/R3。在本实施例中,第二上拉电阻R3越大,消耗的功率越小,因此在本实施例中第二上拉电阻R3应当取较大的值,本实施例中,第二R3取值10MΩ。
本实施例电压监视部分的电路特点是:电源阀门位于VCC供电端,确保了系统地平面的完整性;在系统启动后,利用VCC使Q7导通,从而维持Q4导通,持续为系统供电,且启动和维持无需系统负载中的数字逻辑控制;采用电压监视器集成芯片,因此集成度高、电路组成简单、成本低,而且将该部分运行功耗由uA级降到了最低150nA(第二电压监视芯片的功耗,即电压监视芯片未被关闭时的I_U3),在系统启动后,通过Q5关闭电压监视电路的供电,将系统启动后该部分电流消耗降低到VCC/R3。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

1.低功率启动并有电压监视功能的自关断能量收集电路,其特征在于,包含:
第一储能器件(C1),第一储能器件(C1)的一端接地,另一端用于连接RF转DC模块(RFDC)的输出端,其中RF转DC模块(RFDC)的输入端连接射频能量收集天线(TX),用于将射频能量转换为直流电进行输出;
第一P型开关管(Q1),S极连接所述第一储能器件(C1)的所述另一端;
负载电阻(R1),负载电阻(R1)的两端之间并联第一去耦电容(C2),并联后一端接地,另一端连接第一P型开关管(Q1)的D极;
第一上拉电阻(R2),一端连接所述第一储能器件(C1)的所述另一端;
二极管(D1),阳极连接第一上拉电阻(R2)的另一端,阴极连接第一P型开关管(Q1)的D极,同时二极管(D1)的阳极连接第一P型开关管(Q1)的G极;
第一电压监视芯片(U1),具有输入端口以及指示输出端口,输入端口连接第一P型开关管(Q1)的D极,指示输出端口连接第一上拉电阻(R2)的所述另一端,指示输出端口用于第一电压监视芯片(U1)正常工作时,在所述输入端口输入的电压大于电压阈值VThreshold时,输出高电平,否则输出低电平,且在所述输入端口输入的电压小于第一电压监视芯片(U1)能够正常运行的最小工作电压时,处于高阻态;
第二P型开关管(Q2),第二P型开关管(Q2)的G极连接所述指示输出端口,S极连接所述第一储能器件(C1)的所述另一端;
第一N型开关管(Q3),第一N型开关管(Q3)的D极连接所述指示输出端口;
输入电容(C3),一端接地,另一端分别连接第二P型开关管(Q2)的D极和第一N型开关管(Q3)的S极;
DC/DC转换芯片(U2),DC/DC转换芯片(U2)的两个电源输入端连接在输入电容(C3)的两端;DC/DC转换芯片(U2)的最小启动电压VIn_Startup小于或等于第一电压监视芯片(U2)的启动电压阈值VStartup
第二储能器件(C4),一端接地,另一端连接DC/DC转换芯片(U2)的输出端;
第三P型MOS管(Q4),第三P型MOS管(Q4)的S极连接第二储能器件(C4)的所述另一端,D极用于连接系统负载芯片(U4)的电源输入端子(VCC);所述系统负载芯片(U4)具有高/低电平输出端(I/O);
第四P型MOS管(Q5),第四P型MOS管(Q5)的S极连接第二储能器件(C4)的所述另一端,G极连接第三P型MOS管(Q4)的D极;
第二电压监视芯片(U3),具有输入端子以及指示输出端子,第二电压监视芯片(U3)的输入端子连接第四P型MOS管(Q5)的S极,指示输出端子用于第二电压监视芯片(U3)正常工作时,在所述输入端子输入的电压小于电压阈值Vth时,输出低电平,否则输出高电平,该高电平的电压等于输入端子上的输入电压,在第四P型MOS管(Q5)导通时,该高电平即为第二储能器件(C4)的电压Vin;
第二上拉电阻(R3),第二上拉电阻(R3)的一端连接第二储能器件(C4)的所述另一端,另一端连接第三P型MOS管(Q4)的G极;
第二N型MOS管(Q6),第二N型MOS管的D极连接第三P型MOS管(Q4)的G极,S极接地;
第一分压限流电阻(R4),串联在第二电压监视芯片(U3)的指示输出端子和第二N型MOS管(Q6)的G极之间;
第二分压限流电阻(R5),串联在第三P型MOS管(Q4)的D极和第二N型MOS管(Q6)的G极之间;
第三上拉电阻(R6),一端连接第三P型MOS管(Q4)的D极,另一端连接第一N型开关管(Q3)的G极,且第三上拉电阻(R6)的所述另一端用于连接所述高/低电平输出端(I/O);
第一P型开关管(Q1)和第二P型开关管(Q2)为PMOS或者PNP晶体管;
所述第一储能器件(C1)的漏电流ILeakage_C、第一电压监视芯片(U1)的静态电流IMonitor和负载电阻(R1)的漏电流ILeakage_R满足:ILeakage_C+IMonitor_+ILeakage_R≤200nA;DC/DC转换芯片(U2)的最小启动电压VIn_Startup、第一电压监视芯片(U1)的启动电压阈值VStartup满足:VIn_Startup≤VStartup≤0.7V。
2.根据权利要求1所述的低功率启动并有电压监视功能的自关断能量收集电路,其特征在在于,
(1)第四P型MOS管(Q5)的G极初始状态默认低电平,因此第二储能器件(C4)上的电压Vin满足:当0≤Vin<Vth_pmos5时,第二P型MOS管断开,当Vth_pmos5≤Vin<Vth时,第四P型MOS管(Q5)导通,指示输出端子输出为低电平,此时第二N型MOS管(Q6)断开,第三P型MOS管(Q4)在第二上拉电阻(R3)作用下断开,因此所述电源输入端子(VCC)的输入电压为0V,系统负载芯片(U4)没有供电,未能启动;其中,Vth_pmos5表示第四P型MOS管(Q5)的开启阈值电压;
(2)当Vin≥Vth时,所述指示输出端子的输出变为高电平,此时第二N型MOS管(Q6)的G极电压升至
Figure FDA0004183229970000031
R4、R5以及/>
Figure FDA0004183229970000032
依次为第一分压限流电阻(R4)的大小、第二分压限流电阻(R5)的大小以及所述指示输出端子输出的电压大小,且R4和R5被设置为满足:所述指示输出端子的输出变为高电平时,R5*Vin/(R4+R5)超过第二N型MOS管的最小导通电压;此时,第二N型MOS管(Q6)导通,然后第三P型MOS管(Q4)导通,系统负载芯片(U4)得以启动,第二N型MOS管的G极和第四P型MOS管(Q5)的G极的电压升至Vin,第四P型MOS管(Q5)断开;
(3)第四P型MOS管(Q5)断开后电压监视芯片掉电,所述指示输出端子的输出又变低电平,此时第二N型MOS管(Q6)的G极电压降至R4*Vin/(R4+R5),且R4和R5被设置为满足:所述指示输出端子输出变为低电平时,R5*Vin/(R4+R5)超过第二N型MOS管(Q6)的最小导通电压;此时,第二N型MOS管(Q6)仍然导通,故能够维持系统负载芯片(U4)的启动运行状态。
3.根据权利要求1所述的低功率启动并有电压监视功能的自关断能量收集电路,其特征在于,第一分压限流电阻=第二分压限流电阻=10MΩ。
4.低功率启动并有电压监视功能的自关断能量收集电路,其特征在于,包含:
第一储能器件(C1),第一储能器件(C1)的一端接地,另一端用于连接RF转DC模块(RFDC)的输出端,其中RF转DC模块(RFDC)的输入端连接射频能量收集天线(TX),用于将射频能量转换为直流电进行输出;
第一P型开关管(Q1),S极连接所述第一储能器件(C1)的所述另一端;
负载电阻(R1),负载电阻(R1)的两端之间并联第一去耦电容(C2),并联后一端接地,另一端连接第一P型开关管(Q1)的D极;
第一上拉电阻(R2),一端连接所述第一储能器件(C1)的所述另一端;
二极管(D1),阳极连接第一上拉电阻(R2)的另一端,阴极连接第一P型开关管(Q1)的D极,同时二极管(D1)的阳极连接第一P型开关管(Q1)的G极;
第一电压监视芯片(U1),具有输入端口以及指示输出端口,输入端口连接第一P型开关管(Q1)的D极,指示输出端口连接第一上拉电阻(R2)的所述另一端,指示输出端口用于第一电压监视芯片(U1)正常工作时,在所述输入端口输入的电压大于电压阈值VThreshold时,输出高电平,否则输出低电平,且在所述输入端口输入的电压小于第一电压监视芯片(U1)能够正常运行的最小工作电压时,处于高阻态;
第二P型开关管(Q2),第二P型开关管(Q2)的G极连接所述指示输出端口,S极连接所述第一储能器件(C1)的所述另一端;
第一N型开关管(Q3),第一N型开关管(Q3)的D极连接所述指示输出端口;
输入电容(C3),一端接地,另一端分别连接第二P型开关管(Q2)的D极和第一N型开关管(Q3)的S极;
DC/DC转换芯片(U2),DC/DC转换芯片(U2)的两个电源输入端连接在输入电容(C3)的两端;DC/DC转换芯片(U2)的最小启动电压VIn_Startup小于或等于第一电压监视芯片(U2)的启动电压阈值VStartup
第二储能器件(C4),一端接地,另一端连接DC/DC转换芯片(U2)的输出端;
第三P型MOS管(Q4),第三P型MOS管(Q4)的S极连接第二储能器件(C4)的所述另一端,D极用于连接系统负载芯片(U4)的电源输入端子;所述系统负载芯片(U4)具有高/低电平输出端;
第四P型MOS管(Q5),第四P型MOS管(Q5)的S极连接第二储能器件(C4)的所述另一端,G极连接第三P型MOS管(Q4)的D极;
第二电压监视芯片(U3),具有输入端子以及指示输出端子,第二电压监视芯片(U3)的输入端子连接第四P型MOS管(Q5)的S极,指示输出端子用于第二电压监视芯片(U3)正常工作时,在所述输入端子输入的电压小于电压阈值Vth时,输出低电平,否则输出高电平,该高电平的电压等于输入端子上的输入电压,在第四P型MOS管(Q5)导通时,该高电平即为第二储能器件(C4)的电压Vin;
第二上拉电阻(R3),第二上拉电阻(R3)的一端连接第二储能器件(C4)的所述另一端,另一端连接第三P型MOS管(Q4)的G极;
第二N型MOS管(Q6),第二N型MOS管(Q6)的G极连接第二电压监视芯片(U3)的指示输出端子,D极连接第三P型MOS管(Q4)的G极,S极接地;
第三N型MOS管(Q7),第三N型MOS管(Q7)的G极连接第三P型MOS管(Q4)的D极,D极连接第三P型MOS管(Q4)的G极,S极接地;
第三上拉电阻(R4),一端连接第三P型MOS管(Q4)的D极,另一端连接第一N型开关管(Q3)的G极,且第三上拉电阻(R4)的所述另一端用于连接所述高/低电平输出端(I/O);
第一P型开关管(Q1)和第二P型开关管(Q2)为PMOS或者PNP晶体管;
所述第一储能器件(C1)的漏电流ILeakage_C、第一电压监视芯片(U1)的静态电流IMonitor和负载电阻(R1)的漏电流ILeakage_R满足:ILeakage_C+IMonitor_+ILeakage_R≤200nA;DC/DC转换芯片(U2)的最小启动电压VIn_Startup、第一电压监视芯片(U1)的启动电压阈值VStartup满足:VIn_Startup≤VStartup≤0.7V。
5.根据权利要求1或2所述的低功率启动并有电压监视功能的自关断能量收集电路,其特征在于,第一储能器件(C1)为钽电容,第一电压监视芯片(U1)为TPS3839,DC/DC转换芯片(U2)为TPS61098。
6.根据权利要求1或2所述的低功率启动并有电压监视功能的自关断能量收集电路,其特征在于,系统负载芯片(U4)为MSP430FR5969,第二电压监视芯片(U3)为TPS3831、TPS3839、R3114或R3116。
7.根据权利要求1或2所述的低功率启动并有电压监视功能的自关断能量收集电路,其特征在于,第一N型开关管(Q3)NMOS,第一P型开关管(Q1)的型号为SSM3J556MFV,第二P型开关管(Q2)的型号为2SB815-7晶体管或者SSM3J46CTB,第一N型开关管(Q3)的型号为SSM3K56MFV。
8.根据权利要求1或2所述的低功率启动并有电压监视功能的自关断能量收集电路,其特征在于,负载电阻(R1)为10MΩ,第一去耦电容(C2)为0.1μF,第一上拉电阻(R2)大小为1.3MΩ,第三上拉电阻大小为1.3MΩ,输入电容(C3)为1μF,第一储能器件(C1)为0.1μF。
9.根据权利要求1或2所述的低功率启动并有电压监视功能的自关断能量收集电路,其特征在于,
当DC/DC转换芯片(U2)启动后,所述第一储能器件(C1)上的电压会开始下降,第二P型开关管(Q2)由于自身G极和S极之间的VGS降低会开始逐渐断开,然后随着第二储能器件(C4)上电压的降低,后续的电路也会断开,此时一条由第三上拉电阻和第一N型开关管(Q3)构成的反馈控制回路,将维持DC/DC转换芯片(U2)启动后储能器件与DC/DC转换芯片(U2)的导通状态;最后所述系统负载芯片(U4)启动运行并在完成一次任务后,控制所述高/低电平输出端(I/O)输出低电平,以将第一N型开关管(Q3)由导通变为关断,从而DC/DC转换芯片(U2)关断,至此一个启动循环结束;能量收集过程继续进行,当第一储能器件(C1)的电压再次达到第一电压监视芯片(U1)的电压阈值时,启动下一个循环。
10.根据权利要求2所述的低功率启动并有电压监视功能的自关断能量收集电路,其特征在于,
(1)第四P型MOS管(Q5)的G极初始状态默认低电平,因此第二储能器件(C4)上的电压Vin满足:当0≤Vin<Vth_pmos5时,第四P型MOS管(Q5)断开,当Vth_pmos5≤Vin<Vth时,第四P型MOS管(Q5)导通,指示输出端子输出为低电平,此时第二N型MOS管(Q6)断开,第三P型MOS管(Q4)在上拉电阻作用下断开,因此所述电源输入端子的输入电压为0V,系统负载芯片(U4)没有供电,未能启动;其中,Vth_pmos5表示第四P型MOS管(Q5)的开启阈值电压;
(2)当Vin≥Vth时,所述指示输出端子的输出变为高电平,第二N型MOS管(Q6)导通,然后第三P型MOS管(Q4)导通,因此所述电源输入端子的输入电压为Vin,此时一方面系统负载芯片(U4)得以启动,另一方面第二N型MOS管(Q6)的G极电压升至Vin,第三N型MOS管(Q7)导通;第四P型MOS管(Q5)的G极电压升至Vin,第四P型MOS管(Q5)断开;
(3)第四P型MOS管(Q5)断开后电压监视芯片掉电,所述指示输出端子的输出又变低电平,第二N型MOS管(Q6)断开,但第三N型MOS管(Q7)仍然导通,故能够维持系统负载芯片(U4)的启动运行状态。
CN201911211618.1A 2019-11-28 2019-11-28 低功率启动并有电压监视功能的自关断能量收集电路 Active CN111146875B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911211618.1A CN111146875B (zh) 2019-11-28 2019-11-28 低功率启动并有电压监视功能的自关断能量收集电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911211618.1A CN111146875B (zh) 2019-11-28 2019-11-28 低功率启动并有电压监视功能的自关断能量收集电路

Publications (2)

Publication Number Publication Date
CN111146875A CN111146875A (zh) 2020-05-12
CN111146875B true CN111146875B (zh) 2023-06-06

Family

ID=70517413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911211618.1A Active CN111146875B (zh) 2019-11-28 2019-11-28 低功率启动并有电压监视功能的自关断能量收集电路

Country Status (1)

Country Link
CN (1) CN111146875B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394906A (zh) * 2017-08-23 2017-11-24 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种传感器节点电源管理电路
CN108833316A (zh) * 2018-04-08 2018-11-16 中国船舶重工集团公司第七〇九研究所 一种基于MCU微处理器的无源WiFi散射通信方法与系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110181399A1 (en) * 2010-01-28 2011-07-28 Dvm Systems, Llc Energy harvesting with rfid tags
US20120062042A1 (en) * 2010-09-10 2012-03-15 Burke David M Low power start-up circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394906A (zh) * 2017-08-23 2017-11-24 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种传感器节点电源管理电路
CN108833316A (zh) * 2018-04-08 2018-11-16 中国船舶重工集团公司第七〇九研究所 一种基于MCU微处理器的无源WiFi散射通信方法与系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jo Bito.A Novel Solar and Electromagnetic Energy Harvesting System With a 3-D Printed Package for Energy Efficient Internet-of-Things Wireless Sensors.《IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES》.2017,第65卷(第5期),全文. *
李梦阳 ; 董川 ; 唐翘楚 ; 徐大诚 ; 李昕欣 ; .基于振动能量采集器的无源无线传感节点技术研究.传感技术学报.2016,(08),全文. *

Also Published As

Publication number Publication date
CN111146875A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
US10044218B2 (en) Micro-energy harvester for battery free applications
CN113741261B (zh) 一种上下电控制电路及信号输出装置
CN101102080B (zh) 升压稳压器的启动电路和升压稳压器的启动方法
CN111082546B (zh) 低功率启动并有电压监视功能的数控能量收集管理电路
CN211556973U (zh) 一种电池备份管理电路
CN111146875B (zh) 低功率启动并有电压监视功能的自关断能量收集电路
CN103199488A (zh) 无需独立基准源的欠压保护电路
CN113489126B (zh) 一种高效毫瓦级光伏能量收集控制电路
CN111030322B (zh) 低电流启动并有电压监视功能的微能量收集管理系统
CN111082504B (zh) 一种超低功耗启动的能量收集电路
CN111130221B (zh) 低电流启动并有电压监视功能的微能量收集管理系统
CN109980766B (zh) 一种具有迟滞自锁功能的振动能量采集器电源管理电路
US8947019B2 (en) Handheld device and power supply circuit thereof
CN210609098U (zh) 一种NB-IoT通信模块启动电路、电路板及物联网终端
CN111030323B (zh) 低电压启动并有电压监视功能的微能量收集管理系统
CN111146876B (zh) 低电压启动并有电压监视功能的微能量收集管理系统
US10476367B2 (en) Voltage and current triggered switch, and step-down DC-DC converters containing such a switch
CN111049282B (zh) 低电压启动的微能量收集管理系统
CN111600365A (zh) 充电电路、辅助电源和作业设备
CN111130225B (zh) 低电流启动的微能量收集管理系统
CN219145258U (zh) 一种欠压检测电路及开关电源
CN112018742B (zh) 一种具有温度补偿的过压保护电路及其实现方法
CN214480268U (zh) 开关电源输出软启动电路
CN213367654U (zh) 自动限幅调整电路
CN111130151B (zh) 可自关断自启动的低功耗电压监视电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant