CN111142080A - A Fast Constant Modulus MIMO Radar Tracking Waveform Synthesis Method for Interference Suppression - Google Patents

A Fast Constant Modulus MIMO Radar Tracking Waveform Synthesis Method for Interference Suppression Download PDF

Info

Publication number
CN111142080A
CN111142080A CN201911384798.3A CN201911384798A CN111142080A CN 111142080 A CN111142080 A CN 111142080A CN 201911384798 A CN201911384798 A CN 201911384798A CN 111142080 A CN111142080 A CN 111142080A
Authority
CN
China
Prior art keywords
interference
sub
matrix
pulse
several
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911384798.3A
Other languages
Chinese (zh)
Other versions
CN111142080B (en
Inventor
纠博
谢少鹏
郑浩
刘宏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201911384798.3A priority Critical patent/CN111142080B/en
Publication of CN111142080A publication Critical patent/CN111142080A/en
Application granted granted Critical
Publication of CN111142080B publication Critical patent/CN111142080B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/42Diversity systems specially adapted for radar

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明属于雷达技术领域,具体涉及一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法,包括:获取若干目标方位角、若干干扰方位角和若干目标方向能量分配比例;将干扰方位角带入干扰导向矢量公式得到干扰空域导向矢量;根据干扰空域导向矢量构建干扰子空间矩阵;将目标方位角和干扰子空间矩阵带入第一代价函数得到若干子脉冲函数;根据若干子脉冲函数得到若干子脉冲;根据若干目标方向能量分配比例构造若干子脉冲比例方程,将若干子脉冲比例方程转换为矩阵形式得到矩阵形式子脉冲比例方程;根据矩阵形式子脉冲比例方程构建发射波形矩阵。保证每个阵元发射功率放大器工作在最大工作效率的情况下,降低干扰源的截获概率和反射功率有益效果。

Figure 201911384798

The invention belongs to the technical field of radar, and in particular relates to a fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression. Enter the interference steering vector formula to obtain the interference spatial steering vector; construct the interference subspace matrix according to the interference spatial steering vector; bring the target azimuth and the interference subspace matrix into the first cost function to obtain several subimpulse functions; obtain several subimpulse functions according to several subimpulse functions Sub-pulse; construct several sub-pulse proportional equations according to several target direction energy distribution ratios, convert several sub-pulse proportional equations into matrix form to obtain matrix-form sub-pulse proportional equations; construct transmit waveform matrix according to matrix-form sub-pulse proportional equations. Ensure that each array element transmit power amplifier works at the maximum working efficiency, reducing the interception probability of the interference source and the beneficial effect of reflected power.

Figure 201911384798

Description

一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法A Fast Constant Modulus MIMO Radar Tracking Waveform Synthesis Method for Interference Suppression

技术领域technical field

本发明属于雷达技术领域,具体涉及一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法。The invention belongs to the technical field of radar, and in particular relates to a fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression.

背景技术Background technique

数字元器件在雷达系统中的普遍应用产生了MIMO雷达,区别于传统相控阵雷达,MIMO雷达各阵元可以发射不同的信号,正是这种波形分集能力使MIMO雷达与传统相控阵雷达相比,具有更多的优势。MIMO雷达可以根据收发天线的间距大小分为分布式MIMO雷达和集中式MIMO雷达。对于分布式MIMO雷达,因为各个天线对目标的观测角度不同且回波具有独立性。集中式MIMO雷达具有自由设计各阵元发射波形的能力,相较于相控阵雷达,其自由度有显著地提高,因此具有自适应发射方向图设计能力。在雷达的实际工作环境中,通常存在着干扰,这些干扰影响雷达检测目标的能力。因此,雷达有必要在发射端通过设计发射波形来降低回波信号中的干扰功率。MIMO雷达可以通过对发射波形矩阵的设计来获得特定的方向图,从而实现抗干扰的目的。The widespread application of digital components in radar systems has produced MIMO radars. Different from traditional phased array radars, each element of MIMO radars can transmit different signals. It is this waveform diversity capability that makes MIMO radars different from traditional phased array radars. Compared with , has more advantages. MIMO radars can be divided into distributed MIMO radars and centralized MIMO radars according to the distance between the transmitting and receiving antennas. For distributed MIMO radar, because the observation angles of each antenna to the target are different and the echoes are independent. The centralized MIMO radar has the ability to freely design the emission waveform of each array element. Compared with the phased array radar, its degree of freedom is significantly improved, so it has the ability to design adaptive emission pattern. In the actual working environment of the radar, there are usually interferences that affect the ability of the radar to detect the target. Therefore, it is necessary for the radar to reduce the interference power in the echo signal by designing the transmitting waveform at the transmitting end. MIMO radar can obtain a specific pattern by designing the transmit waveform matrix, so as to achieve the purpose of anti-jamming.

S Imani等人在其发表的论文“Transmit Signal Design in Colocated MIMORadar Without Covariance Matrix Optimization”([J].《IEEE Transactions onAerospace&Electronic Systems》,2017,PP(99):1-1)中提出了一种基于半正定松弛(SDR:Semidefinite Relaxation)的MIMO雷达发射波形合成方法。该方法的基本步骤是:首先根据先验信息得到期望发射方向图,然后根据期望发射方向图构建SDR模型,求解此模型即可得到MIMO雷达发射波形矩阵。该方法存在的不足之处是:SDR模型仅以最小二乘准则逼近期望发射方向图,忽略了抗干扰条件,所以利用SDR模型合成的发射波形并不能实现抗干扰功能。In their paper "Transmit Signal Design in Colocated MIMORadar Without Covariance Matrix Optimization" ([J]. "IEEE Transactions on Aerospace & Electronic Systems", 2017, PP(99): 1-1), S Imani et al. Semidefinite Relaxation (SDR: Semidefinite Relaxation) MIMO radar transmit waveform synthesis method. The basic steps of the method are: firstly obtain the desired transmit pattern according to the prior information, then construct the SDR model according to the desired transmit pattern, and solve the model to obtain the MIMO radar transmit waveform matrix. The disadvantage of this method is that the SDR model only approximates the desired emission pattern with the least squares criterion, ignoring the anti-jamming condition, so the emission waveform synthesized by the SDR model cannot realize the anti-jamming function.

中国电子科技集团公司第二十八研究所拥有的专利技术“一种MIMO雷达发射方向图与波形设计方法”(申请号:201510299652.4授权公告号:CN 105158736B)中公开了一种MIMO雷法发射方向图和波形设计方法。该专利技术的具体步骤是:首先根据先验信息对期望发射方向图建模,然后将发射信号构造为一组正交序列的加权求和,通过借鉴并改进DPS序列生成原理设计关于正交序列的个数和权值的优化问题,通过求解所述优化问题同时获得优化波形和优化发射方向图。该方法存在的不足之处是:在雷达实际工作中,为了保证每个阵元发射功率放大器的最大工作效率,要求发射波形必须具有恒模特性,而该方法不能产生恒模的发射波形。The patented technology "a MIMO radar emission pattern and waveform design method" (application number: 201510299652.4 authorization announcement number: CN 105158736B), a patented technology owned by the 28th Research Institute of China Electronics Technology Group Corporation, discloses a MIMO radar emission direction Diagram and Waveform Design Methods. The specific steps of the patented technology are: first, model the desired transmission pattern according to the prior information, then construct the transmission signal as a weighted summation of a set of orthogonal sequences, and design the orthogonal sequence by drawing on and improving the DPS sequence generation principle. The optimization problem of the number and weights of , and the optimized waveform and the optimized emission pattern are simultaneously obtained by solving the optimization problem. The disadvantage of this method is that in the actual operation of the radar, in order to ensure the maximum working efficiency of the transmitting power amplifier of each array element, the transmitting waveform must have a constant mode characteristic, and this method cannot generate a constant mode transmitting waveform.

发明内容SUMMARY OF THE INVENTION

为了解决现有技术中存在的上述问题,本发明提供了一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above problems existing in the prior art, the present invention provides a fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression. The technical problem to be solved by the present invention is realized by the following technical solutions:

一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法,包括:A fast constant-modulus MIMO radar tracking waveform synthesis method for interference suppression, comprising:

获取若干目标方位角、若干干扰方位角和与所述目标方位角对应的若干目标方向能量分配比例;Obtaining several target azimuths, several interference azimuths, and several target direction energy distribution ratios corresponding to the target azimuths;

将所述干扰方位角带入干扰导向矢量公式得到干扰空域导向矢量;Bring the interference azimuth into the interference steering vector formula to obtain the interference airspace steering vector;

根据所述干扰空域导向矢量构建干扰子空间矩阵;constructing an interference subspace matrix according to the interference spatial steering vector;

将所述目标方位角和所述干扰子空间矩阵带入第一代价函数得到若干子脉冲函数;Bringing the target azimuth and the interference subspace matrix into the first cost function to obtain several subimpulse functions;

对所述若干子脉冲函数进行求解得到若干子脉冲;solving the several sub-pulse functions to obtain several sub-pulses;

根据所述若干目标方向能量分配比例构造若干子脉冲比例方程,并将所述若干子脉冲比例方程转换为矩阵形式得到矩阵形式子脉冲比例方程;Construct several sub-pulse proportional equations according to the several target direction energy distribution ratios, and convert the several sub-pulse proportional equations into a matrix form to obtain a matrix-form sub-pulse proportional equation;

根据所述矩阵形式子脉冲比例方程构建发射波形矩阵。A transmit waveform matrix is constructed according to the matrix-form sub-pulse proportional equation.

在本发明的一个实施例中,所述干扰导向矢量公式为:In an embodiment of the present invention, the interference steering vector formula is:

Figure BDA0002343270470000031
Figure BDA0002343270470000031

其中,a(θi)为第i个干扰方位角θi处的干扰空域导向矢量,i的取值范围为[1,J],J为干扰方位角的数量,exp为以自然常数为底的指数操作,j为虚数,d为雷达天线阵元间的间距,n为雷达天线阵元的序号,n的取值范围为[0,N-1],N为雷达天线阵元总数,sin为正弦,λ为雷达发射信号的波长。Among them, a(θ i ) is the interference airspace steering vector at the ith interference azimuth θ i , the value range of i is [1, J], J is the number of interference azimuths, and exp is the base of the natural constant The exponential operation of , j is an imaginary number, d is the distance between radar antenna elements, n is the serial number of radar antenna elements, the value range of n is [0, N-1], N is the total number of radar antenna elements, sin is a sine, and λ is the wavelength of the radar transmit signal.

在本发明的一个实施例中,所述干扰子空间矩阵表达式为:In an embodiment of the present invention, the interference subspace matrix expression is:

J=[a(θj)],J=[a(θ j )],

其中,J为干扰子空间矩阵,[]为矩阵化操作,a(θi)为第i个干扰方位角θi处的干扰空域导向矢量,i的取值范围为[1,J],J为干扰方位角的数量。Among them, J is the interference subspace matrix, [] is the matrix operation, a(θ i ) is the interference spatial steering vector at the ith interference azimuth θ i , and the value range of i is [1, J], J is the number of interference azimuths.

在本发明的一个实施例中,所述第一代价函数为:In an embodiment of the present invention, the first cost function is:

Figure BDA0002343270470000032
Figure BDA0002343270470000032

其中,w为加权参数,xk为第k个子脉冲,(·)H为对矩阵进行共轭转置操作,J为干扰子空间矩阵,

Figure BDA0002343270470000033
为第k个目标方位角θk处的目标空域导向矢量,θk为第k个目标方位角,k的取值范围为[1,K],目标方位角有K个,xnk为所述第k个子脉冲xk的第n个元素,n为雷达天线阵元序号,n的取值范围为[0,N-1],N为雷达天线阵元总数,j为虚数。Among them, w is the weighting parameter, x k is the k-th sub-pulse, (·) H is the conjugate transpose operation of the matrix, J is the interference subspace matrix,
Figure BDA0002343270470000033
is the target airspace steering vector at the k-th target azimuth angle θ k , θ k is the k-th target azimuth angle, the value range of k is [1, K], there are K target azimuth angles, and x nk is the The nth element of the kth sub-pulse x k , n is the serial number of the radar antenna array element, the value range of n is [0, N-1], N is the total number of radar antenna array elements, and j is an imaginary number.

在本发明的一个实施例中,所述子脉冲比例方程为:In an embodiment of the present invention, the sub-pulse proportional equation is:

Figure BDA0002343270470000041
Figure BDA0002343270470000041

其中,

Figure BDA0002343270470000042
为第j个子脉冲所占比例,Pkk)为第k个子脉冲的方向图函数,βk为第k个目标方位角θk的发射能量,k的取值范围为[1,K],目标方位角有K个。in,
Figure BDA0002343270470000042
is the proportion of the j-th sub-pulse, P kk ) is the pattern function of the k-th sub-pulse, β k is the emission energy of the k-th target azimuth θ k , and the value range of k is [1,K ], there are K target azimuths.

在本发明的一个实施例中,所述矩阵形式子脉冲比例方程为:In an embodiment of the present invention, the matrix-form sub-pulse proportional equation is:

Figure BDA0002343270470000043
Figure BDA0002343270470000043

其中,子脉冲方向图函数矩阵pk=[Pk1) Pk2) … PkK)]T,子脉冲比例矩阵

Figure BDA0002343270470000044
目标方位发射能量矩阵β=[β1 β2 … βK]T。Among them, the sub-pulse pattern function matrix p k =[P k1 ) P k2 ) … P kK )] T , the sub-pulse ratio matrix
Figure BDA0002343270470000044
Target azimuth emission energy matrix β=[β 1 β 2 … β K ] T .

在本发明的一个实施例中,根据所述矩阵形式子脉冲比例方程构建发射波形矩阵,包括:In an embodiment of the present invention, constructing a transmit waveform matrix according to the matrix-form sub-pulse proportional equation, including:

将所述矩阵型式子脉冲比例方程转换为子脉冲个数形式:Convert the matrix-type sub-pulse proportional equation into the sub-pulse number form:

Figure BDA0002343270470000045
Figure BDA0002343270470000045

其中,αk为第k个子脉冲个数,L为总脉冲个数,

Figure BDA0002343270470000046
为第k个子脉冲所占比例,k的取值范围为[1,K],[·]为四舍五入取整操作;Among them, α k is the number of the kth sub-pulse, L is the total number of pulses,
Figure BDA0002343270470000046
is the proportion of the kth sub-pulse, the value range of k is [1, K], and [ ] is the rounding operation;

根据所述子脉冲个数形式构建发射波形矩阵:Construct the transmit waveform matrix according to the number of sub-pulses:

Figure BDA0002343270470000047
Figure BDA0002343270470000047

其中,X为发射波形矩阵,xk为第k个子脉冲x。Among them, X is the transmit waveform matrix, and x k is the kth sub-pulse x.

本发明的有益效果:Beneficial effects of the present invention:

第一,本发明将波形优化简化为有限个子脉冲的设计,利用提出的快速MM算法求解代价函数,使每个子脉冲波束具有一个主瓣且在干扰方位形成凹口。由于每个子脉冲是不相关的,因此可以并行生成。进而提出了子脉冲组合分配方法,将生成的子脉冲可以快速合成为所需的发射波形矩阵。First, the present invention simplifies the waveform optimization into the design of a limited number of sub-pulses, and uses the proposed fast MM algorithm to solve the cost function, so that each sub-pulse beam has a main lobe and forms a notch in the interference azimuth. Since each sub-pulse is uncorrelated, it can be generated in parallel. Furthermore, a sub-pulse combination assignment method is proposed, which can quickly synthesize the generated sub-pulses into the required transmit waveform matrix.

第二,针对多目标的场景,本发明可以合成多波束的波形,在照射全部目标的同时,又能在干扰源方向上会产生较深凹口,有效降低干扰源的截获概率和反射功率。Second, for multi-target scenarios, the present invention can synthesize multi-beam waveforms, and while irradiating all targets, deep notches can be generated in the direction of the interference source, effectively reducing the interception probability and reflected power of the interference source.

第三,为了保持恒模特性,对每个子脉冲进行了恒模约束,最后合成的雷达发射波形也就具有恒模特性,使得所合成的发射波形具有恒模特性。在雷达实际工作中,为了保证每个阵元发射功率放大器的最大工作效率,要求发射波形必须具有恒模特性,因此本发明生成的雷达发射波形可以保证每个阵元发射功率放大器的最大工作效率。Third, in order to maintain the constant mode characteristic, a constant mode constraint is carried out on each sub-pulse, and the final synthesized radar transmit waveform also has the constant mode characteristic, so that the synthesized transmit waveform has the constant mode characteristic. In the actual operation of the radar, in order to ensure the maximum working efficiency of the transmitting power amplifier of each array element, the transmitting waveform must have constant mode characteristics, so the radar transmitting waveform generated by the present invention can ensure the maximum working efficiency of the transmitting power amplifier of each array element. .

以下将结合附图及实施例对本发明做进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.

附图说明Description of drawings

图1是本发明实施例提供的一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法的流程示意图;1 is a schematic flowchart of a fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression provided by an embodiment of the present invention;

图2是本发明实施例提供的一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法仿真实验合成的雷达发射波形的发射方向图;2 is a transmission pattern of a radar transmission waveform synthesized by a simulation experiment of a fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression provided by an embodiment of the present invention;

图3是本发明实施例提供的一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法仿真实验得到的子脉冲发射方向图;3 is a sub-pulse emission pattern obtained by a simulation experiment of a fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression provided by an embodiment of the present invention;

图4是本发明实施例提供的一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法仿真实验得到的雷达各阵元发射波形的幅度图。FIG. 4 is an amplitude diagram of each radar array element transmit waveform obtained by a simulation experiment of a fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to specific embodiments, but the embodiments of the present invention are not limited thereto.

请参见图1,图1是本发明实施例提供的一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法的流程示意图,包括:Please refer to FIG. 1. FIG. 1 is a schematic flowchart of a fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression provided by an embodiment of the present invention, including:

获取若干目标方位角、若干干扰方位角和与所述目标方位角对应的若干目标方向能量分配比例;Obtaining several target azimuths, several interference azimuths, and several target direction energy distribution ratios corresponding to the target azimuths;

将所述干扰方位角带入干扰导向矢量公式得到干扰空域导向矢量;Bring the interference azimuth into the interference steering vector formula to obtain the interference airspace steering vector;

根据所述干扰空域导向矢量构建干扰子空间矩阵;constructing an interference subspace matrix according to the interference spatial steering vector;

将所述目标方位角和所述干扰子空间矩阵带入第一代价函数得到若干子脉冲函数;Bringing the target azimuth and the interference subspace matrix into the first cost function to obtain several subimpulse functions;

对所述若干子脉冲函数进行求解得到若干子脉冲;solving the several sub-pulse functions to obtain several sub-pulses;

根据所述若干目标方向能量分配比例构造若干子脉冲比例方程,并将所述若干子脉冲比例方程转换为矩阵形式得到矩阵形式子脉冲比例方程;Construct several sub-pulse proportional equations according to the several target direction energy distribution ratios, and convert the several sub-pulse proportional equations into a matrix form to obtain a matrix-form sub-pulse proportional equation;

根据所述矩阵形式子脉冲比例方程构建发射波形矩阵。A transmit waveform matrix is constructed according to the matrix-form sub-pulse proportional equation.

第一,本发明将波形优化简化为有限个子脉冲的设计,利用提出的快速MM算法求解代价函数,使每个子脉冲波束具有一个主瓣且在干扰方位形成凹口。由于每个子脉冲是不相关的,因此可以并行生成。进而提出了子脉冲组合分配方法,将生成的子脉冲可以快速合成为所需的发射波形矩阵。First, the present invention simplifies the waveform optimization into the design of a limited number of sub-pulses, and uses the proposed fast MM algorithm to solve the cost function, so that each sub-pulse beam has a main lobe and forms a notch in the interference azimuth. Since each sub-pulse is uncorrelated, it can be generated in parallel. Furthermore, a sub-pulse combination assignment method is proposed, which can quickly synthesize the generated sub-pulses into the required transmit waveform matrix.

第二,针对多目标的场景,本发明可以合成多波束的波形,在照射全部目标的同时,又能在干扰源方向上会产生较深凹口,有效降低干扰源的截获概率和反射功率。Second, for multi-target scenarios, the present invention can synthesize multi-beam waveforms, and while irradiating all targets, deep notches can be generated in the direction of the interference source, effectively reducing the interception probability and reflected power of the interference source.

第三,为了保持恒模特性,对每个子脉冲进行了恒模约束,最后合成的雷达发射波形也就具有恒模特性,使得所合成的发射波形具有恒模特性。在雷达实际工作中,为了保证每个阵元发射功率放大器的最大工作效率,要求发射波形必须具有恒模特性,因此本发明生成的雷达发射波形可以保证每个阵元发射功率放大器的最大工作效率。Third, in order to maintain the constant mode characteristic, a constant mode constraint is carried out on each sub-pulse, and the final synthesized radar transmit waveform also has the constant mode characteristic, so that the synthesized transmit waveform has the constant mode characteristic. In the actual operation of the radar, in order to ensure the maximum working efficiency of the transmitting power amplifier of each array element, the transmitting waveform must have constant mode characteristics, so the radar transmitting waveform generated by the present invention can ensure the maximum working efficiency of the transmitting power amplifier of each array element. .

在本发明的一个实施例中,所述干扰导向矢量公式为:In an embodiment of the present invention, the interference steering vector formula is:

Figure BDA0002343270470000071
Figure BDA0002343270470000071

其中,a(θi)为第i个干扰方位角θi处的干扰空域导向矢量,i的取值范围为[1,J],J为干扰方位角的数量,exp为以自然常数为底的指数操作,j为虚数,d为雷达天线阵元间的间距,n为雷达天线阵元的序号,n的取值范围为[0,N-1],N为雷达天线阵元总数,sin为正弦,λ为雷达发射信号的波长。Among them, a(θ i ) is the interference airspace steering vector at the ith interference azimuth θ i , the value range of i is [1, J], J is the number of interference azimuths, and exp is the base of the natural constant The exponential operation of , j is an imaginary number, d is the distance between radar antenna elements, n is the serial number of radar antenna elements, the value range of n is [0, N-1], N is the total number of radar antenna elements, sin is a sine, and λ is the wavelength of the radar transmit signal.

在本发明的一个实施例中,所述干扰子空间矩阵表达式为:In an embodiment of the present invention, the interference subspace matrix expression is:

J=[a(θj)],J=[a(θ j )],

其中,J为干扰子空间矩阵,[]为矩阵化操作,a(θi)为第i个干扰方位角θi处的干扰空域导向矢量,i的取值范围为[1,J],J为干扰方位角的数量。Among them, J is the interference subspace matrix, [] is the matrix operation, a(θ i ) is the interference spatial steering vector at the ith interference azimuth θ i , and the value range of i is [1, J], J is the number of interference azimuths.

在本发明的一个实施例中,所述第一代价函数为:In an embodiment of the present invention, the first cost function is:

Figure BDA0002343270470000072
Figure BDA0002343270470000072

其中,w为加权参数,xk为第k个子脉冲,(·)H为对矩阵进行共轭转置操作,J为干扰子空间矩阵,

Figure BDA0002343270470000073
为第k个目标方位角θk处的目标空域导向矢量,θk为第k个目标方位角,k的取值范围为[1,K],目标方位角有K个,xnk为所述第k个子脉冲xk的第n个元素,n为雷达天线阵元序号,n的取值范围为[0,N-1],N为雷达天线阵元总数,j为虚数。Among them, w is the weighting parameter, x k is the k-th sub-pulse, (·) H is the conjugate transpose operation of the matrix, J is the interference subspace matrix,
Figure BDA0002343270470000073
is the target airspace steering vector at the k-th target azimuth angle θ k , θ k is the k-th target azimuth angle, the value range of k is [1, K], there are K target azimuth angles, and x nk is the The nth element of the kth sub-pulse x k , n is the serial number of the radar antenna array element, the value range of n is [0, N-1], N is the total number of radar antenna array elements, and j is an imaginary number.

在本发明的一个实施例中,所述子脉冲比例方程为:In an embodiment of the present invention, the sub-pulse proportional equation is:

Figure BDA0002343270470000081
Figure BDA0002343270470000081

其中,

Figure BDA0002343270470000082
为第j个子脉冲所占比例,Pkk)为第k个子脉冲的方向图函数,βk为第k个目标方位角θk的发射能量,k的取值范围为[1,K],目标方位角有K个。in,
Figure BDA0002343270470000082
is the proportion of the j-th sub-pulse, P kk ) is the pattern function of the k-th sub-pulse, β k is the emission energy of the k-th target azimuth θ k , and the value range of k is [1,K ], there are K target azimuths.

在本发明的一个实施例中,所述矩阵形式子脉冲比例方程为:In an embodiment of the present invention, the matrix-form sub-pulse proportional equation is:

Figure BDA0002343270470000083
Figure BDA0002343270470000083

其中,子脉冲方向图函数矩阵pk=[Pk1) Pk2) … PkK)]T,子脉冲比例矩阵

Figure BDA0002343270470000084
目标方位发射能量矩阵β=[β1 β2… βK]T。Among them, the sub-pulse pattern function matrix pk=[P k1 ) P k2 ) … P kK )] T , the sub-pulse ratio matrix
Figure BDA0002343270470000084
Target azimuth emission energy matrix β=[β 1 β 2 … β K ] T .

在本发明的一个实施例中,根据所述矩阵形式子脉冲比例方程构建发射波形矩阵,包括:In an embodiment of the present invention, constructing a transmit waveform matrix according to the matrix-form sub-pulse proportional equation, including:

将所述矩阵型式子脉冲比例方程转换为子脉冲个数形式:Convert the matrix-type sub-pulse proportional equation into the sub-pulse number form:

Figure BDA0002343270470000085
Figure BDA0002343270470000085

其中,αk为第k个子脉冲个数,L为总脉冲个数,

Figure BDA0002343270470000086
为第k个子脉冲所占比例,k的取值范围为[1,K],[·]为四舍五入取整操作;Among them, α k is the number of the kth sub-pulse, L is the total number of pulses,
Figure BDA0002343270470000086
is the proportion of the kth sub-pulse, the value range of k is [1, K], and [ ] is the rounding operation;

根据所述子脉冲个数形式构建发射波形矩阵:Construct the transmit waveform matrix according to the number of sub-pulses:

Figure BDA0002343270470000087
Figure BDA0002343270470000087

其中,X为发射波形矩阵,xk为第k个子脉冲x。Among them, X is the transmit waveform matrix, and x k is the kth sub-pulse x.

进一步地,求解得到若干子脉冲步骤如下:Further, the steps to obtain several sub-pulses are as follows:

(1)初始化子脉冲迭代值x(0),构造第二代价函数L=wJJH-a(θk)aHk),(1) Initialize the sub-pulse iteration value x (0) , construct the second cost function L=wJJ H -a(θ k )a Hk ),

(2)根据所述第二代价函数估计第二代价函数的上界λu(L),并根据所述第二代价函数的上界构建中间变量M,M=λu(L)I,(2) Estimate the upper bound λ u (L) of the second cost function according to the second cost function, and construct an intermediate variable M according to the upper bound of the second cost function, M=λ u (L)I,

Figure BDA0002343270470000091
Figure BDA0002343270470000091

其中,λmin(L)为第二代价函数的最小值,λmax(L)为第二代价函数的最大值,I为特征向量,t为迭代次数,t=0,其中y与s为中间变量,

Figure BDA0002343270470000092
n为第二代价函数的阶数;Among them, λ min (L) is the minimum value of the second cost function, λ max (L) is the maximum value of the second cost function, I is the eigenvector, t is the number of iterations, t=0, where y and s are the middle variable,
Figure BDA0002343270470000092
n is the order of the second cost function;

(3)计算

Figure BDA0002343270470000093
(3) Calculation
Figure BDA0002343270470000093

其中,

Figure BDA0002343270470000094
Figure BDA0002343270470000095
q,v,α为中间变量,angle(·)为取相位运算,||·||2为取2范数操作,(·)H为对矩阵进行共轭转置操作;in,
Figure BDA0002343270470000094
Figure BDA0002343270470000095
q, v, α are intermediate variables, angle(·) is the phase operation, ||·|| 2 is the 2-norm operation, (·) H is the conjugate transpose operation of the matrix;

(4)当(x(t+1))HLx(t+1)>(x(t))HLx(t),令α=(α-1)/2,并跳转至步骤(3);反之则进行下一步;(4) When (x (t+1) ) H Lx (t+1) > (x (t) ) H Lx (t) , let α=(α-1)/2, and jump to step (3) ); otherwise, proceed to the next step;

(5)当|x(t+1)-x(t)|≤ε,则输出x;否则,令t=t+1,并跳转至步骤(3)(5) When |x (t+1) -x (t) |≤ε, output x; otherwise, set t=t+1, and jump to step (3)

下面结合仿真数据对本发明的效果做进一步的描述。The effect of the present invention will be further described below in conjunction with the simulation data.

1.仿真条件:1. Simulation conditions:

本发明的仿真运行系统为Intel(R)Core(TM)i7-2600 CPU 650@3.40GHz,32位Windows操作系统,仿真软件采用MATLAB(R 2012b)。The simulation running system of the present invention is Intel(R) Core(TM) i7-2600 CPU 650@3.40GHz, 32-bit Windows operating system, and the simulation software adopts MATLAB (R 2012b).

2.仿真数据与结果分析:2. Simulation data and result analysis:

本发明仿真实验的参数设置为雷达阵元总数为32,雷达天线阵元间的间距为0.5毫米,雷达发射信号的波长为1毫米,干扰源的总数为2,干扰源方位角分别为-59.5°和20.5°,目标总数为3,目标方位角分别为-35°、0°、45°,功率分配为1:1:1。The parameters of the simulation experiment of the present invention are set as the total number of radar array elements is 32, the distance between the radar antenna array elements is 0.5 mm, the wavelength of the radar transmit signal is 1 mm, the total number of interference sources is 2, and the azimuth angle of the interference sources is -59.5 ° and 20.5°, the total number of targets is 3, the target azimuth angles are -35°, 0°, 45°, respectively, and the power distribution is 1:1:1.

请参见图2,图2是本发明实施例提供的一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法仿真实验合成的雷达发射波形的发射方向图。图2中的横坐标表示空域方位角,其取值范围为[-90°,90°],纵坐标表示仿真实验合成的雷达发射波形在各个空域方位角处的功率增益,单位为dB。画出仿真实验合成的雷达发射波形在各个空域方位角处的功率增益即可得到仿真实验合成的雷达发射波形的发射方向图。Please refer to FIG. 2. FIG. 2 is a transmit pattern of a radar transmit waveform synthesized by a simulation experiment of a fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression provided by an embodiment of the present invention. The abscissa in Figure 2 represents the airspace azimuth, and its value range is [-90°, 90°], and the ordinate represents the power gain of the radar transmit waveform synthesized by the simulation experiment at each airspace azimuth, in dB. By drawing the power gain of the radar transmit waveform synthesized by the simulation experiment at each airspace azimuth angle, the emission pattern of the radar transmit waveform synthesized by the simulation experiment can be obtained.

仿真实验合成的雷达发射波形在各个空域方位角处的功率增益由以下公式得到:The power gain of the radar transmit waveform synthesized by the simulation experiment at each airspace azimuth is obtained by the following formula:

P(θ)=a(θ)HXXHa(θ),P(θ)=a(θ) H XX H a(θ),

其中,P(θ)表示在空域方位角θ处仿真实验合成的雷达发射波形的功率增益,a(θ)表示在空域方位角θ处的空域导向矢量,H表示共轭转置操作,X为仿真实验合成的多输入多输出恒模发射波形矩阵。Among them, P(θ) represents the power gain of the radar transmit waveform synthesized by simulation experiments at the airspace azimuth angle θ, a(θ) represents the airspace steering vector at the airspace azimuth angle θ, H represents the conjugate transpose operation, and X is the The multi-input multi-output constant-modulus transmit waveform matrix synthesized by the simulation experiment.

从图2可以看出,雷达在目标方位角-35°、0°、45°处有较强的功率增益为25dB,在干扰源方位角-59.5°、20.5°处仅有很弱的功率增益为-34dB和-38dB,因此可以看出本发明合成的雷达发射波形具有抗干扰功能。As can be seen from Figure 2, the radar has a strong power gain of 25dB at the target azimuth angles of -35°, 0°, and 45°, and only a very weak power gain at the interference source azimuth angles of -59.5° and 20.5°. are -34dB and -38dB, so it can be seen that the radar transmit waveform synthesized by the present invention has anti-interference function.

请参见图3、图4,图3是本发明实施例提供的一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法仿真实验得到的子脉冲发射方向图,图4是本发明实施例提供的一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法仿真实验得到的雷达各阵元发射波形的幅度图。将仿真实验合成的多输入多输出恒模发射波形矩阵中各行元素的幅度值作为雷达各阵元发射波形的幅度值,画出雷达各个阵元对应的幅度即可得到雷达各阵元发射波形的幅度图。Please refer to FIG. 3 and FIG. 4. FIG. 3 is a sub-pulse emission pattern obtained by a simulation experiment of a fast constant-modulus MIMO radar tracking waveform synthesis method for interference suppression provided by an embodiment of the present invention, and FIG. 4 is provided by an embodiment of the present invention. The amplitude diagram of the emission waveform of each radar array element obtained from the simulation experiment of a fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression. The amplitude value of each row element in the multi-input multi-output constant-modulus emission waveform matrix synthesized by the simulation experiment is taken as the amplitude value of the emission waveform of each radar array element, and the corresponding amplitude of each radar array element can be obtained. Amplitude graph.

图3中横坐标表示雷达阵元个数,其取值范围为[1,32],纵坐标表示对应阵元所发射波形的幅度值。从图3可以看出,雷达各阵元发射波形幅度相等且均为1。因此认为本发明合成的发射波形具有恒模特性,可以保证每个阵元发射功率放大器的最大工作效率。In Figure 3, the abscissa represents the number of radar array elements, and its value range is [1, 32], and the ordinate represents the amplitude value of the waveform emitted by the corresponding array element. It can be seen from Figure 3 that the amplitudes of the transmitted waveforms of the radar array elements are equal and all are 1. Therefore, it is considered that the transmit waveform synthesized by the present invention has a constant mode characteristic, which can ensure the maximum working efficiency of the transmit power amplifier of each array element.

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deductions or substitutions can be made, which should be regarded as belonging to the protection scope of the present invention.

Claims (7)

1.一种针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法,其特征在于,包括:1. a fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression is characterized in that, comprising: 获取若干目标方位角、若干干扰方位角和与所述目标方位角对应的若干目标方向能量分配比例;Obtaining several target azimuths, several interference azimuths, and several target direction energy distribution ratios corresponding to the target azimuths; 将所述干扰方位角带入干扰导向矢量公式得到干扰空域导向矢量;Bring the interference azimuth into the interference steering vector formula to obtain the interference airspace steering vector; 根据所述干扰空域导向矢量构建干扰子空间矩阵;constructing an interference subspace matrix according to the interference spatial steering vector; 将所述目标方位角和所述干扰子空间矩阵带入第一代价函数得到若干子脉冲函数;Bringing the target azimuth and the interference subspace matrix into the first cost function to obtain several subimpulse functions; 对所述若干子脉冲函数进行求解得到若干子脉冲;solving the several sub-pulse functions to obtain several sub-pulses; 根据所述若干目标方向能量分配比例构造若干子脉冲比例方程,并将所述若干子脉冲比例方程转换为矩阵形式得到矩阵形式子脉冲比例方程;Construct several sub-pulse proportional equations according to the several target direction energy distribution ratios, and convert the several sub-pulse proportional equations into a matrix form to obtain a matrix-form sub-pulse proportional equation; 根据所述矩阵形式子脉冲比例方程构建发射波形矩阵。A transmit waveform matrix is constructed according to the matrix-form sub-pulse proportional equation. 2.根据权利要求1所述的针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法,其特征在于,所述干扰导向矢量公式为:2. The fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression according to claim 1, wherein the interference steering vector formula is:
Figure FDA0002343270460000011
Figure FDA0002343270460000011
其中,a(θi)为第i个干扰方位角θi处的干扰空域导向矢量,i的取值范围为[1,J],J为干扰方位角的数量,exp为以自然常数为底的指数操作,j为虚数,d为雷达天线阵元间的间距,n为雷达天线阵元的序号,n的取值范围为[0,N-1],N为雷达天线阵元总数,sin为正弦,λ为雷达发射信号的波长。Among them, a(θ i ) is the interference airspace steering vector at the ith interference azimuth θ i , the value range of i is [1, J], J is the number of interference azimuths, and exp is the base of the natural constant The exponential operation of , j is an imaginary number, d is the distance between radar antenna elements, n is the serial number of radar antenna elements, the value range of n is [0, N-1], N is the total number of radar antenna elements, sin is a sine, and λ is the wavelength of the radar transmit signal.
3.根据权利要求1所述的针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法,其特征在于,所述干扰子空间矩阵表达式为:3. the fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression according to claim 1, is characterized in that, described interference subspace matrix expression is: J=[a(θj)],J=[a(θ j )], 其中,J为干扰子空间矩阵,[]为矩阵化操作,a(θi)为第i个干扰方位角θi处的干扰空域导向矢量,i的取值范围为[1,J],J为干扰方位角的数量。Among them, J is the interference subspace matrix, [] is the matrix operation, a(θ i ) is the interference spatial steering vector at the ith interference azimuth θ i , and the value range of i is [1, J], J is the number of interference azimuths. 4.根据权利要求1所述的针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法,其特征在于,所述第一代价函数为:4. The fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression according to claim 1, wherein the first cost function is:
Figure FDA0002343270460000021
Figure FDA0002343270460000021
其中,w为加权参数,xk为第k个子脉冲,(·)H为对矩阵进行共轭转置操作,J为干扰子空间矩阵,
Figure FDA0002343270460000022
为第k个目标方位角θk处的目标空域导向矢量,θk为第k个目标方位角,k的取值范围为[1,K],目标方位角有K个,xnk为所述第k个子脉冲xk的第n个元素,n为雷达天线阵元序号,n的取值范围为[0,N-1],N为雷达天线阵元总数,j为虚数。
Among them, w is the weighting parameter, x k is the k-th sub-pulse, (·) H is the conjugate transpose operation of the matrix, J is the interference subspace matrix,
Figure FDA0002343270460000022
is the target airspace steering vector at the k-th target azimuth angle θ k , θ k is the k-th target azimuth angle, the value range of k is [1, K], there are K target azimuth angles, and x nk is the The nth element of the kth sub-pulse x k , n is the serial number of the radar antenna array element, the value range of n is [0, N-1], N is the total number of radar antenna array elements, and j is an imaginary number.
5.根据权利要求1所述的针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法,其特征在于,所述子脉冲比例方程为:5. The fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression according to claim 1, wherein the sub-pulse proportional equation is:
Figure FDA0002343270460000023
Figure FDA0002343270460000023
其中,
Figure FDA0002343270460000024
为第j个子脉冲所占比例,Pkk)为第k个子脉冲的方向图函数,βk为第k个目标方位角θk的发射能量,k的取值范围为[1,K],目标方位角有K个。
in,
Figure FDA0002343270460000024
is the proportion of the j-th sub-pulse, P kk ) is the pattern function of the k-th sub-pulse, β k is the emission energy of the k-th target azimuth θ k , and the value range of k is [1, K ], there are K target azimuths.
6.根据权利要求5所述的针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法,其特征在于,所述矩阵形式子脉冲比例方程为:6. the fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression according to claim 5, is characterized in that, described matrix form sub-pulse proportional equation is:
Figure FDA0002343270460000025
Figure FDA0002343270460000025
其中,子脉冲方向图函数矩阵pk=[Pk1) Pk2)…PkK)]T,子脉冲比例矩阵
Figure FDA0002343270460000026
目标方位发射能量矩阵β=[β1 β2…βK]T
Among them, the sub-pulse pattern function matrix p k =[P k1 ) P k2 )…P kK )] T , the sub-pulse ratio matrix
Figure FDA0002343270460000026
Target azimuth emission energy matrix β=[β 1 β 2 ···β K ] T .
7.根据权利要求1所述的针对干扰抑制的快速恒模MIMO雷达跟踪波形合成方法,其特征在于,根据所述矩阵形式子脉冲比例方程构建发射波形矩阵,包括:7. The fast constant modulus MIMO radar tracking waveform synthesis method for interference suppression according to claim 1, characterized in that, constructing a transmit waveform matrix according to the matrix form sub-pulse proportional equation, comprising: 将所述矩阵型式子脉冲比例方程转换为子脉冲个数形式:Convert the matrix-type sub-pulse proportional equation into the sub-pulse number form:
Figure FDA0002343270460000031
Figure FDA0002343270460000031
其中,αk为第k个子脉冲个数,L为总脉冲个数,
Figure FDA0002343270460000032
为第k个子脉冲所占比例,k的取值范围为[1,K],[·]为四舍五入取整操作;
Among them, α k is the number of the kth sub-pulse, L is the total number of pulses,
Figure FDA0002343270460000032
is the proportion of the kth sub-pulse, the value range of k is [1, K], and [ ] is the rounding operation;
根据所述子脉冲个数形式构建发射波形矩阵:Construct the transmit waveform matrix according to the number of sub-pulses:
Figure FDA0002343270460000033
Figure FDA0002343270460000033
其中,X为发射波形矩阵,xk为第k个子脉冲x。Among them, X is the transmit waveform matrix, and x k is the kth sub-pulse x.
CN201911384798.3A 2019-12-28 2019-12-28 Rapid constant-modulus MIMO radar tracking waveform synthesis method aiming at interference suppression Active CN111142080B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911384798.3A CN111142080B (en) 2019-12-28 2019-12-28 Rapid constant-modulus MIMO radar tracking waveform synthesis method aiming at interference suppression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911384798.3A CN111142080B (en) 2019-12-28 2019-12-28 Rapid constant-modulus MIMO radar tracking waveform synthesis method aiming at interference suppression

Publications (2)

Publication Number Publication Date
CN111142080A true CN111142080A (en) 2020-05-12
CN111142080B CN111142080B (en) 2023-05-30

Family

ID=70521334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911384798.3A Active CN111142080B (en) 2019-12-28 2019-12-28 Rapid constant-modulus MIMO radar tracking waveform synthesis method aiming at interference suppression

Country Status (1)

Country Link
CN (1) CN111142080B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111913153A (en) * 2020-07-03 2020-11-10 西安电子科技大学 Fast multi-beam forming method for MIMO radar based on sub-array structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201206A1 (en) * 2006-04-27 2009-08-13 University Of Florida Research Foundation, Inc. Method and system for flexible beampattern design using waveform diversity
CN101621321A (en) * 2008-06-30 2010-01-06 三星电子株式会社 Closed loop constant modulus multi-user MIMO system and a control signaling processing method thereof
CN103018732A (en) * 2013-01-17 2013-04-03 西安电子科技大学 MIMO (multi-input multi-output) radar waveform synthesis method based on space-time joint optimization
CN107703489A (en) * 2017-09-26 2018-02-16 西北工业大学 A kind of co-design method of MIMO radar perseverance mould waveform and receiver
CN108226878A (en) * 2017-12-08 2018-06-29 西安电子科技大学 MIMO radar transmitted waveform synthetic method based on coordinate descent algorithm
US20190227143A1 (en) * 2018-01-20 2019-07-25 Michael Joseph Lindenfeld Pulsed Radar System Using Optimized Transmit and Filter Waveforms

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201206A1 (en) * 2006-04-27 2009-08-13 University Of Florida Research Foundation, Inc. Method and system for flexible beampattern design using waveform diversity
CN101621321A (en) * 2008-06-30 2010-01-06 三星电子株式会社 Closed loop constant modulus multi-user MIMO system and a control signaling processing method thereof
CN103018732A (en) * 2013-01-17 2013-04-03 西安电子科技大学 MIMO (multi-input multi-output) radar waveform synthesis method based on space-time joint optimization
CN107703489A (en) * 2017-09-26 2018-02-16 西北工业大学 A kind of co-design method of MIMO radar perseverance mould waveform and receiver
CN108226878A (en) * 2017-12-08 2018-06-29 西安电子科技大学 MIMO radar transmitted waveform synthetic method based on coordinate descent algorithm
US20190227143A1 (en) * 2018-01-20 2019-07-25 Michael Joseph Lindenfeld Pulsed Radar System Using Optimized Transmit and Filter Waveforms

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ZIYANG CHENG: "Constant Modulus Waveform Design for MIMO Radar Transmit Beampattern", 《IEEE TRANSACTIONS ON SIGNAL PROCESSING》 *
李玉翔;胡捍英;赵智昊;李海文;: "干扰环境下MIMO雷达波形与接收滤波联合优化算法", 太赫兹科学与电子信息学报 *
柏婷等: "杂波环境下的OFDM MIMO雷达波形设计", 《华中科技大学学报(自然科学版)》 *
陈志坤: "MIMO雷达自适应波形设计与阵列优化研究", 《中国博士学位论文全文数据库 信息科技辑》 *
陈诚等: "干扰背景下MIMO雷达部分相关信号设计", 《电子与信息学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111913153A (en) * 2020-07-03 2020-11-10 西安电子科技大学 Fast multi-beam forming method for MIMO radar based on sub-array structure
CN111913153B (en) * 2020-07-03 2023-12-26 西安电子科技大学 MIMO radar rapid multi-beam forming method based on subarray structure

Also Published As

Publication number Publication date
CN111142080B (en) 2023-05-30

Similar Documents

Publication Publication Date Title
CN106646387B (en) Anti-active jamming method for MIMO radar based on transmit beam domain
CN105467365B (en) A kind of low sidelobe transmitting pattern design method improving MIMO radar DOA estimation performances
CN110133631B (en) Fuzzy function-based frequency control array MIMO radar target positioning method
CN111352078B (en) Design method of low intercept frequency controlled array MIMO radar system based on ADMM under clutter
CN110456334A (en) TDM-MIMO radar system based on optimized sparse array and its signal processing method
CN111352080B (en) Design Method of Low Intercept Frequency Controlled Array MIMO Radar System Under PAPR and Similarity Constraints
CN102841335B (en) Iterative FFT-based quick MIMO radar waveform synthesis method
CN105445709A (en) Thinned array near-field passive location amplitude and phase error correction method
CN110261826A (en) A kind of coherent interference suppression method of null broadening
CN111352079B (en) Design method of low interception system based on frequency control array MIMO radar
CN108226878B (en) MIMO radar transmitting waveform synthesis method based on coordinate descent algorithm
Ding et al. Joint design of OFDM-LFM waveforms and receive filter for MIMO radar in spatial heterogeneous clutter
Xiong et al. Sparse reconstruction-based beampattern synthesis for multi-carrier frequency diverse array antenna
Ding et al. A joint array parameters design method based on FDA-MIMO radar
CN102175995B (en) Adaptive method for realizing transmission zero-setting by digital array radar
CN111142080B (en) Rapid constant-modulus MIMO radar tracking waveform synthesis method aiming at interference suppression
CN104346532B (en) MIMO (multiple-input multiple-output) radar dimension reduction self-adaptive wave beam forming method
CN110196417A (en) The bistatic MIMO radar angle estimating method concentrated based on emitted energy
CN109946655A (en) Design method of nulling waveform of MIMO radar LFM signal
CN108037487A (en) A kind of distributed MIMO radar emission signal optimum design method stealthy based on radio frequency
Xiao et al. A Single-Snapshot Robust Beamforming for FDA-MIMO Radar Based on AID 3
Xu et al. Transmit beam control in low-altitude slow-moving small targets detection
Huang et al. Joint transmitting subarray partition and beamforming for active jamming suppression in phased-MIMO radar
Liu et al. Low Sidelobe Integrated Radar and Communication Shared Waveform Design
Hong et al. Bi-iterative MVDR beamforming based on beamspace preprocessing for MIMO radars

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant