CN111144002B - Method for predicting pipe burst of grey cast iron pipe of water supply pipe network - Google Patents
Method for predicting pipe burst of grey cast iron pipe of water supply pipe network Download PDFInfo
- Publication number
- CN111144002B CN111144002B CN201911375485.1A CN201911375485A CN111144002B CN 111144002 B CN111144002 B CN 111144002B CN 201911375485 A CN201911375485 A CN 201911375485A CN 111144002 B CN111144002 B CN 111144002B
- Authority
- CN
- China
- Prior art keywords
- pipe
- value
- year
- explosion
- cast iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001060 Gray iron Inorganic materials 0.000 title claims abstract description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000004880 explosion Methods 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 15
- 238000004210 cathodic protection Methods 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 7
- 239000006185 dispersion Substances 0.000 claims description 3
- 238000005474 detonation Methods 0.000 claims 1
- 230000009172 bursting Effects 0.000 abstract description 21
- 238000012423 maintenance Methods 0.000 abstract description 6
- 238000007726 management method Methods 0.000 abstract description 5
- 238000012360 testing method Methods 0.000 abstract description 3
- 229910001018 Cast iron Inorganic materials 0.000 abstract description 2
- 238000009472 formulation Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 230000000875 corresponding effect Effects 0.000 description 10
- 239000002689 soil Substances 0.000 description 5
- 230000002596 correlated effect Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000013256 coordination polymer Substances 0.000 description 2
- 238000013179 statistical model Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013102 re-test Methods 0.000 description 1
- 238000009419 refurbishment Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种供水管网灰口铸铁管爆管预测的方法,首先,确定爆管影响因素,并获取和整理爆管信息及管道基本数据;其次,对整理后样本数据进行变量描述性统计以及对统计结果做过离散检验;再次,采用ZIP模型对管道爆管计数记录建模,进行参数估计与分析估计结果并复验零膨胀;然后,利用以上参数估计结果得到供水管网灰口铸铁管单根爆管期望值;最后,根据相应ZIP模型计算的概率以及爆管总数模型得到该区域预测期内爆管的总数。采用本发明有助于供水管网运行管理人员预测分区域不同时期灰口铸铁管爆管的可能性,有助于对城市地下供水管网进行提前爆管预警和制定检修规划,这有助于城市基础设施维护规划。
The invention discloses a method for predicting pipe bursting of gray cast iron pipes in a water supply pipe network. First, the influencing factors of pipe bursting are determined, and pipe bursting information and basic pipeline data are acquired and sorted; Statistics and discrete tests were done on the statistical results; thirdly, the ZIP model was used to model the pipe burst count records, the parameters were estimated and analyzed, and the estimated results were re-examined for zero expansion; then, the above parameter estimation results were used to obtain the grey outlet of the water supply pipe network. The expected value of a single pipe burst of the cast iron pipe; finally, the total number of pipe bursts in the forecast period in the region is obtained according to the probability calculated by the corresponding ZIP model and the total number of burst pipes. The use of the invention helps the operation and management personnel of the water supply pipe network to predict the possibility of the pipe bursting of the gray cast iron pipes in different periods in different regions, and is helpful for the early warning of pipe bursting and the formulation of maintenance plans for the urban underground water supply pipe network, which is helpful for Urban infrastructure maintenance planning.
Description
技术领域technical field
本发明涉及供水管网爆管预测技术领域,具体涉及一种供水管网灰口铸铁管爆管预测的方法。The invention relates to the technical field of pipe burst prediction of a water supply pipe network, in particular to a method for pipe burst prediction of gray cast iron pipes of a water supply pipe network.
背景技术Background technique
城市地下供水管网关系到居民用水,是城市基础设施中极其重要的一环,而目前我国城市管网漏损率和爆管率高,严重威胁供水安全,影响正常生产生活,因此预测和解决供水管道爆管问题成为行业急需解决的问题。The urban underground water supply pipe network is related to the water consumption of residents and is an extremely important part of the urban infrastructure. At present, the leakage rate and pipe burst rate of the urban pipe network in my country are high, which seriously threatens the safety of water supply and affects normal production and life. Therefore, predict and solve the problem. The problem of water supply pipeline bursting has become an urgent problem for the industry.
对以往有关于爆管预测方法的研究进行查阅时发现,统计学模型是现有预测城市给水管道爆管现象的主要类型之一,包括线性或指数模型、广义线性模型、风险比例模型,当存在大量的爆管历史数据和管道性能数据时,就可以应用统计学模型进行爆管预测。从大量供水管网灰口铸铁管爆管计数资料中发现,观测值为零的计数数据占绝大多数,而ZIP模型应用于各行各业,还未曾引用于供水管网爆管预测中。研究供水管网灰口铸铁管爆管可以更好地了解各种因素对爆管的影响,并且有助于对城市地下供水管网进行提前爆管预警和检修规划,这有助于城市基础设施维护规划。When reviewing the previous studies on pipe burst prediction methods, it was found that statistical models are one of the main types of existing pipe bursts in urban water supply pipelines, including linear or exponential models, generalized linear models, and risk proportional models. When a large amount of historical data of pipe burst and pipeline performance data are available, statistical models can be applied to predict pipe burst. From a large number of water supply pipe network gray cast iron pipe burst count data, it is found that the count data with zero observation value accounts for the vast majority, and the ZIP model is used in all walks of life and has not been used in water supply pipe network pipe burst prediction. Studying the bursting of gray cast iron pipes in water supply network can better understand the impact of various factors on bursting, and it is helpful for early warning and maintenance planning of urban underground water supply network, which is helpful for urban infrastructure Maintenance planning.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种供水管网灰口铸铁管爆管预测的方法,该方法可以用来预测一定区域内某时期供水管网灰口铸铁管爆管总次数,有助于制定城市供水管网维修与翻新的策略。The invention provides a method for predicting the bursting of gray cast iron pipes in a water supply pipe network. The method can be used to predict the total number of bursts of gray cast iron pipes in a water supply pipe network in a certain period in a certain area, which is helpful for formulating an urban water supply pipe network. Repair and refurbishment strategies.
一种供水管网灰口铸铁管爆管预测的方法,包括以下步骤:A method for predicting pipe bursting of gray cast iron pipes in a water supply pipe network, comprising the following steps:
1)按照爆管影响因素获取灰口铸铁管的管道基本数据集爆管信息,整理后作为样本数据;1) Obtain the pipe burst information of the basic data set of gray cast iron pipes according to the influencing factors of pipe burst, and use them as sample data after sorting;
2)根据零膨胀泊松(ZIP)模型的要求,对步骤1)获得的样本数据进行爆管影响因素的协变量描述性统计,并检验过离散现象,若满足过离散现象,则符合零膨胀泊松(ZIP)模型的要求并进行参数估计,则进入步骤3);2) According to the requirements of the zero-inflated Poisson (ZIP) model, the sample data obtained in step 1) are subjected to covariate descriptive statistics of the influencing factors of the pipe burst, and the over-dispersion phenomenon is tested. Poisson (ZIP) model requirements and parameter estimation, then go to step 3);
3)根据2)中所得参数估计结果值分析各因素对于灰口铸铁管爆管次数的影响,并确定α0、α1、α2、β1、β2、β3、γ1,得到单根灰口铸铁管的爆管期望值计算公式(1);3) According to the parameter estimation results obtained in 2), analyze the influence of various factors on the number of bursts of gray cast iron pipes, and determine α 0 , α 1 , α 2 , β 1 , β 2 , β 3 , γ 1 , and obtain a single Calculation formula (1) for the expected burst value of a gray cast iron pipe;
式(1)中,λi,t表示第i根管道在t时间的爆管期望值,α0为回归方程常数项,α1为管径的参数值z1通过零膨胀泊松(ZIP)模型的参数估计值,α2为管长的参数值z2通过零膨胀泊松(ZIP)模型的参数估计值,α3为管材材质的参数值z3通过零膨胀泊松(ZIP)模型的参数估计值,z1为管径的参数值,z2为管长的参数值,z3为管材材质的参数值,β1为管龄的参数值p1通过零膨胀泊松(ZIP)模型的参数估计值,β2为温度影响指数的参数值p2通过零膨胀泊松(ZIP)模型的参数估计值,β3为降雨量的参数值p3通过零膨胀泊松(ZIP)模型的参数估计值,β4为交通荷载的参数值p4通过零膨胀泊松(ZIP)模型的参数估计值,p1为管龄的参数值,p2为温度影响指数的参数值,p3为降雨量的参数值,p4为交通荷载的参数值,γ1为爆管历史总次数的参数值q1通过零膨胀泊松(ZIP)模型的参数估计值,γ2为阴极保护的参数值q2通过零膨胀泊松(ZIP)模型的参数估计值,q1为爆管历史总次数的参数值,q2为阴极保护的参数值。由于z3、p4、q2均取零值,参数估计结果值即式中的α0、α1、α2、β1、β2、β3、γ1。In formula (1), λ i, t represents the expected value of the pipe burst at time t of the i-th pipe, α 0 is the constant term of the regression equation, α 1 is the parameter value of the pipe diameter z 1 through the zero expansion Poisson (ZIP) model , α 2 is the parameter value of the pipe length, z 2 is the parameter estimated value of the zero-inflation Poisson (ZIP) model, α 3 is the parameter value of the pipe material, z 3 is the parameter of the zero-inflation Poisson (ZIP) model. The estimated value, z 1 is the parameter value of the pipe diameter, z 2 is the parameter value of the pipe length, z 3 is the parameter value of the pipe material, β 1 is the parameter value of the pipe age, p 1 is calculated by the zero expansion Poisson (ZIP) model. Parameter estimates, β 2 is the parameter value of the temperature influence index p 2 Parameter estimates through the zero-inflated Poisson (ZIP) model, β 3 is the parameter value of the rainfall p 3 Parameter through the zero-inflated Poisson (ZIP) model Estimated value, β4 is the parameter value of the traffic load p4 is the parameter estimated value through the zero expansion Poisson (ZIP) model, p1 is the parameter value of the pipe age, p2 is the parameter value of the temperature influence index, p3 is the rainfall The parameter value of the traffic load, p 4 is the parameter value of the traffic load, γ 1 is the parameter value of the total number of pipe bursts in history, q 1 is the parameter estimated value through the zero expansion Poisson (ZIP) model, and γ 2 is the parameter value q of the cathodic protection 2 Through the parameter estimation value of the zero-inflated Poisson (ZIP) model, q 1 is the parameter value of the total number of pipe bursts in history, and q 2 is the parameter value of cathodic protection. Since z 3 , p 4 , and q 2 all take zero values, the parameter estimation result values are α 0 , α 1 , α 2 , β 1 , β 2 , β 3 , and γ 1 in the formula.
4)将步骤1)获得的样本数据带入步骤3)爆管期望值计算公式(1)计算得到爆管期望值结果;4) The sample data obtained in step 1) is brought into step 3) the expected value calculation formula (1) of the burst pipe is calculated to obtain the result of the expected value of the burst pipe;
5)根据4)中得到爆管期望值结果计算得到单根灰口铸铁管的爆管概率,进而得到区域内预测期内的爆管预估总次数。5) Calculate the burst probability of a single gray cast iron pipe according to the result of the expected value of pipe burst obtained in 4), and then obtain the estimated total number of pipe bursts in the forecast period in the region.
步骤1)中,所述的管道基本数据集爆管信息包括:管径、管长、管材、管龄、温度影响指数、降雨量、交通荷载、爆管历史总次数以及是否采用阴极保护。In step 1), the pipe burst information in the pipeline basic data set includes: pipe diameter, pipe length, pipe material, pipe age, temperature influence index, rainfall, traffic load, the total number of pipe bursts in history, and whether cathodic protection is used.
所述的整理具体包括:The arrangement specifically includes:
a)管径:模型内生变量,直接考虑进爆管预测中,选取范围为DN100至DN300的主干管,变量记为DIA,参数值为z1;a) Pipe diameter: the model endogenous variable, directly consider the explosion pipe prediction, select the main pipe ranging from DN100 to DN300, the variable is recorded as DIA, and the parameter value is z 1 ;
b)管长:样本中该主干管的长度,变量记为Length,参数值为z2;b) Pipe length: the length of the main pipe in the sample, the variable is denoted as Length, and the parameter value is z 2 ;
c)管材:灰口铸铁管,对于不同管道均为同一材质,参数值为z3;单一管材预测,可取值为0;c) Pipe material: gray cast iron pipe, for different pipes are of the same material, the parameter value is z 3 ; for single pipe material prediction, the value can be 0;
d)管龄:选取为已建设5年以上,变量记为Age,参数值为p1;d) management age: selected as having been constructed for more than 5 years, the variable is denoted as Age, and the parameter value is p 1 ;
e)温度影响指数:根据得到的日平均气温可得,一年内日平均温度低于5摄氏度与高于30摄氏度的天数,两者之和为温度影响指数,变量记为TI,参数值为p2;以上影响因素中温度影响指数TI的值如下:e) Temperature influence index: According to the obtained daily average temperature, the number of days when the daily average temperature is lower than 5 degrees Celsius and higher than 30 degrees Celsius in a year, the sum of the two is the temperature influence index, the variable is recorded as TI, and the parameter value is p 2 ; The value of the temperature influence index TI in the above influencing factors is as follows:
p2=TI5+TI30 p 2 =TI 5 +TI 30
式中,p2为温度影响指数参数值;TI5为一年内日平均温度低于5摄氏度的天数;TI30为一年内日平均温度高于30摄氏度的天数。In the formula, p 2 is the parameter value of the temperature influence index; TI 5 is the number of days in which the daily average temperature is lower than 5 degrees Celsius in a year; TI 30 is the number of days in which the daily average temperature is higher than 30 degrees Celsius in a year.
f)降雨量:年降雨总量,变量记为Rain,参数值为p3,表示土壤含水率对爆管的影响;f) Rainfall: the total amount of annual rainfall, the variable is denoted as Rain, and the parameter value is p 3 , which indicates the influence of soil moisture content on pipe bursting;
g)交通荷载:城市地下供水管道所受的交通荷载,通过土体传递,变量记为TL,参数值为p4,如果城市地下供水管线所受交通荷载相同或相近,可取为0;g) Traffic load: The traffic load on the urban underground water supply pipeline is transmitted through the soil. The variable is recorded as TL, and the parameter value is p 4 . If the traffic load on the urban underground water supply pipeline is the same or similar, it can be taken as 0;
h)爆管历史总次数:某根管道i自建设完工后至所预测的第t年之前发生过的爆管次数总和,变量记为NOKPF,参数值为q1;h) The total number of pipe bursts in history: the total number of pipe bursts that occurred in a certain pipeline i from the completion of construction to the predicted t-th year, the variable is recorded as NOKPF, and the parameter value is q 1 ;
i)阴极保护:考虑是否有阴极保护,变量记为CP,参数值为q2。i) Cathodic protection: considering whether there is cathodic protection, the variable is recorded as CP, and the parameter value is q 2 .
步骤2)中,满足过离散现象,则符合零膨胀泊松(ZIP)模型的要求,根据ZIP模型的对数似然函数进行参数估计。In step 2), if the overdispersion phenomenon is satisfied, the requirements of the zero-inflated Poisson (ZIP) model are met, and the parameters are estimated according to the log-likelihood function of the ZIP model.
步骤4)中,利用ZIP模型以及预测期内变量参数值的确定,特别处理预测期内未知变量的参数值,再计算单根灰口铸铁管的爆管期望值。In step 4), the ZIP model and the determination of variable parameter values in the forecast period are used, and the parameter values of the unknown variables in the forecast period are specially processed, and then the expected value of the pipe burst of a single gray cast iron pipe is calculated.
将步骤1)获得的样本数据带入步骤3)爆管期望值计算公式(1)计算得到爆管期望值结果,具体包括:The sample data obtained in step 1) is brought into step 3) the expected value calculation formula (1) of the burst pipe is calculated to obtain the expected value result of the burst pipe, which specifically includes:
z1为样本数据中的管径的参数值,z2为样本数据中管长的参数值,p1为样本数据中管龄的参数值,q1为样本数据中爆管历史总次数的参数值;z 1 is the parameter value of the pipe diameter in the sample data, z 2 is the parameter value of the pipe length in the sample data, p 1 is the parameter value of the pipe age in the sample data, q 1 is the parameter of the total number of pipe bursts in the history of the sample data value;
采用温度影响指数的修正值p2,t作为温度影响指数的参数值p2以及采用降雨量的修正值p3,t作为降雨量的参数值p3,带入公式爆管期望值计算公式(1)计算得到爆管期望值λi,t。Use the correction value p 2,t of the temperature influence index as the parameter value p 2 of the temperature influence index and the correction value p 3,t of the rainfall as the parameter value p 3 of the rainfall, and bring it into the formula for calculating the expected value of the pipe burst (1 ) to calculate the expected value λ i,t of the squib.
温度影响指数的修正值p2,t根据所在的日子进行分别计算:The correction value p 2,t of the temperature influence index is calculated according to the day:
①当所在的日子处于当年的12月份,预测次年的爆管次数,按式(2)采用次年前三年的温度影响指数计算平均值,得到温度影响指数的修正值p2,t;①When the day is in December of the current year, predict the number of pipe bursts in the next year, and calculate the average value of the temperature influence index for the three years before the next year according to formula (2), and obtain the correction value p 2,t of the temperature influence index;
式(2)中,p2,t-1、p2,t-2、p2,t-3依次为次年前1年(即今年)、次年前2年、次年前3年的温度影响指数;In formula (2), p 2,t-1 , p 2,t-2 , p 2,t-3 are in turn 1 year before the next year (ie this year), 2 years before the next year, and 3 years before the next year. temperature influence index;
②当所在的日子处于当年的1~11月份,预测当年的爆管次数,按式(3)计算时间段内数据平均值之和,得到温度影响指数的修正值p2,t;② When the day is from January to November of the current year, predict the number of pipe bursts in the current year, and calculate the sum of the average values of the data in the time period according to formula (3) to obtain the correction value p 2,t of the temperature influence index;
式(3)中,p’2,t为当年内已知月份的日平均温低于5℃与高于30℃的天数之和,p’2,t-1、p’2,t-2、p’2,t-3依次为当年前1年、2年、3年未知月份相应的日平均温低于5℃与高于30℃的天数之和。即p’2,t-1为当年前1年未知月份相应的日平均温低于5℃与高于30℃的天数之和。In formula (3), p' 2,t is the sum of the days when the daily average temperature of the known months is lower than 5℃ and higher than 30℃ in the current year, p' 2,t-1 , p' 2,t-2 , p' 2, t-3 are the sum of the number of days when the daily average temperature is lower than 5℃ and higher than 30℃ in the first year, 2 years, and 3 years of the current year, respectively. That is, p' 2, t-1 is the sum of the number of days when the daily average temperature is lower than 5℃ and higher than 30℃ in the unknown month in the previous year.
例如,当所在的日子处于当年的6月份,p’2,t为当年t内已知月份1至6月内的日平均温低于5℃与高于30℃的天数之和,p’2,t-1、p’2,t-2、p’2,t-3依次为当年t前1年、2年、3年7月至12月相应的日平均温低于5℃与高于30℃的天数之和。p’2,t-1为当年t前1年7月至12月相应的日平均温低于5℃与高于30℃的天数之和。For example, when the day is in June of the current year, p' 2,t is the sum of the number of days when the daily average temperature is lower than 5°C and higher than 30°C in the known months from January to June in the current year t, p' 2 , t-1 , p' 2, t-2 , p' 2, t-3 are the corresponding daily average temperatures from July to December in the first year, 2 years, and 3 years of the current year when the temperature is lower than 5℃ and higher than Sum of days at 30°C. p' 2,t-1 is the sum of the number of days when the daily average temperature is lower than 5℃ and higher than 30℃ from July to December in the year before t.
降雨量的修正值p3,t根据所在的日子进行分别计算:The corrected value of rainfall p 3, t is calculated separately according to the day:
①所在的日子处于当年的12月份,预测次年爆管次数时,按式(4)计算前三年的降雨量平均值,得到降雨量的修正值p3,t;① The day is in December of the current year. When predicting the number of pipe bursts in the following year, calculate the average rainfall of the previous three years according to formula (4), and obtain the corrected value of rainfall p 3,t ;
式(4)中,p3,t-1、p3,t-2、p3,t-3依次为次年前1年、2年、3年的降雨量值。In formula (4), p 3,t-1 , p 3,t-2 , p 3,t-3 are the rainfall values in the previous year, 2 years, and 3 years in turn.
②当所在的日子处于当年的1~11月份,预测当年的爆管次数,按式(5)计算时间段内降雨量数据平均值之和,得到降雨量的修正值p3,t;②When the day is from January to November of the current year, predict the number of pipe bursts in the current year, calculate the sum of the average values of rainfall data in the time period according to formula (5), and obtain the corrected value of rainfall p 3,t ;
式(5)中,p’3,t为当年内已知月份的总降雨量,p’3,t-1、p’3,t-2、p’3,t-3依次为当年前1年、2年、3年未知月份相应的总降雨量值。In formula (5), p' 3, t is the total rainfall of the known months in the current year, p' 3, t-1 , p' 3, t-2 , p' 3, t-3 are the first 1 of the current year. The corresponding total rainfall values for the unknown months of the year, 2 years, and 3 years.
例如,当所在的日子处于当年的6月份,p’3,t为当年内已知月份1月至6月的总降雨量,p’3,t-1、p’3,t-2、p’3,t-3依次为当年前1年、2年、3年未知月份7月至12月相应的总降雨量值。p’3,t-1为当年前1年未知月份7月至12月相应的总降雨量值。For example, when the day is in June of the current year, p' 3,t is the total rainfall from January to June in the known months of the year, p' 3,t-1 , p' 3,t-2 , p'' 3, t-3 are the corresponding total rainfall values of the unknown months from July to December in the first year, two years, and three years of the current year. p' 3, t-1 is the corresponding total rainfall value of the unknown month July to December in the previous year.
步骤5)中,根据4)中得到爆管期望值结果计算得到单根灰口铸铁管的爆管概率,进而得到区域内预测期内的爆管预估总次数,具体包括:In step 5), the pipe burst probability of a single gray cast iron pipe is calculated according to the result of the expected value of pipe burst obtained in 4), and then the estimated total number of pipe bursts in the forecast period in the region is obtained, specifically including:
A)计算单根灰口铸铁管的爆管概率p(ki,t),当ki,t≠0时,模型如下:A) Calculate the burst probability p(k i,t ) of a single gray cast iron pipe. When k i,t ≠0, the model is as follows:
其中,ki,t表示第i根灰口铸铁管在t时间内的爆管次数,p(ki,t)表示爆管次数ki,t的概率,Gi,t表示第i根灰口铸铁管在t时间内零膨胀泊松(ZIP)模型结构零产生的概率,表示爆管次数ki,t对应的爆管期望值,ki,t!表示对爆管次数ki,t进行阶乘运算;Among them, ki ,t represents the number of pipe bursts of the ith gray cast iron pipe in the time t, p(ki ,t ) represents the probability of the number of pipe bursts ki,t , and G i,t represents the ith gray cast iron pipe The probability of zero-expansion Poisson (ZIP) model structure of the cast-iron pipe at time t, Indicates the expected value of the pipe burst corresponding to the number of pipe bursts ki,t , ki ,t ! Indicates that the factorial operation is performed on the number of pipe bursts ki, t ;
B)计算区域内预测期内的爆管预估总次数Nt,Nt建模如下:B) Calculate the estimated total number of pipe bursts N t during the forecast period in the area, and N t is modeled as follows:
Nt=∑ki,tp(ki,t)。N t =∑ki ,t p(ki ,t ).
与现有技术相比,本发明具有有益效果:Compared with the prior art, the present invention has beneficial effects:
本方法在分析管网爆管次数时,对于灰口铸铁管供水管网影响爆管的影响因素进行了分析,并且预测总爆管次数结果情况,与现有技术相比,设定相同的爆管发生判别概率,采用泊松模型、Logistics模型以及ZIP模型分别对样本数据进行参数估计,在预测期内各年爆管总数时ZIP爆管预测模型预测精度最好,Poisson爆管预测模型趋向过高预测爆管数,而Logistics爆管预测模型趋向过低预测年爆管数。本方法在分析管网爆管次数时将其分为两个过程进行分析,确定较大比例的管道其爆管观测值为零,以及爆管次数遵循泊松分布的状态,提高分析的准确性。When analyzing the number of pipe bursts in the pipe network, the method analyzes the influencing factors of the gray cast iron pipe water supply pipe network affecting pipe bursts, and predicts the results of the total burst times. Compared with the prior art, the same burst rate is set. The probability of occurrence of pipe bursts is determined. The Poisson model, the Logistics model and the ZIP model are used to estimate the parameters of the sample data respectively. The ZIP pipe burst prediction model has the best prediction accuracy when the total number of pipe bursts in each year during the forecast period, and the Poisson pipe burst prediction model tends to overshoot. High predicted burst numbers, while the Logistics burst prediction model tends to underestimate annual burst numbers. In this method, when analyzing the number of pipe bursts in the pipe network, it is divided into two processes for analysis, and it is determined that the observed value of pipe bursts in a larger proportion of pipes is zero, and the number of pipe bursts follows the Poisson distribution, which improves the accuracy of the analysis. .
采用本发明有助于供水管网运行管理人员预测分区域不同时期灰口铸铁管爆管的可能性,有助于对城市地下供水管网进行提前爆管预警和制定检修规划,这有助于城市基础设施维护规划。The use of the invention helps the operation and management personnel of the water supply pipe network to predict the possibility of the pipe bursting of the gray cast iron pipes in different periods in different regions, and is helpful for the early warning of pipe bursting and the formulation of maintenance plans for the urban underground water supply pipe network, which is helpful for Urban infrastructure maintenance planning.
附图说明Description of drawings
图1为本发明供水管网灰口铸铁管爆管预测的方法的流程示意图;Fig. 1 is the schematic flow sheet of the method for predicting the pipe burst of gray cast iron pipe of water supply pipe network of the present invention;
图2为本发明年预测爆管总数与实际爆管总数对比图;Fig. 2 is the comparison diagram of the total number of predicted pipe bursts and the actual number of pipe bursts in the present invention;
具体实施方式Detailed ways
下面结合说明书附图对本发明供水管网灰口铸铁管爆管预测的方法作进一步的说明。The method for predicting the pipe burst of a gray cast iron pipe in a water supply pipe network of the present invention will be further described below with reference to the accompanying drawings.
本发明供水管网灰口铸铁管爆管预测的方法,包括以下步骤:The method for predicting the explosion of gray cast iron pipes in a water supply pipe network of the present invention comprises the following steps:
(1)按照爆管影响因素获取某区域内灰口铸铁管在某时间段的管道基本数据集爆管信息,整理后作为样本数据;(1) Obtain the pipe burst information of the gray cast iron pipe in a certain area in a certain period of time according to the influencing factors of pipe burst, and arrange it as sample data;
(2)根据零膨胀泊松(ZIP)模型的要求,对最终样本数据进行爆管影响因素(协变量)描述性统计,并检验过离散现象;(2) According to the requirements of the zero-inflated Poisson (ZIP) model, descriptive statistics of the factors (covariates) of the final sample data are carried out, and the overdispersion phenomenon is tested;
(3)将某区域灰口铸铁管某期限内爆管记录分为两种状态,一种为满足Logistic模型的结构零,一种爆管计数值满足泊松模型,其中所得的零爆管值为抽样零。根据ZIP模型的对数似然函数进行参数估计;(3) Divide the burst records of gray cast iron pipes in a certain area into two states, one is the structural zero satisfying the Logistic model, and the other is the burst count value that satisfies the Poisson model, where the obtained zero burst value is sampling zero. Parameter estimation according to the log-likelihood function of the ZIP model;
(4)根据(3)中所得参数估计结果值分析各种因素对于灰口铸铁管爆管次数的影响,得到单根灰口铸铁管的爆管期望值计算公式;(4) According to the parameter estimation results obtained in (3), the influence of various factors on the number of bursts of gray cast iron pipes is analyzed, and the calculation formula for the expected burst value of a single gray cast iron pipe is obtained;
(5)根据(3)中数据以及(4)中分析结果,利用ZIP模型以及预测期内变量参数值的确定,特别处理预测期内未知变量的参数值,再计算单根灰口铸铁管的爆管期望值。(5) According to the data in (3) and the analysis results in (4), use the ZIP model and the determination of variable parameter values during the forecast period, especially deal with the parameter values of unknown variables during the forecast period, and then calculate the value of a single gray cast iron pipe. Burst expectations.
(6)根据(5)中结果计算得到单根灰口铸铁管的爆管概率,进而得到区域内预测期内的爆管预估总次数。(6) Calculate the burst probability of a single gray cast iron pipe according to the result in (5), and then obtain the estimated total number of pipe bursts in the forecast period in the region.
步骤(1)中提及的爆管信息及管道基本数据主要包括:样本期限内爆管次数以及a)静态变量:管径、管长、管材;b)动态变量:管龄、温度影响指数、降雨量、交通荷载;c)动静态变量:历史爆管总次数、阴极保护。最终选择爆管影响因素包括:管径、管长、管材、管龄、温度影响指数、降雨量、交通荷载、爆管历史总次数以及阴极保护。其中:The pipe burst information and basic pipeline data mentioned in step (1) mainly include: the number of pipe bursts within the sample period and a) static variables: pipe diameter, pipe length, pipe material; b) dynamic variables: pipe age, temperature influence index, Rainfall, traffic load; c) Dynamic and static variables: the total number of historical pipe bursts, cathodic protection. The factors affecting the final selection of pipe bursts include: pipe diameter, pipe length, pipe material, pipe age, temperature influence index, rainfall, traffic load, the total number of historical pipe bursts and cathodic protection. in:
1)管径:模型内生变量,直接考虑进爆管预测中,选取范围为DN100至DN300的主干管,变量记为DIA,参数值为z1;1) Pipe diameter: the model endogenous variable, directly considering the explosion pipe prediction, select the main pipe ranging from DN100 to DN300, the variable is recorded as DIA, and the parameter value is z 1 ;
2)管长:样本中该主干管的长度,变量记为Length,参数值为z2;2) Pipe length: the length of the main pipe in the sample, the variable is denoted as Length, and the parameter value is z 2 ;
3)管材:灰口铸铁管,对于不同管道均为同一材质,参数值为z3;单一管材预测,可取值为0;3) Pipe material: gray cast iron pipe, for different pipes are of the same material, the parameter value is z 3 ; for single pipe material prediction, the value can be 0;
4)管龄:选取为已建设5年以上,变量记为Age,参数值为p1;4) Management age: selected as having been constructed for more than 5 years, the variable is denoted as Age, and the parameter value is p 1 ;
5)温度影响指数:一年内日平均温度低于5摄氏度与高于30摄氏度的天数之和,变量记为TI,参数值为p2;以上影响因素中温度影响指数TI的值如下:5) Temperature influence index: the sum of the days when the average daily temperature is lower than 5 degrees Celsius and higher than 30 degrees Celsius within a year, the variable is denoted as TI, and the parameter value is p 2 ; the value of the temperature influence index TI in the above influencing factors is as follows:
p2=TI5+TI30 p 2 =TI 5 +TI 30
式中,p2为温度影响指数参数值;TI5为一年内日平均温度低于5摄氏度的天数;TI30为一年内日平均温度高于30摄氏度的天数。In the formula, p 2 is the parameter value of the temperature influence index; TI 5 is the number of days in which the daily average temperature is lower than 5 degrees Celsius in a year; TI 30 is the number of days in which the daily average temperature is higher than 30 degrees Celsius in a year.
6)降雨量:年降雨总量,变量记为Rain,参数值为p3,表示土壤含水率对爆管的影响;6) Precipitation: the total annual rainfall, the variable is denoted as Rain, and the parameter value is p 3 , which indicates the influence of soil moisture content on pipe bursting;
7)交通荷载:城市地下供水管道所受的交通荷载,通过土体传递,变量记为TL,参数值为p4,如果城市地下供水管线所受交通荷载相同或相近,可取为0;7) Traffic load: The traffic load on the urban underground water supply pipeline is transmitted through the soil. The variable is recorded as TL, and the parameter value is p 4 . If the traffic load on the urban underground water supply pipeline is the same or similar, it can be taken as 0;
8)爆管历史总次数:某根管道i自建设完工后至所预测的第t年之前发生过的爆管次数总和,变量记为NOKPF,参数值为q1;8) The total number of pipe bursts in history: the total number of pipe bursts that occurred in a certain pipeline i from the completion of construction to the predicted t-th year, the variable is recorded as NOKPF, and the parameter value is q 1 ;
9)阴极保护:考虑是否有阴极保护,变量记为CP,参数值为q2。9) Cathodic protection: consider whether there is cathodic protection, the variable is recorded as CP, and the parameter value is q 2 .
步骤(2)中进行变量描述性统计,得到样本数据各变量的均值、标准差、最小值与最大值。过离散检验模型O统计量如下:In step (2), descriptive statistics of variables are performed to obtain the mean, standard deviation, minimum and maximum values of each variable of the sample data. The O statistic for the overdispersion test model is as follows:
式中,n为样本个数;S2为样本方差;为样本均值。In the formula, n is the number of samples; S2 is the sample variance; is the sample mean.
步骤(3)建模如下:Step (3) is modeled as follows:
其中,λi,t为管道i在未来第t年的爆管预测值;N为样本中管道总数;T为爆管记录年限;Gi,t为结构零产生的概率,取值范围为[0,1]。Among them, λ i,t is the predicted value of pipe burst for pipeline i in the next year t; N is the total number of pipes in the sample; T is the record period of pipe burst; 0,1].
其中,g0为ZIP模型待估参数。Among them, g 0 is the parameter to be estimated in the ZIP model.
ZIP模型的对数似然函数为:The log-likelihood function of the ZIP model is:
根据对数似然函数,利用Newton-Raphson迭代法可求得ZIP模型中各参数的估计值。According to the log-likelihood function, the estimated value of each parameter in the ZIP model can be obtained by using the Newton-Raphson iteration method.
根据以上估计值进行计数资料零膨胀复验,采用SC统计量。SC统计量服从自由度为1的卡方分布χ2,其建模如下:Based on the above estimates, zero-inflated count data were retested, and SC statistic was used. The SC statistic follows a chi-square distribution χ 2 with 1 degree of freedom, which is modeled as follows:
其中n为管道根数,T为记录年限;为根据ZIP模型算得的爆管预测值;X为影响因素变量向量。Where n is the number of pipes, T is the record period; is the predicted value of pipe burst calculated according to the ZIP model; X is the variable vector of influencing factors.
步骤(4)预测期内单根灰口铸铁管的爆管期望值计算建模如下:Step (4) The calculation and modeling of the expected burst value of a single gray cast iron pipe during the forecast period is as follows:
其中α0为回归方程常数项,为待拟合的系数向量;为静态变量,如管径、管长、管材;为动态变量,如管龄、温度影响指数、降雨量、交通荷载;为动静态变量,如历史爆管总次数、阴极保护;由于z3、p4、q2均取零值,参数估计结果值即式中的α0、α1、α2、β1、β2、β3、γ1。where α 0 is the constant term of the regression equation, is the coefficient vector to be fitted; are static variables, such as pipe diameter, pipe length, and pipe material; are dynamic variables, such as pipe age, temperature influence index, rainfall, traffic load; are dynamic and static variables, such as the total number of pipe bursts in history, cathodic protection; since z 3 , p 4 , and q 2 all take zero values, the parameter estimation results are α 0 , α 1 , α 2 , β 1 , β in the formula 2 , β 3 , γ 1 .
步骤(5)利用ZIP模型以及预测期内变量参数值的确定,特别处理预测期内未知变量的参数值,再计算单根灰口铸铁管的爆管期望值。预测期内影响因素中已知变量为管径、管龄、爆管历史总次数、管长,而存在未知变量,温度影响指数与降雨量。其中:Step (5) utilizes the ZIP model and the determination of variable parameter values in the forecast period, especially handles the parameter values of unknown variables in the forecast period, and then calculates the expected value of a single gray cast iron pipe burst. The known variables in the influencing factors during the forecast period are pipe diameter, pipe age, the total number of pipe bursts in history, and pipe length, while there are unknown variables, temperature influence index and rainfall. in:
1)管径z1,管长z2根据管道基础数据可知;管龄p1在模型参数估计的管道数据年份基础上累计;爆管历史总次数q1:根据管道爆管信息并累计; 1 ) The pipe diameter z 1 and the pipe length z 2 can be known from the basic data of the pipeline; the pipe age p 1 is accumulated on the basis of the year of the pipeline data estimated by the model parameters;
2)温度影响指数p2:2) Temperature influence index p 2 :
①在年底(12月份)预测下一年爆管次数时,采用预测期t前三年的温度影响指数的平均值;①When predicting the number of pipe bursts in the next year at the end of the year (December), the average value of the temperature impact index in the first three years of the forecast period t is used;
式中,p2,t为预测期t内的温度影响指数取值,p2,t-1、p2,t-2、p2,t-3依次为预测期前1年、2年、3年的温度影响指数。In the formula, p 2,t is the value of the temperature influence index in the forecast period t, p 2,t-1 , p 2,t-2 , p 2,t-3 are the first year, two years, 3-year temperature impact index.
②若在年中(1至11月份)预测当年爆管次数时,根据已知数据和未知时间段相应前三年该时间段内数据平均值之和。②If the number of pipe bursts in the year is predicted in the middle of the year (January to November), according to the known data and the unknown time period, the sum of the data averages in the previous three years is corresponding.
式中,p2,t为预测期t内的温度影响指数取值,p’2,t为预测期t内已知月份的日平均温低于5℃与高于30℃的天数之和,p’2,t-1、p’2,t-2、p’2,t-3依次为预测期前1年、2年、3年未知月份相应的日平均温低于5℃与高于30℃的天数之和。In the formula, p 2,t is the value of the temperature influence index in the forecast period t, p' 2,t is the sum of the number of days when the daily average temperature of the known months in the forecast period t is lower than 5°C and higher than 30°C, p' 2,t-1 , p' 2,t-2 , p' 2,t-3 are the corresponding daily average temperatures of the unknown months 1 year, 2 years, and 3 years before the forecast period. Sum of days at 30°C.
3)降雨量p3:3) Rainfall p 3 :
①在年底(12月份)预测下一年爆管次数时,采用预测期t前三年的降雨量平均值;①When predicting the number of pipe bursts in the next year at the end of the year (December), the average rainfall of the three years before the forecast period t is used;
式中,p3,t为预测期t内的降雨量取值,p3,t-1、p3,t-2、p3,t-3依次为预测期前1年、2年、3年的降雨量值。In the formula, p 3,t is the value of rainfall in the forecast period t, p 3, t-1 , p 3, t-2 , p 3, t-3 are 1 year, 2 years, 3 years before the forecast period. annual rainfall value.
②若在年中(1至11月份)预测当年爆管次数时,根据当年已知降雨量和未知时间段相应于前3年该时间段内降雨量数据平均值之和。②If the number of pipe bursts in the year is predicted in the middle of the year (January to November), according to the known rainfall of the year and the unknown time period, it corresponds to the sum of the average rainfall data in the previous three years.
式中,p3,t为预测期t内的降雨量取值,p’3,t为预测期t内已知月份的总降雨量,p’3,t-1、p’3,t-2、p’3,t-3依次为预测期前1年、2年、3年未知月份相应的总降雨量值。In the formula, p 3,t is the value of the rainfall in the forecast period t, p' 3,t is the total rainfall of the known months in the forecast period t, p' 3,t-1 , p' 3,t- 2 , p' 3 , t-3 are the corresponding total rainfall values of unknown months in the first year, two years, and three years before the forecast period.
步骤(6)单根灰口铸铁管的爆管概率,当ki,t≠0时,模型如下:Step (6) The burst probability of a single gray cast iron pipe, when ki ,t ≠ 0, the model is as follows:
预测期内爆管总数Nt建模如下:The total number of pipe bursts N t during the forecast period is modeled as follows:
Nt=∑ki,tp(ki,t),k=1,2,...nN t =∑ki ,t p(ki ,t ),k=1,2,...n
具体地,获取供水管网灰口铸铁管的爆管信息以及基本数据,主要包括:管径、管长、管龄、日平均气温、降雨量、历史爆管总次数。Specifically, the pipe burst information and basic data of gray cast iron pipes in the water supply network are obtained, including: pipe diameter, pipe length, pipe age, daily average temperature, rainfall, and the total number of historical pipe bursts.
总样本数据预处理,选取最终样本数据:The total sample data is preprocessed, and the final sample data is selected:
1)管径为模型内生变量,直接考虑进爆管预测中,选取范围为DN100至DN300的主干管,变量记为DIA,参数值为z1;1) The pipe diameter is an endogenous variable in the model. In the prediction of the blast pipe, the main pipe in the range of DN100 to DN300 is selected, the variable is denoted as DIA, and the parameter value is z 1 ;
2)管长为样本中该主干管的长度,变量记为Length,参数值为z22) The pipe length is the length of the main pipe in the sample, the variable is recorded as Length, and the parameter value is z2
3)管龄选取为已建设5年以上,变量记为Age,参数值为p1;3) The management age is selected as having been constructed for more than 5 years, the variable is denoted as Age, and the parameter value is p 1 ;
4)根据日平均气温得到温度影响指数,为一年内日平均温度低于5摄氏度与高于30摄氏度的天数之和,变量记为TI,参数值为p2,如下:4) According to the daily average temperature, the temperature influence index is obtained, which is the sum of the days when the daily average temperature is lower than 5 degrees Celsius and higher than 30 degrees Celsius in one year. The variable is recorded as TI, and the parameter value is p 2 , as follows:
p2=TI5+TI30 p 2 =TI 5 +TI 30
式中,p2为温度影响指数参数值;TI5为一年内日平均温度低于5摄氏度的天数;TI30为一年内日平均温度高于30摄氏度的天数。In the formula, p 2 is the parameter value of the temperature influence index; TI 5 is the number of days in which the daily average temperature is lower than 5 degrees Celsius in a year; TI 30 is the number of days in which the daily average temperature is higher than 30 degrees Celsius in a year.
5)降雨量为年降雨总量,变量记为Rain,参数值为p3,表示土壤含水率对爆管的影响;5) The rainfall is the total annual rainfall, the variable is denoted as Rain, and the parameter value is p 3 , which indicates the influence of soil moisture content on pipe bursting;
6)采用管道i在t之前已发生历史爆管总次数表示爆管历史对爆管的影响,爆管历史总次数为某根管道i自建设完工后至所预测的第t年之前发生过的爆管次数总和,变量记为NOKPF,参数值为q1。6) The total number of historical pipe bursts that have occurred in pipeline i before t is used to represent the impact of pipe burst history on pipe bursting. The sum of the number of pipe bursts, the variable is recorded as NOKPF, and the parameter value is q 1 .
对最终样本数据进行变量描述性统计,并检验过离散现象,采用O统计量建模:Perform variable descriptive statistics on the final sample data, and test the overdispersion phenomenon, using O statistics to model:
式中,n为样本个数;S2为样本方差;为样本均值。In the formula, n is the number of samples; S 2 is the sample variance; is the sample mean.
进行参数估计,利用Newton-Raphson迭代法解如下ZIP模型的对数似然函数:For parameter estimation, use the Newton-Raphson iteration method to solve the log-likelihood function of the following ZIP model:
复验零膨胀,采用SC统计量建模如下:Retest zero inflation and use SC statistic to model as follows:
其中n为管道根数,T为记录年限;为根据ZIP模型算得的爆管预测值;X为影响因素变量向量。Where n is the number of pipes, T is the record period; is the predicted value of pipe burst calculated according to the ZIP model; X is the variable vector of influencing factors.
对预测期内单根灰口铸铁管的爆管期望值建模:Model the expected burst value of a single grey cast iron pipe during the forecast period:
log(λi,t)=α0+α1z1+α2z2+β1p1+β2p2+β3p3+γ1q1 log(λ i,t )=α 0 +α 1 z 1 +α 2 z 2 +β 1 p 1 +β 2 p 2 +β 3 p 3 +γ 1 q 1
预测期t内爆管总数Nt建模如下:The total number of detonators N t in the forecast period t is modeled as follows:
Nt=∑ki,tp(ki,t)N t =∑ki ,t p(ki ,t )
其中ki,t为单根爆管次数,p(ki,t)为相应爆管的概率,当ki,t非零时,其相应爆管的概率建模如下:where k i,t is the number of bursts of a single pipe, and p(ki ,t ) is the probability of the corresponding pipe burst. When ki ,t is non-zero, the probability of the corresponding pipe burst is modeled as follows:
使用某省M市2006~2013年管径在DN100至DN300之间的灰口铸铁管主干管的管道数据与爆管记录,2014年爆管数据作为预测结果对比数据。研究区域内灰口铸铁管建设年限在1969年至2000年之间,共包括1789根管道,管道总长90.07km。Using the pipeline data and pipe burst records of gray cast iron main pipes with pipe diameters between DN100 and DN300 in a province M city from 2006 to 2013, the pipe burst data in 2014 was used as the comparison data for the prediction results. The construction period of gray cast iron pipes in the study area was between 1969 and 2000, including a total of 1789 pipes with a total length of 90.07km.
本实例先对温度影响指数与降水量两个影响因素根据所给的定义做处理,其次整理得到所需的管道数据表,得到ZIP模型参数估计结果表。温度影响指数及降水量数据整理结果如表1所示,本实例的管道数据及爆管记录如表2所示,ZIP模型参数估计结果如表3所示。In this example, the two influencing factors of temperature influence index and precipitation are processed according to the given definitions, and then the required pipeline data table is obtained, and the ZIP model parameter estimation result table is obtained. The temperature impact index and precipitation data collation results are shown in Table 1, the pipeline data and pipe burst records of this example are shown in Table 2, and the ZIP model parameter estimation results are shown in Table 3.
表1温度影响指数及降水量数据整理结果Table 1 The temperature impact index and precipitation data collation results
表2本实例的管道数据及爆管记录Table 2 Pipeline data and pipe burst records of this example
表3ZIP模型参数估计结果Table 3ZIP model parameter estimation results
在ZIP模型对各影响因素的参数估计中,正参数表示该协变量的增加与爆管期望值的增加相关,即为正相关,而负参数则表示该协变量的增加与爆管期望值的减小相关。并且P值的大小反应该参数估计的显著性。因此由表中可以看出,爆管期望与管径呈负相关,即管径越小,爆管发生的概率越大,小管径的管道能承受的应力、弯矩和扭矩较小,其壁厚小也使其抗腐蚀能力较弱,且P<0.0001,说明该参数估计高度显著;爆管期望与管龄呈正相关,即管龄越大,爆管发生的概率越大,且P<0.01,说明该参数估计高度显著;爆管期望和温度影响指数、降雨量均呈负相关,即温度影响指数越小,降雨量越少,那么爆管发生的概率越大,但是P>0.1,说明该参数估计不显著,原因可能是研究区域管道埋深较深,对环境因素不敏感,且研究区域处于亚热带,气候适宜,极端天气少;爆管期望与爆管历史呈正相关,即历史发生过的爆管次数越多,其爆管发生概率越大,且P<0.01,说明该参数估计高度显著;爆管期望与管长呈正相关,即管长越大,其发生爆管的概率越大,可能原因是管道越长,不均匀沉降的影响也越大,且P<0.0001,说明该参数估计高度显著。In the parameter estimation of each influencing factor by the ZIP model, a positive parameter indicates that the increase of the covariate is related to the increase of the expected value of the squib, which is a positive correlation, while the negative parameter indicates that the increase of the covariate is related to the decrease of the expected value of the squib. related. And the size of the P value reflects the significance of the parameter estimate. Therefore, it can be seen from the table that the pipe burst expectation is negatively correlated with the pipe diameter, that is, the smaller the pipe diameter, the greater the probability of pipe bursting, the smaller the pipe diameter can withstand, the smaller the stress, bending moment and torque. Small wall thickness also makes its corrosion resistance weaker, and P<0.0001, indicating that this parameter is highly estimated; the expectation of pipe bursting is positively correlated with pipe age, that is, the greater the pipe age, the greater the probability of pipe bursting, and P< 0.01, indicating that this parameter is estimated to be highly significant; the expectation of pipe bursting is negatively correlated with the temperature influence index and rainfall, that is, the smaller the temperature influence index and the less rainfall, the greater the probability of pipe bursting, but P>0.1, It shows that the estimation of this parameter is not significant. The reason may be that the pipeline in the study area is buried deep and is not sensitive to environmental factors, and the study area is in the subtropical zone, with a suitable climate and few extreme weather. The more times the pipe burst, the greater the probability of pipe burst, and P<0.01, indicating that the parameter estimation is highly significant; the pipe burst expectation is positively correlated with the pipe length, that is, the longer the pipe length, the higher the probability of the pipe burst. The possible reason is that the longer the pipeline, the greater the influence of uneven settlement, and P<0.0001, indicating that the parameter estimation is highly significant.
本实例中该区域预测期内单根灰口铸铁管的爆管期望值如下:In this example, the expected value of a single gray cast iron pipe burst during the forecast period in this area is as follows:
log(λi,t)=α0+α1z1+α2z2+β1p1+β2p2+β3p3+γ1q1 log(λ i,t )=α 0 +α 1 z 1 +α 2 z 2 +β 1 p 1 +β 2 p 2 +β 3 p 3 +γ 1 q 1
=-1.5690-0.01001z1+0.02525z2+0.00708p1-0.01021p2 =-1.5690-0.01001z 1 +0.02525z 2 +0.00708p 1 -0.01021p 2
-0.00103p3+0.2311q1 -0.00103p 3 +0.2311q 1
最终得到年预测爆管总数与实际爆管总数对比图如图2所示,本发明在预测期内各年爆管总数时ZIP爆管预测模型预测精度最好。Figure 2 shows the comparison of the total number of pipe bursts in the forecast year and the actual number of pipe bursts. The ZIP pipe burst prediction model of the present invention has the best prediction accuracy when the total number of pipe bursts in each year in the forecast period is the best.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911375485.1A CN111144002B (en) | 2019-12-27 | 2019-12-27 | Method for predicting pipe burst of grey cast iron pipe of water supply pipe network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911375485.1A CN111144002B (en) | 2019-12-27 | 2019-12-27 | Method for predicting pipe burst of grey cast iron pipe of water supply pipe network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111144002A CN111144002A (en) | 2020-05-12 |
CN111144002B true CN111144002B (en) | 2022-04-08 |
Family
ID=70520834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911375485.1A Active CN111144002B (en) | 2019-12-27 | 2019-12-27 | Method for predicting pipe burst of grey cast iron pipe of water supply pipe network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111144002B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109300513A (en) * | 2018-11-06 | 2019-02-01 | 浙江大学 | A kind of detection method of phosphate corrosion inhibitor inhibiting iron release effect of water supply pipe network |
CN110516883A (en) * | 2019-08-30 | 2019-11-29 | 哈尔滨工业大学 | A method for predicting regional leakage of water supply network based on spatial metering model |
-
2019
- 2019-12-27 CN CN201911375485.1A patent/CN111144002B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109300513A (en) * | 2018-11-06 | 2019-02-01 | 浙江大学 | A kind of detection method of phosphate corrosion inhibitor inhibiting iron release effect of water supply pipe network |
CN110516883A (en) * | 2019-08-30 | 2019-11-29 | 哈尔滨工业大学 | A method for predicting regional leakage of water supply network based on spatial metering model |
Non-Patent Citations (1)
Title |
---|
《供水管网零膨胀爆管预测模型研究及数据系统开发》;何凯军;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑(月刊)2015年第09期》;20150915;第3.2章、3.4.1-3.4.3、4.1.1章 * |
Also Published As
Publication number | Publication date |
---|---|
CN111144002A (en) | 2020-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10082478B2 (en) | Methods for evaluation and estimation of external corrosion damage on buried pipelines | |
Pandey | Probabilistic models for condition assessment of oil and gas pipelines | |
Valor et al. | Reliability assessment of buried pipelines based on different corrosion rate models | |
CN113518922A (en) | Improved method for assessing pipeline condition | |
CN112101811B (en) | Water supply network pipe explosion risk prediction method and system | |
Xie et al. | Risk-based pipeline re-assessment optimization considering corrosion defects | |
Yu et al. | Subset simulation-based reliability analysis of the corroding natural gas pipeline | |
Liu et al. | Corrosion failure probability analysis of buried gas pipelines based on subset simulation | |
Kim et al. | Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference | |
CN112231621B (en) | Method for reducing element detection limit based on BP-adaboost | |
CN106372299A (en) | Pipeline remaining life predication method based on inverse Gaussian process and EM-PF | |
CN107358358A (en) | A kind of assets assessment market method based on computer technology | |
JP2012014619A (en) | Computer system and risk diagnosis method | |
Zheng et al. | Criterion to determine the minimum sample size for load spectrum measurement and statistical extrapolation | |
US10591380B2 (en) | Pipe leak measurement and assessment | |
Wang et al. | Reliability analysis of corroded pipelines considering 3D defect growth | |
CN111144002B (en) | Method for predicting pipe burst of grey cast iron pipe of water supply pipe network | |
CN110083933B (en) | Bayesian degradation analysis method for corrosion pipeline considering random effect | |
CN113569387B (en) | A Prediction Method of Atmospheric Corrosion Considering the Stability of Corrosion Kinetics | |
Babykina et al. | Modelling pipe failures in water distribution systems: accounting for harmful repairs and a time-dependent covariate | |
CN109027700B (en) | Method for evaluating leakage detection effect of leakage point | |
CN115456811A (en) | A Method and System for Traceability of Sudden Water Pollution in Open Channels of Water Diversion Projects | |
CN113255125A (en) | Water supply network failure updating strategy method based on multi-target prediction model | |
Taylor et al. | Environmental Exposure Profiles for Atmospheric Corrosion | |
Tiakor et al. | Predicting crude oil price using the non-stationary extreme value modeling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |