CN111352080B - Design Method of Low Intercept Frequency Controlled Array MIMO Radar System Under PAPR and Similarity Constraints - Google Patents
Design Method of Low Intercept Frequency Controlled Array MIMO Radar System Under PAPR and Similarity Constraints Download PDFInfo
- Publication number
- CN111352080B CN111352080B CN202010404534.6A CN202010404534A CN111352080B CN 111352080 B CN111352080 B CN 111352080B CN 202010404534 A CN202010404534 A CN 202010404534A CN 111352080 B CN111352080 B CN 111352080B
- Authority
- CN
- China
- Prior art keywords
- papr
- iteration
- matrix
- interference
- clutter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000013461 design Methods 0.000 title claims abstract description 17
- 239000011159 matrix material Substances 0.000 claims abstract description 43
- 238000005457 optimization Methods 0.000 claims abstract description 21
- 230000003190 augmentative effect Effects 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 description 11
- 238000004088 simulation Methods 0.000 description 7
- 230000005855 radiation Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/023—Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/282—Transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了PAPR和相似性约束下低截获频控阵MIMO雷达系统的设计方法,包括:S0:构建优化问题,初始化外循环迭代次数、内循环迭代次数,随机初始化发射波形矩阵;S1:固定当前的发射波形矩阵,利用MVDR法求解优化问题,计算接收滤波器;S2:固定本次迭代下的接收滤波器,基于交替方向乘子法和有效集合法计算并更新发射波形向量;S3:重复步骤S1~S2,直至达到迭代结束条件。本发明考虑杂波、干扰和噪声环境以及发射波形满足PAPR和相似性下条件,将优化问题构造成多比例分式规划问题,利用循环迭代法、ADMM和ASM联合优化发射信号。
The invention discloses a design method of a low-interception frequency controlled array MIMO radar system under PAPR and similarity constraints, including: S0: constructing an optimization problem, initializing the number of iterations of the outer loop, the number of iterations of the inner loop, and randomly initializing a transmit waveform matrix; S1: fixed For the current transmit waveform matrix, use the MVDR method to solve the optimization problem and calculate the receive filter; S2: Fix the receive filter under this iteration, calculate and update the transmit waveform vector based on the alternating direction multiplier method and the effective set method; S3: Repeat Steps S1-S2, until the iteration end condition is reached. The invention considers the clutter, interference and noise environment and the condition that the transmit waveform satisfies the PAPR and similarity, constructs the optimization problem into a multi-proportional fractional programming problem, and uses the loop iteration method, ADMM and ASM to jointly optimize the transmit signal.
Description
技术领域technical field
本发明属于阵列信号处理技术领域,具体涉及PAPR和相似性约束下低截获频控阵MIMO雷达系统的设计方法。The invention belongs to the technical field of array signal processing, and in particular relates to a design method of a low-interception frequency-controlled array MIMO radar system under PAPR and similarity constraints.
背景技术Background technique
在现代电子对抗中,日趋多变复杂的雷达电磁环境对低截获技术提出了新的要求,希望雷达系统能够根据目标和环境的变化,而实时地调整发射端的各项参数指标,以达到更好的低截获效果。低截获概率(Low probability of intercept,LPI)雷达能够探测目标的同时降低被敌方发现的概率,为雷达及其载体的安全性提供保障,研究LPI雷达及其实现技术显得日益迫切,而通过有效的技术使得敌方无法获得雷达发射的辐射能量更是关键所在。In modern electronic countermeasures, the increasingly changing and complex radar electromagnetic environment has put forward new requirements for low interception technology. low interception effect. Low probability of intercept (LPI) radar can detect targets while reducing the probability of being discovered by the enemy, providing security for the radar and its carrier. It is increasingly urgent to study LPI radar and its realization technology. The key point is that the technology makes it impossible for the enemy to obtain the radiation energy emitted by the radar.
低截获技术在雷达发射端的研究主要包括三个方面:1)将能量分散在频率域中,设计超宽带波形;2)将能量分散在时间域中,设计出高占空比的波形;3)将能量分散在空间域中,设计出较宽的天线辐射方向图主瓣。The research of low-interception technology on the radar transmitter mainly includes three aspects: 1) Disperse the energy in the frequency domain to design an ultra-wideband waveform; 2) Disperse the energy in the time domain to design a waveform with a high duty cycle; 3) Disperse the energy in the space domain and design a wider main lobe of the antenna radiation pattern.
MIMO(Multiple-Input Multiple-Output,多入多出)雷达的概念自2003年一经提出,涌现出了大批学者就其关键技术和相关的方面进行了深入研究。相比相控阵,MIMO雷达通过波形分集技术,在空间形成低增益的宽波束,从而能降低雷达被截获的概率。由于目标检测和参数估计依赖于输出信杂噪比(signal-to-clutter-noise ratio,SCNR),近年来关于最大化输出SCNR的MIMO雷达设计得到关注。联合发射和接收的设计主要分为两类:一类是通过联合设计发射波形和接收滤波器,使得输出SINR最大化。另一类是通过设计联合发射和接收波束形成,使得输出SCNR最大化。Since the concept of MIMO (Multiple-Input Multiple-Output, multiple input multiple output) radar was proposed in 2003, a large number of scholars have emerged to conduct in-depth research on its key technologies and related aspects. Compared with phased array, MIMO radar uses waveform diversity technology to form a wide beam with low gain in space, which can reduce the probability of radar being intercepted. Since target detection and parameter estimation depend on the output signal-to-clutter-noise ratio (SCNR), the design of MIMO radars to maximize the output SCNR has received much attention in recent years. The design of joint transmit and receive is mainly divided into two categories: one is to maximize the output SINR by jointly designing the transmit waveform and the receive filter. The other is to maximize the output SCNR by designing joint transmit and receive beamforming.
频控阵(Frenquency diverse array,FDA)技术作为一种最新雷达技术,其阵列因子是角度、时间和距离的函数;与相控阵波束不依赖距离参数特性不同,频控阵最主要的特点是阵列方向图具有距离依赖性,而且能够有效地控制其发射波束的距离指向。Frequency diverse array (FDA) technology is the latest radar technology, and its array factor is a function of angle, time and distance. Unlike phased array beams that do not depend on distance parameters, the most important feature of frequency array is The array pattern is range-dependent and can effectively control the range-direction of its transmit beam.
于是,将频控阵和MIMO技术应用到LPI雷达中,能够实现发射波束的信号能量在感兴趣的区域形成较小的能量辐射,同时通过展宽发射波束宽度降低其发射信号的峰值功率,从而为降低雷达被截获提供一种新的思路。Therefore, the application of frequency-controlled array and MIMO technology to LPI radar can realize that the signal energy of the transmit beam can form a small energy radiation in the area of interest, and at the same time reduce the peak power of the transmit signal by widening the transmit beam width. Reducing radar interception provides a new way of thinking.
发明内容SUMMARY OF THE INVENTION
本发明的目的是考虑杂波环境下PAPR和相似性的约束,提供了一种PAPR和相似性约束下低截获频控阵MIMO雷达系统的设计方法,该设计方法在降低雷达被截获概率的同时,可保证目标检测。The purpose of the present invention is to consider the constraints of PAPR and similarity under the clutter environment, and provide a design method of a low-interception frequency controlled array MIMO radar system under the constraints of PAPR and similarity, which reduces the probability of radar being intercepted while reducing the probability of radar being intercepted. , which guarantees target detection.
本发明思路为:The idea of the present invention is:
以MIMO雷达的发射能量辐射最小化和输出SCNR最大化为双目标优化,利用加权求和的方法,将双目标优化转化成带PAPR和相似性约束的多分式规划问题;接着利用循环迭代法,将优化问题转化成两个子优化问题:在发射波形固定时,利用MVDR方法(自适应波束形成法)求解接收滤波器;在接收滤波器固定时,利用ADMM法(交替方向乘子法)将优化问题转化成多个变量求解,并利用ASM(有效集合法)求解发射波形。Taking the minimization of the transmit energy radiation of the MIMO radar and the maximization of the output SCNR as the dual-objective optimization, the dual-objective optimization is transformed into a multi-fraction programming problem with PAPR and similarity constraints by using the weighted sum method. Then, using the loop iteration method, The optimization problem is transformed into two sub-optimization problems: when the transmit waveform is fixed, the MVDR method (adaptive beamforming method) is used to solve the receiving filter; when the receiving filter is fixed, the ADMM method (alternating direction multiplier method) is used to optimize the problem. The problem is transformed into a multivariate solution, and the emission waveform is solved using ASM (effective ensemble method).
本发明技术方案如下:The technical scheme of the present invention is as follows:
本发明提供的PAPR和相似性约束下低截获频控阵MIMO雷达系统的设计方法,包括:The design method of the low-intercept frequency controlled array MIMO radar system under the PAPR and similarity constraints provided by the present invention includes:
S0:构建优化问题初始化外循环迭代次数k=0,初始化内循环迭代次数n=0,随机初始化发射波形矩阵S,记为sm 0表示第m个发射天线对应的发射波形向量初始值,m=1,2,…Mt;s=vec(S);S0: Build an optimization problem Initialize the outer loop iteration number k=0, initialize the inner loop iteration number n=0, and randomly initialize the transmit waveform matrix S, denoted as s m 0 represents the initial value of the transmit waveform vector corresponding to the mth transmit antenna, m=1, 2, ... M t ; s=vec(S);
其中:ωp是第p个目标函数的加权,ωp∈[0,1],且满足 where: ω p is the weight of the p-th objective function, ω p ∈ [0,1], and satisfy
P(S)为发射信号的空间发射功率,SCNR(x,S)为接收端信号经接收滤波器后的输出信杂噪比;PAPR(s)表示PAPR约束,s0表示参考波形,σ和ξ表示控制参数;P(S) is the spatial transmit power of the transmitted signal, SCNR(x,S) is the output signal-to-noise ratio of the signal at the receiving end after passing through the receiving filter; PAPR(s) represents the PAPR constraint, s 0 represents the reference waveform, σ and ξ represents the control parameter;
S1:固定当前的发射波形矩阵,利用MVDR法求解优化问题,计算接收滤波器当前所计算的接收滤波器即第k次迭代下的接收滤波器,记为xk;S1: Fix the current transmit waveform matrix, use the MVDR method to solve the optimization problem, and calculate the receive filter The currently calculated receiving filter is the receiving filter under the k-th iteration, denoted as x k ;
其中:W1的定义为: 表示Mt×Mt的单位矩阵;v(r,θ)定义为:虚拟阵列的导向向量,b(θ)表示接收天线阵列的导向向量,a(r,θ)表示发射天线阵列的导向向量;where: W 1 is defined as: represents the identity matrix of M t ×M t ; v(r, θ) is defined as: the steering vector of the virtual array, b(θ) represents the steering vector of the receiving antenna array, a(r, θ) represents the steering vector of the transmitting antenna array;
Rcje的定义为:Rcje=Rc+Rj+Re,其中,Rc,Rj和Re分别为杂波协方差矩阵、干扰协方差矩阵和噪声协方差矩阵;The definition of R cje is: R cje =R c +R j +R e , where R c , R j and R e are the clutter covariance matrix, the interference covariance matrix and the noise covariance matrix, respectively;
在第k次外循环迭代下,执行步骤S2:Under the kth outer loop iteration, step S2 is executed:
S2:固定本次迭代下的接收滤波器xk,基于交替方向乘子法和有效集合法计算并更新发射波形向量s;S2: fix the receive filter x k under this iteration, calculate and update the transmit waveform vector s based on the alternating direction multiplier method and the effective set method;
已知当前的迭代值带上标n的参数表示在第n次内循环迭代开始时的参数值;本步骤进一步包括:Know the current iteration value The parameter with the superscript n represents the parameter value at the beginning of the nth inner loop iteration; this step further includes:
S201:更新辅助变量hr,本子步骤进一步包括:S201: Update the auxiliary variable h r , and this sub-step further includes:
S201a:构建实数形式的目标函数t1,r,t2,r,s0,r,sr,RA,r,Rcvx,r,Rvx,r,En,r分别表示t1,t2,s0,s,RA,Rcvx,Rvx,En的实数值形式;S201a: Construct objective function in real form t 1,r ,t 2,r ,s 0,r ,s r ,RA ,r ,R cvx,r ,R vx,r ,E n,r represent t 1 ,t 2 ,s 0 ,s, R A , R cvx , R vx , the real-valued form of E n ;
参数t1和t2定义为:其中,RA、Rcvx、Rvx分别定义为:Parameters t1 and t2 are defined as: Among them, R A , R cvx , and R vx are respectively defined as:
S201b:在ADMM框架下,通过引入变量z1,r,z2,r,ur,vr,将上述目标函数转化到增广拉格朗日函数ft,r(sr,hr,t1,r,t2,r,z1,r,z2,r,ur,vr),从而获得目标函数:S201b: Under the ADMM framework, by introducing variables z 1,r ,z 2,r ,ur r ,v r , transform the above objective function into the augmented Lagrangian function f t,r (s r ,h r , t 1,r ,t 2,r ,z 1,r ,z 2,r ,ur r ,v r ) to obtain the objective function:
其中,ρ1,ρ2,ρ3,ρ4均为惩罚参数,且均大于0;RAt定义为:RAt=RA-t1/MtEt;Rxt定义为:Rxt=Rcvx-t2Rvx;RAt,r、Rxt,r分别表示RAt、Rxt的实数值形式;Among them, ρ 1 , ρ 2 , ρ 3 , ρ 4 are all penalty parameters, and all are greater than 0; R At is defined as: R At = RA -t 1 /M t E t ; R xt is defined as: R xt = R cvx -t 2 R vx ; R At,r and R xt,r represent the real-valued forms of R At and R xt , respectively;
S201c:将S201b中的目标函数构造成标准ASM形式:利用有效集合法求解hr,本次求解得到的hr记为 S201c: Construct the objective function in S201b into standard ASM form: Using the effective set method to solve hr , the hr obtained by this solution is recorded as
其中,Q,p,αi,bi均为辅助变量,定义如下:Among them, Q, p, α i , b i are auxiliary variables, which are defined as follows:
S202:已知迭代值将ft,r(sr,hr,t1,r,t2,r,z1,r,z2,r,ur,vr)转换为如下目标函数:S202: Known iteration value Transform f t,r (s r ,h r ,t 1,r ,t 2,r , z 1,r ,z 2,r ,ur ,v r ) into the following objective function:
将该目标函数构造成标准ASM形式,并利用有效集合法求解sr,本次求解得到的sr记为 Construct the objective function into a standard ASM form, and use the effective set method to solve s r . The s r obtained by this solution is recorded as
S203:已知迭代值将ft,r(sr,hr,t1,r,t2,r,z1,r,z2,r,ur,vr)转换为如下目标函数:S203: Known iteration value Transform f t,r (s r ,h r ,t 1,r ,t 2,r , z 1,r ,z 2,r ,ur ,v r ) into the following objective function:
令求解t1,r和t2,r,本次求解得到的t1,r和t2,r记为和 make Solve for t 1,r and t 2,r , the t 1,r and t 2,r obtained by this solution are recorded as and
S204:已知迭代值利用如下公式求解{z1,r,z2,r,ur,vr},本次求解得到的求解{z1,r,z2,r,ur,vr}记为 S204: Known iteration value Use the following formula to solve {z 1,r ,z 2,r ,ur r ,v r }, and the solution {z 1,r ,z 2,r ,ur r ,v r } obtained this time is denoted as
S205:令n=n+1,重复迭代S201~S204,直至迭代次数达到预设的最大内循环迭代次数,输出最后的sr,再执行步骤S3;;S205: set n=n+1, repeat the iterations S201-S204 until the number of iterations reaches the preset maximum number of iterations of the inner loop, output the last s r , and then perform step S3;
S3:令k=k+1,重复步骤S1~S2,直至迭代次数达到预设的最大外循环迭代次数或|SINR(k+1)-SINR(k)|/SINR(k)<ε,其中,ε>0。S3: Let k=k+1, and repeat steps S1-S2 until the number of iterations reaches the preset maximum number of outer loop iterations or |SINR (k+1) -SINR (k) |/SINR (k) <ε, where , ε>0.
进一步的,空间发射功率P(S)定义为:Further, the space transmit power P(S) is defined as:
其中,其是发射阵列的导向向量;表示相位差,in, is the steering vector of the transmit array; represents the phase difference,
c表示光速,dt表示发射阵列的阵元间隔。 c represents the speed of light, and d t represents the element spacing of the emission array.
进一步的,PAPR约束定义为:Further, the PAPR constraint is defined as:
其中,L表示干扰信号数量。Among them, L represents the number of interfering signals.
进一步的,杂波协方差矩阵 Further, the clutter covariance matrix
干扰协方差矩阵 Interference covariance matrix
噪声的协方差矩阵 covariance matrix of noise
其中:in:
Q表示杂波散射体数量,q表示第q个杂波散射体;Q represents the number of clutter scatterers, and q represents the qth clutter scatterer;
为了与目标的距离和角度区别,分别用rc,q和θc,q表示第q个杂波处的距离和角度,表示第q个杂波的协方差;In order to distinguish the distance and angle from the target, rc ,q and θc ,q are used to represent the distance and angle at the qth clutter, respectively, represents the covariance of the qth clutter;
L表示来自不同方向的干扰信号数量,l表示第l个干扰信号;也为了与目标的角度区别,θj,l表示第l个干扰处的角度;表示第l个干扰信号的协方差;IK表示K×K的单位矩阵;b(θj,l)表示第l个干扰信号在接收天线阵列上的导向向量;L represents the number of interference signals from different directions, and l represents the l-th interference signal; also in order to distinguish the angle from the target, θ j,l represents the angle of the l-th interference; Represents the covariance of the l-th interference signal; I K represents the K×K identity matrix; b(θ j,l ) represents the steering vector of the l-th interference signal on the receiving antenna array;
表示噪声的协方差;表示MrK×MrK阶的单位矩阵。 represents the covariance of noise; represents an identity matrix of order Mr K × Mr K.
进一步的,信干噪比的计算公式为: Further, the calculation formula of the signal-to-interference-noise ratio is:
本发明具有如下优点和有益效果:The present invention has the following advantages and beneficial effects:
本发明利用ADMM方法,结合频控阵技术,以MIMO雷达的发射能量辐射最小化和目标检测最大化为双优化目标,在考虑杂波、干扰和噪声环境以及发射波形满足PAPR和相似性下条件,将优化问题构造成多比例分式规划问题,利用循环迭代法、ADMM和ASM联合优化发射信号。本发明通过设计发射信号在目标区域上形成零陷,降低了雷达被截获概率的同时实现了目标检测。The invention uses the ADMM method, combined with the frequency-controlled array technology, takes the MIMO radar's transmission energy radiation minimization and target detection maximization as dual optimization objectives, and considers the clutter, interference and noise environment and the transmission waveform meets the conditions of PAPR and similarity. , the optimization problem is constructed as a multi-scale fractional programming problem, and the transmitted signal is jointly optimized by the loop iteration method, ADMM and ASM. The invention realizes the target detection while reducing the probability of radar being intercepted by designing the transmitting signal to form a null on the target area.
附图说明Description of drawings
图1为仿真试验中不同PAPR和不同相似性约束下目标函数与迭代次数的比较,其中,图(a)为不同PAPR下目标函数与迭代次数的比较,图(b)为不同相似性约束下目标函数与迭代次数的比较;Figure 1 shows the comparison between the objective function and the number of iterations under different PAPRs and different similarity constraints in the simulation test. Figure (a) is the comparison of the objective function and the number of iterations under different PAPRs, and Figure (b) is under different similarity constraints. Comparison of objective function and number of iterations;
图2为仿真试验中不同PAPR和不同相似性约束下的发射方向图,其中,图(a)为角度维的发射方向图,图(b)为距离维的发射方向图;Fig. 2 is the emission pattern under different PAPR and different similarity constraints in the simulation test, wherein, Fig. (a) is the emission pattern in the angle dimension, and Fig. (b) is the emission pattern in the distance dimension;
图3为仿真试验中不同PAPR和不同相似性约束下的接收方向图,其中,图(a)为角度维的发射方向图,图(b)为距离维的发射方向图;Fig. 3 is the receiving pattern under different PAPR and different similarity constraints in the simulation test, wherein, Fig. (a) is the transmitting pattern in the angle dimension, and Fig. (b) is the transmitting pattern in the distance dimension;
图4为仿真试验中不同PAPR和不同相似性约束下发射波形在不同位置的接收方向图,其中,图(a)为25m处角度维的接收方向图,图(b)为75m处角度维的接收方向图,图(c)为40°处距离维的接收方向图。Figure 4 is the receiving pattern of the transmitted waveform at different positions under different PAPR and different similarity constraints in the simulation test, among which, picture (a) is the receiving pattern in the angle dimension at 25m, and picture (b) is the angle dimension at 75m. The receiving pattern, Figure (c) is the receiving pattern of the distance dimension at 40°.
具体实施方式Detailed ways
下面将对本发明实施所基于的相关理论及具体的实施过程进行详细说明,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。The relevant theories and specific implementation processes on which the implementation of the present invention is based will be described in detail below, so that the advantages and features of the present invention can be more easily understood by those skilled in the art, and the protection scope of the present invention can be more clearly defined. define.
(一)信号模型构建(1) Construction of signal model
考虑窄带频控阵MIMO雷达系统的模型,其阵列由Mt个发射天线和Mr个接收天线构成,设每个天线上发射的不同信号为si(l),i=1,2,…,Mt,l=1,2,…,L,其中L为采样数。Mt个发射天线上采样L个点的发射波形矩阵为S=[s(1),s(2),…,s(L)]T,其中(·)T表示转置运算,令其向量形式为s=vec(S)。设第m个天线上的载波频率fm=f0+(m-1)Δf,f0是第1个阵元的载频频率,Δf是频率增量,假设f0<<Δf,K≤Mt。Consider the model of a narrowband frequency-controlled array MIMO radar system. The array is composed of M t transmitting antennas and M r receiving antennas. Let the different signals transmitted on each antenna be s i (l), i = 1, 2, ... ,M t ,l=1,2,...,L, where L is the number of samples. The transmit waveform matrix of sampling L points on M t transmit antennas is S=[s(1),s(2),...,s(L)] T , where (·) T represents the transposition operation, let its vector The form is s=vec(S). Let the carrier frequency on the mth antenna f m =f 0 +(m-1)Δf, f 0 is the carrier frequency of the first array element, Δf is the frequency increment, assuming f 0 <<Δf, K≤ Mt.
考虑在远场条件下,位于角度θ、相对于发射阵列第1个阵元距离r处的接收信号为:Considering the far-field condition, the received signal at the angle θ and the distance r relative to the first element of the transmitting array is:
aT(r,θ)S (1)a T (r,θ)S (1)
其中,是发射阵列的导向向量,其中,可表示为:in, is the steering vector of the transmit array, where, can be expressed as:
式(2)中,c表示光速,dt表示发射阵列的阵元间隔。In formula (2), c represents the speed of light, and d t represents the element spacing of the transmitting array.
暂不考虑散射体的多普勒转移,只是对静止目标而言,则发射信号经目标散射反射,在接收端通过下变频和匹配滤波后,接收信号Ys可表示为:The Doppler transfer of the scatterer is not considered for now, but for a stationary target, the transmitted signal is scattered and reflected by the target, and after down-conversion and matched filtering at the receiving end, the received signal Y s can be expressed as:
Ys=β(r,θ)b(θ)aT(r,θ)S (3)Y s =β(r,θ)b(θ)a T (r,θ)S (3)
式(3)中:In formula (3):
(·)H表示共轭转置;( ) H represents the conjugate transpose;
β(r,θ)表示位于角度θ、相对于发射阵列第1个阵元距离r处的目标散射体幅度;β(r, θ) represents the amplitude of the target scatterer at an angle θ and a distance r relative to the first element of the transmitting array;
b(θ)表示位于角度θ处的接收导向向量,本具体实施方式中接收天线采用相控阵列,故b(θ)定义为:b(θ) represents the receiving steering vector at the angle θ. In this specific embodiment, the receiving antenna adopts a phased array, so b(θ) is defined as:
式(4)中,dr是接收阵列的阵元间隔。In formula (4), d r is the element spacing of the receiving array.
堆积接收信号,将式(3)的矩阵形式转化成向量形式ys,即:The received signals are stacked, and the matrix form of equation (3) is converted into the vector form y s , namely:
式(5)中:In formula (5):
vec(·)表示将矩阵转变成向量的运算;vec( ) represents the operation of converting a matrix into a vector;
表示Kronecker积; represents the Kronecker product;
表示Mr×Mr阶的单位矩阵; represents an identity matrix of order M r ×M r ;
为发射波形矩阵S与单位矩阵的Kronecker积,即 is the transmit waveform matrix S and the identity matrix The Kronecker product of , i.e.
v(r,θ)定义为“虚拟阵列”的导向向量,即 v(r,θ) is defined as the steering vector of the "virtual array", i.e.
考虑频控阵MIMO雷达接收到的回波信号中,除了感兴趣的目标信号外,也包含了与目标信号相干的杂波信号以及干扰和噪声信号。假设存在Q个杂波散射体,则雷达接收到的杂波信号yc为:Considering that the echo signal received by the frequency-controlled array MIMO radar, in addition to the target signal of interest, also contains clutter signals, interference and noise signals coherent with the target signal. Assuming that there are Q clutter scatterers, the clutter signal y c received by the radar is:
式(6)中:In formula (6):
q表示第q个杂波散射体,q=1,2,…,Q;q represents the qth clutter scatterer, q=1, 2, ..., Q;
为了与目标的幅度、距离和角度区别,βc,q、rc,q、θc,q分别表示(rc,q,θc,q)处第q个杂波散射体的幅度、距离和角度;In order to distinguish it from the amplitude, distance and angle of the target, β c,q , rc ,q , θ c,q represent the amplitude and distance of the qth clutter scatterer at (rc ,q ,θ c,q ), respectively and angle;
(rc,q,θc,q)表示第q个杂波散射体的位置,该位置为:相对于发射阵列第1个阵元的角度为θc,q、距离为rc,q。(rc ,q ,θ c,q ) represents the position of the qth clutter scatterer, and the position is: the angle relative to the first element of the transmitting array is θ c,q , and the distance is rc ,q .
同时假设有L个来自不同方向的干扰信号,则接收到的干扰信号yj表示为:At the same time, assuming that there are L interference signals from different directions, the received interference signal y j is expressed as:
式(7)中:In formula (7):
βj,l和θj,l分别表示第l个干扰信号的幅度和角度信息,且βj,l服从均值为零,协方差为的循环对称高斯分布,E[·]表示取数学期望;β j,l and θ j,l represent the amplitude and angle information of the l-th interfering signal, respectively, and β j,l obeys the mean value of zero, and the covariance is The cyclic symmetric Gaussian distribution of , E[ ] represents the mathematical expectation;
dj,l表示包含干扰信号的随机向量,且服从零均值高斯分布。d j,l represents a random vector containing interfering signals and obeys a zero-mean Gaussian distribution.
于是,在存在杂波信号、干扰信号和噪声情况下,频控阵MIMO雷达接收端总的接收信号y为:Therefore, in the presence of clutter signals, interference signals and noise, the total received signal y at the receiving end of the frequency-controlled array MIMO radar is:
y=ys+yc+yj+e (8)y = y s + y c + y j + e (8)
式(8)中,e是均值为零的复高斯噪声。In Equation (8), e is complex Gaussian noise with zero mean.
(二)问题描述(2) Problem description
设接收滤波器x,则接收端信号经滤波器后的输出SCNR为:Assuming the receiving filter x, the output SCNR of the signal at the receiving end after the filter is:
式(9)中:In formula (9):
表示期望目标信号的协方差, represents the covariance of the desired target signal,
Rc,Rj和Re分别为杂波协方差矩阵、干扰协方差矩阵和噪声协方差矩阵,其分别表示如下:R c , R j and R e are the clutter covariance matrix, the interference covariance matrix and the noise covariance matrix, respectively, which are expressed as follows:
其中,表示杂波的协方差, in, represents the covariance of the clutter,
同时,结合公式aT(r,θ)S,将发射信号在目标(r,θ)处的空间发射功率P(S)定义为:At the same time, combined with the formula a T (r, θ) S, the space transmission power P(S) of the transmitted signal at the target (r, θ) is defined as:
式(10)中,||·||2表示矩阵2范数。In formula (10), ||·|| 2 represents the matrix 2 norm.
本发明考虑在PAPR和相似性的约束下,联合设计发射波形和接收滤波器,使得最小化目标处辐射功率的同时最大化输出SCNR,可获得如下优化问题:The present invention considers that under the constraints of PAPR and similarity, the transmit waveform and the receive filter are jointly designed, so that the radiated power at the target is minimized while the output SCNR is maximized, and the following optimization problem can be obtained:
ωp为经验值,通过仿真实验调整其取值,来获取最优值。ω p is an empirical value, and the optimal value is obtained by adjusting its value through simulation experiments.
其中,s0表示参考波形,σ和ξ表示控制参数,控制参数为经验值;第1个约束为PAPR约束,其定义为:Among them, s 0 represents the reference waveform, σ and ξ represent the control parameters, which are empirical values; the first constraint is the PAPR constraint, which is defined as:
其中,s(n)表示s的第n个采样点。Among them, s(n) represents the nth sampling point of s.
式(11)中的第2个约束表示相似性约束,其可表示为:The second constraint in equation (11) represents the similarity constraint, which can be expressed as:
(s-s0)HEn(s-s0)≤ξ2 (12b)(ss 0 ) H E n (ss 0 )≤ξ 2 (12b)
En(s-s0)为自定义函数,其定义如下: En (ss 0 ) is a custom function, which is defined as follows:
针对式(11),利用循环迭代法将优化问题转化成两个子优化问题:For Equation (11), the optimization problem is transformed into two sub-optimization problems using the loop iteration method:
在发射波形矩阵S固定时,利用MVDR方法(自适应波束形成法)求解接收滤波器x;在x固定时,利用ADMM法(交替方向乘子法)将优化问题转化成多个变量求解,并利用ASM(有效集合法)求解发射波形矩阵S。When the transmit waveform matrix S is fixed, the MVDR method (adaptive beamforming method) is used to solve the receiving filter x; when x is fixed, the ADMM method (alternating direction multiplier method) is used to convert the optimization problem into multiple variables to solve, and The transmit waveform matrix S is solved using ASM (effective set method).
下面将对两个子优化问题的求解过程做详细描述。The solution process of the two sub-optimization problems will be described in detail below.
第一部分,在发射波形矩阵S固定时,此时目标函数转化为:In the first part, when the emission waveform matrix S is fixed, the objective function is transformed into:
利用MVDR法求解该目标函数(13a),其最优化解为:The objective function (13a) is solved by the MVDR method, and its optimal solution is:
其中,为了表示方便,分别定义Rcje=Rc+Rj+Re。Among them, for convenience, we define R cje =R c +R j +R e .
第二部分,在接收滤波器x固定时,利用ADMM法求解S。In the second part, when the receiving filter x is fixed, the ADMM method is used to solve S.
为了有效求解式(11),定义两个参数t1和t2,其分别如下:In order to efficiently solve equation (11), two parameters t 1 and t 2 are defined, which are respectively as follows:
为了表示方便,分别定义RA、Rcvx、Rvx;For convenience, R A , R cvx , and R vx are defined respectively;
P表示交换矩阵,X是由接收滤波器构成的矩阵,即x=vec(X),A(r,θ)=a(r,θ)aH(r,θ)。P represents the switching matrix, and X is the matrix formed by the receiving filter, that is, x=vec(X), A(r, θ)=a(r, θ) a H (r, θ).
此时,目标函数式(11)可转化为:At this point, the objective function formula (11) can be transformed into:
为了求解式(15),先将式(15)转换成实数值形式:To solve Equation (15), first convert Equation (15) into real-valued form:
其中,t1,r,t2,r,s0,r,sr,RA,r,Rcvx,r,Rvx,r,En,r分别表示t1,t2,s0,s,RA,Rcvx,Rvx,En的实数值形式。Among them, t 1,r ,t 2,r ,s 0,r ,s r ,RA ,r ,R cvx,r ,R vx,r ,E n,r respectively represent t 1 ,t 2 ,s 0 , Real - valued form of s, RA , Rcvx , Rvx ,En.
需要说明的是,不仅仅是此处,本发明中但凡有下标*.r的参数X*.r,其含义均表示参数X*的实数值形式。It should be noted that, not only here, but in the present invention, any parameter X *.r with a subscript *.r means the real value form of the parameter X * .
为了获得式(16)的有效解,引入辅助变量hr,且令hr=sr,式(16)转化为:In order to obtain an efficient solution of Equation (16 ) , an auxiliary variable hr is introduced, and let hr =s r , Equation (16 ) is transformed into:
利用ADMM法的缩放形式解决式(17)。在ADMM的框架下,通过引入变量z1,r,z2,r,ur,vr,可以将等式约束转化到增广拉格朗日函数中,式(17)的增广拉格朗日函数如下:Equation (17) is solved using the scaled form of the ADMM method. In the framework of ADMM, by introducing variables z 1,r ,z 2,r ,ur ,v r , the equality constraints can be transformed into the augmented Lagrangian function, the augmented Lagrangian of Eq. (17) The Longian function is as follows:
式(18)中,ρ1,ρ2,ρ3,ρ4>0均为惩罚参数,惩罚参数均为经验值;为了表示方便,分别令:RAt,r=RA,r-t1,Rxt,r=Rcvx,r-t2Rvx,r。In formula (18), ρ 1 , ρ 2 , ρ 3 , ρ 4 >0 are all penalty parameters, and the penalty parameters are all empirical values; for convenience, let: R At,r =RA ,r -t 1 , R xt,r =R cvx,r -t 2 R vx,r .
于是,式(18)转换为:So, Equation (18) is transformed into:
基于ADMM方法,利用循环迭代法求解式(19),此循环迭代记为内循环,在第(n+1)次迭代时,求解过程由如下步骤组成:Based on the ADMM method, the formula (19) is solved by the loop iteration method. This loop iteration is recorded as the inner loop. At the (n+1)th iteration, the solution process consists of the following steps:
1)已知第n次迭代值求解忽略常数部分,优化问题转换为:1) Know the nth iteration value solve Ignoring the constant part, the optimization problem transforms into:
利用有效集合法(ASM)求解式(2),于是,式(17)写成标准的ASM的形式:Equation (2) is solved using the efficient set method (ASM), so Equation (17) is written in the standard ASM form:
式(21)中,c是常数,集合Φ={1,…,2MtL}。In formula (21), c is a constant, and the set Φ={1, . . . , 2M t L}.
为了表示方便,令Q,p,αi,bi分别为:For convenience, let Q, p, α i , and b i be respectively:
2)已知迭代值求解 2) Know the iteration value solve
将优化问题(18)转化为:Transform the optimization problem (18) into:
类似于的求解过程,利用有效集合法求解式(26)。similar to The solution process of , using the efficient set method to solve Equation (26).
3)已知迭代值的情况下,求解{t1,r,t2,r}。3) Know the iteration value In the case of , solve {t 1,r ,t 2,r }.
优化问题(18)转化为:The optimization problem (18) transforms into:
同理,使得可得:Similarly, so that Available:
4)已知迭代值求解{z1,r,z2,r,ur,vr}。4) Know the iteration value Solve for {z 1,r ,z 2,r ,u r ,v r }.
基于上述求解思路,下面给出PAPR和相似性约束下低截获FDA-MIMO雷达的设计方法的步骤:Based on the above solution ideas, the steps of the design method of low intercept FDA-MIMO radar under PAPR and similarity constraints are given below:
S0:本步骤为初始步骤,假设本发明设计方法的外迭代和内迭代次数分别用k和n表示,初始化外循环迭代次数k=0,初始化内循环迭代次数n=0,随机初始化发射波形矩阵S,记为sm 0表示第m个发射天线对应的发射波形波束向量初始值,m=1,2,…Mt。S0: This step is the initial step, assuming that the outer iteration and inner iteration times of the design method of the present invention are represented by k and n respectively, initialize the outer loop iteration number k=0, initialize the inner loop iteration number n=0, and randomly initialize the emission waveform matrix S, denoted as s m 0 represents the initial value of the transmit waveform beam vector corresponding to the mth transmit antenna, m=1, 2, ... M t .
S1:固定当前的发射波形矩阵,利用公式(13b)函数计算第k次迭代下的接收滤波器x,记为接收滤波器xk;S1: fix the current transmit waveform matrix, use the function of formula (13b) Calculate the receive filter x under the k-th iteration, denoted as receive filter x k ;
在第k次外循环迭代下执行步骤S2:Step S2 is executed under the kth outer loop iteration:
S2:固定本次迭代下的接收滤波器xk,更新Rcvx,并计算发射波束向量s。S2: Fix the receive filter x k in this iteration, update R cvx , and calculate the transmit beam vector s.
已知第n次迭代值本步骤进一步包括:Known the nth iteration value This step further includes:
S201:利用式(21),基于有效集法求解hr,将更新后的hr记为表示经第n次内循环迭代更新后的hr;S201: Use equation (21) to solve hr based on the effective set method, and record the updated hr as Represents h r updated by the nth inner loop iteration;
S202:利用式(26),基于有效集法求解sr,将更新后的sr记为表示经第n次内循环迭代更新后的sr;S202: Use equation (26) to solve s r based on the effective set method, and record the updated s r as represents the s r updated by the nth inner loop iteration;
S203:利用式(28)和(29),更新t1,r和t2,r,将更新后的t1,r和t2,r分别记为和表示经第n次内循环迭代更新后的t1,r和t2,r;S203: Using equations (28) and (29), update t 1,r and t 2,r , and record the updated t 1,r and t 2,r as and Represents t 1,r and t 2,r updated by the nth inner loop iteration;
S204:利用式(30)~(33),更新{z1,r,z2,r,ur,vr},将更新后的{z1,r,z2,r,ur,vr}记为表示经第n次内循环迭代更新后的{z1,r,z2,r,ur,vr};S204: Using equations (30) to (33), update {z 1,r ,z 2,r , ur ,v r }, and update the updated {z 1,r ,z 2,r ,ur r ,v r } is denoted as represents {z 1,r ,z 2,r ,ur r ,v r } after the nth inner loop iteration update;
S205:令n=n+1,重复迭代S201~S204,直至迭代次数达到预设的最大内循环迭代次数,输出最后的sr,再执行步骤S3;;S205: set n=n+1, repeat the iterations S201-S204 until the number of iterations reaches the preset maximum number of iterations of the inner loop, output the last s r , and then perform step S3;
S3:令k=k+1,重复步骤S1~S2,直至迭代次数达到预设的最大外循环迭代次数或|SCNR(k+1)-SCNR(k)|/SCNR(k)<ε,其中,ε>0。S3: Let k=k+1, repeat steps S1-S2 until the number of iterations reaches the preset maximum number of outer loop iterations or |SCNR (k+1) -SCNR (k) |/SCNR (k) <ε, where , ε>0.
(四)仿真实验(4) Simulation experiment
本仿真实验中,考虑频控阵MIMO雷达系统的发射天线和接收天线数分别为Mt=6,Mr=8,天线阵列按均匀线阵布置,且收发天线间隔为半波长。载频频率f0=1GHz,频率增量Δf=3MHz。每个天线上的发射能量Et=1。发射信号的序列长度L=16。参考信号选择正交LFM信号,其定义为:其中,i=1,2,…,Mt,l=1,2,…,L,于是参考信号s0=vec(S0)。In this simulation experiment, the number of transmitting and receiving antennas of the frequency-controlled array MIMO radar system is considered to be M t =6 and Mr = 8 respectively. The carrier frequency f 0 =1 GHz, and the frequency increment Δf = 3 MHz. Transmitted energy E t =1 on each antenna. The sequence length L=16 of the transmitted signal. The reference signal selects the quadrature LFM signal, which is defined as: where i=1,2,...,M t , l=1,2,...,L, so the reference signal s 0 =vec(S 0 ).
此外,假设目标信号位于(50m,10°),其功率为20dB;杂波信号位于(50m,-50°)、(25m,10°)和(75m,40°),且杂波功率均为30dB;干扰信号来自两个方向分别为-30°和60°,其功率均为35dB;高斯噪声的协方差为 In addition, it is assumed that the target signal is located at (50m, 10°) and its power is 20dB; the clutter signal is located at (50m, -50°), (25m, 10°) and (75m, 40°), and the clutter power is both 30dB; the interference signal comes from two directions of -30° and 60°, and its power is 35dB; the covariance of Gaussian noise is
考虑频控阵MIMO雷达系统的PAPR约束分别取σ=1,1.1,1.5,ξ′=0.5,1.0,1.2,2.0,(为了书写方便,定义ξ′=ξ/MtL,其中,ξ=0.5,1.0,1.2,2.0。)参见图1,给出了不同PAPR和不同相似性约束下目标函数与迭代次数的比较,由图1(a)可知,目标函数都随着PAPR增加而降低,且到迭代80次数以后,在σ=1.1和σ=1.5两种情况下,标函数重合。由图1(b)可知,目标函数都随着相似性约束的增加而降低。Considering the PAPR constraints of the frequency-controlled array MIMO radar system, take σ=1, 1.1, 1.5, ξ′=0.5, 1.0, 1.2, 2.0 respectively, (for the convenience of writing, define ξ′=ξ/M t L, where ξ= 0.5, 1.0, 1.2, 2.0.) Referring to Figure 1, the comparison between the objective function and the number of iterations under different PAPR and different similarity constraints is given. From Figure 1(a), it can be seen that the objective function decreases with the increase of PAPR, And after 80 iterations, the scalar functions coincide in the two cases of σ=1.1 and σ=1.5. It can be seen from Figure 1(b) that the objective functions all decrease with the increase of the similarity constraint.
图2显示了在不同PAPR和不同相似性约束下,设计的发射波形的发射方向图比较。由图2(a)和2(b)可知,不管是在角度维还是距离维,在相同的PAPR约束下,发射方向图在目标处的零陷随着相似性约束增加而增加;同样,在相同的相似性约束下,发射方向图在目标处的零陷随着PAPR约束增加而增加。Figure 2 shows the transmit pattern comparison of the designed transmit waveforms under different PAPRs and different similarity constraints. It can be seen from Figures 2(a) and 2(b) that no matter in the angle dimension or the distance dimension, under the same PAPR constraint, the nulling of the emission pattern at the target increases with the increase of the similarity constraint; similarly, in Under the same similarity constraint, the nulling of the emission pattern at the target increases as the PAPR constraint increases.
图3显示了在不同PAPR和不同相似性约束下,设计的发射波形在目标位置处的接收方向图比较。由图3(a)和3(b)可知,不管是在角度维还是距离维,在目标位置(10°和50m)处形成了很好地能量聚焦;在杂波位置(-50°和25m)和干扰位置(-30°和-60°)都形成了至少-89.5dB以上的零陷。Figure 3 shows the comparison of the receive patterns of the designed transmit waveforms at the target location under different PAPRs and different similarity constraints. It can be seen from Figure 3(a) and 3(b) that no matter in the angle dimension or the distance dimension, a good energy focus is formed at the target position (10° and 50m); at the clutter position (-50° and 25m) ) and the interference positions (-30° and -60°) both form a null over -89.5dB.
图4显示在不同PAPR和不同相似性约束下,设计的发射波形在位置25m、75m和40°处的接收方向图比较。由图4(a)可知,在25m处角度维的接收方向图中,接收方向图在杂波位置(10°)和干扰位置(-30°和-60°)形成了-59.5dB以上的零陷。同样,由图4(b)可知,在75m处角度维的接收方向图中,接收方向图在杂波位置(40°)和干扰位置(-30°和-60°)形成了-85.1dB以上的零陷。由图4(c)可知,在40°处距离维的接收方向图中,接收方向图在杂波位置(75m)形成了-63.5dB以上的零陷。Figure 4 shows the comparison of receive patterns of the designed transmit waveforms at
总之,发射方向图在目标位置处也明显具有更深的零陷。此外,在目标位置(10°和50m)处都形成了较好地能量聚焦,杂波位置(-50°、10°、40°和25m、75m)和干扰位置(-30°和-60°)都形成了较好的零陷。In summary, the launch pattern also has significantly deeper nulls at the target location. In addition, good energy focusing is formed at the target positions (10° and 50m), clutter positions (-50°, 10°, 40° and 25m, 75m) and interference positions (-30° and -60°) ) have formed a better null.
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above descriptions are only the embodiments of the present invention, and are not intended to limit the scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied to other related technologies Fields are similarly included in the scope of patent protection of the present invention.
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2019113304309 | 2019-12-20 | ||
CN201911330430 | 2019-12-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111352080A CN111352080A (en) | 2020-06-30 |
CN111352080B true CN111352080B (en) | 2021-04-27 |
Family
ID=71195108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010404534.6A Expired - Fee Related CN111352080B (en) | 2019-12-20 | 2020-05-13 | Design Method of Low Intercept Frequency Controlled Array MIMO Radar System Under PAPR and Similarity Constraints |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111352080B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112099015B (en) * | 2020-08-26 | 2024-02-09 | 浙江理工大学 | Adaptive waveform design method to improve millimeter wave radar detection and estimation performance |
CN112558021B (en) * | 2020-11-18 | 2022-03-04 | 中国人民解放军国防科技大学 | Waveform and Filter Design Method for Pulse Compression Radar System |
CN113780533B (en) * | 2021-09-13 | 2022-12-09 | 广东工业大学 | Adaptive beam forming method and system based on deep learning and ADMM |
CN114142892B (en) * | 2021-12-02 | 2023-01-20 | 广东电网有限责任公司 | Transmission method and device for reducing PAPR (peak-to-average power ratio) for high-speed power line carrier communication |
CN114154347B (en) * | 2021-12-09 | 2024-05-14 | 吉林大学 | Waveform design method of dual-function MIMO radar communication system based on ADMM |
CN114660564A (en) * | 2022-03-25 | 2022-06-24 | 重庆大学 | Spectrum sharing configuration method of radar communication spectrum coexistence system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105699945A (en) * | 2016-01-30 | 2016-06-22 | 湖北工业大学 | Waveform optimized design method for frequency controlled array MIMO radar system |
CN105717496A (en) * | 2016-01-30 | 2016-06-29 | 湖北工业大学 | Realization method of FDA (Frequency Diverse Array) MIMO (Multiple-Input Multiple-Output) radar system based on matrix completion |
CN107302516A (en) * | 2017-07-25 | 2017-10-27 | 西安电子科技大学 | The PAPR suppressing methods of improvement TR based on MIMO OFDM |
CN109991577A (en) * | 2019-04-15 | 2019-07-09 | 西安电子科技大学 | Design Method of Low Intercept Transmission Signal Based on FDA-OFDM |
WO2019166757A1 (en) * | 2018-02-28 | 2019-09-06 | The Secretary Of State For Defence | A radio or sonic wave detector, transmitter, receiver and method thereof |
-
2020
- 2020-05-13 CN CN202010404534.6A patent/CN111352080B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105699945A (en) * | 2016-01-30 | 2016-06-22 | 湖北工业大学 | Waveform optimized design method for frequency controlled array MIMO radar system |
CN105717496A (en) * | 2016-01-30 | 2016-06-29 | 湖北工业大学 | Realization method of FDA (Frequency Diverse Array) MIMO (Multiple-Input Multiple-Output) radar system based on matrix completion |
CN107302516A (en) * | 2017-07-25 | 2017-10-27 | 西安电子科技大学 | The PAPR suppressing methods of improvement TR based on MIMO OFDM |
WO2019166757A1 (en) * | 2018-02-28 | 2019-09-06 | The Secretary Of State For Defence | A radio or sonic wave detector, transmitter, receiver and method thereof |
CN109991577A (en) * | 2019-04-15 | 2019-07-09 | 西安电子科技大学 | Design Method of Low Intercept Transmission Signal Based on FDA-OFDM |
Non-Patent Citations (4)
Title |
---|
Space-Range-Doppler Focus-Based Low-observable Moving Target Detection Using Frequency Diverse Array MIMO Radar;XIAOLONG CHEN等;《IEEE Access》;20181231;全文 * |
Sparsity-aware transmit beamspace design for FDA-MIMO radar;Pengcheng Gong等;《Signal Processing》;20181231;全文 * |
基于发射方向图合成的低PAPR宽带MIMO雷达波形设计;巩朋成等;《中国科学:信息科学》;20130331;第43卷(第3期);全文 * |
频控阵MIMO雷达中基于稀疏迭代的多维信息联合估计方法;巩朋成等;《雷达学报》;20180430;第7卷(第2期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111352080A (en) | 2020-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111352080B (en) | Design Method of Low Intercept Frequency Controlled Array MIMO Radar System Under PAPR and Similarity Constraints | |
CN111352078B (en) | Design method of low intercept frequency controlled array MIMO radar system based on ADMM under clutter | |
CN106646394B (en) | A kind of launching beam matrix design method based on loop optimization in FDA MIMO radars | |
CN110133631B (en) | Fuzzy function-based frequency control array MIMO radar target positioning method | |
Gong et al. | Joint design of transmit waveform and receive beamforming for LPI FDA-MIMO radar | |
Chen et al. | Generalized MBI algorithm for designing sequence set and mismatched filter bank with ambiguity function constraints | |
Li et al. | Robust joint design of transmit waveform and receive filter for MIMO-STAP radar under target and clutter uncertainties | |
CN111352077B (en) | Design Method of Low Intercept Frequency Controlled Array MIMO Radar System Based on Multi-proportional Fractional Programming | |
CN111352079B (en) | Design method of low interception system based on frequency control array MIMO radar | |
CN103760527B (en) | Direction of Arrival Estimation Method for Coherent Sources in Monostatic MIMO Radar | |
Zuo et al. | Joint transmit–receive filter design with lower APSL and ICPL to suppress interference | |
CN116908786A (en) | A MIMO radar transmit waveform design method under similarity and variable mode constraints | |
Wu et al. | Waveform design for higher-resolution localization with MIMO radar | |
Zuo et al. | Joint design of transmit waveforms and receive filters for MIMO-STAP radar with two sequential constraints | |
Yu et al. | Transmitting strategy with high degrees of freedom for pulsed‐coherent FDA radar | |
Xiong et al. | Space time adaptive processing for airborne MIMO radar based on space time sampling matrix | |
CN108226878B (en) | MIMO radar transmitting waveform synthesis method based on coordinate descent algorithm | |
Tan et al. | Complementary waveform design for SAR range sidelobe suppression | |
Zhang et al. | Holographic radar: Optimal beamformer design for detection accuracy maximization | |
Song et al. | LPI radar target detection performance optimization based on joint cognitive frequency transmission and power allocation | |
Zhang et al. | Synthesis of directional modulation LFM radar waveform for sidelobe jamming suppression | |
Jiang et al. | Multiple‐input multiple‐output with frequency diverse array radar transmit beamforming design for low‐probability‐of‐intercept in cluttered environments | |
Ji et al. | Large-Scale Sparse Antenna Array Optimization for RCS Reduction with an AM-FCSN | |
Wang et al. | Space-time adaptive processing for clutter suppression in coprime array and coprime pulse repetition interval airborne radar | |
CN111142080B (en) | Rapid constant-modulus MIMO radar tracking waveform synthesis method aiming at interference suppression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210427 |
|
CF01 | Termination of patent right due to non-payment of annual fee |