CN111142044A - 一种具备短路故障能量吸收能力的直流线路故障二次检测装置 - Google Patents

一种具备短路故障能量吸收能力的直流线路故障二次检测装置 Download PDF

Info

Publication number
CN111142044A
CN111142044A CN202010080501.0A CN202010080501A CN111142044A CN 111142044 A CN111142044 A CN 111142044A CN 202010080501 A CN202010080501 A CN 202010080501A CN 111142044 A CN111142044 A CN 111142044A
Authority
CN
China
Prior art keywords
fault
diode group
direct current
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010080501.0A
Other languages
English (en)
Other versions
CN111142044B (zh
Inventor
梅军
葛锐
范光耀
王冰冰
朱鹏飞
严凌霄
张丙天
陈萧宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010080501.0A priority Critical patent/CN111142044B/zh
Publication of CN111142044A publication Critical patent/CN111142044A/zh
Application granted granted Critical
Publication of CN111142044B publication Critical patent/CN111142044B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本发明公开了一种具备短路故障能量吸收能力的直流线路故障二次检测装置,属于发电、变电或配电的技术领域。该装置由吸收电容、全控型开关管和二极管等构成,并联于正极线路和负极线路之间。该装置可以有效吸收模块化多电平换流器直流侧发生双极短路故障后限流电抗器和直流线路上的故障能量,减小直流断路器耗能支路需要吸收的能量;同时通过控制开关管开断可以对故障进行二次检测,实现故障性质的判别和故障的准确定位,避免直流系统重合于永久性故障,实现自适应重合闸。

Description

一种具备短路故障能量吸收能力的直流线路故障二次检测 装置
技术领域
本发明涉及柔性直流输电技术,具体涉及一种具备短路故障能量吸收能力的直流线路故障二次检测装置,属于测量、测试的技术领域。
背景技术
随着模块化多电平换流器(MMC,Modular Multilevel Converter)技术的发展,具有有功和无功独立控制、不存在换相失败、谐波水平低等特点的基于电压源换流器技术的高压直流输电(Voltage Source Converter Based High Voltage Direct Current,VSC-HVDC)逐渐取代了传统的基于晶闸管技术的高压直流输电(Line Commutated ConverterBased High Voltage Direct Current,LCC-HVDC)。随着输电电压等级的提高、输电容量的增大以及远距离输电需求的增加,柔性直流输电将越来越多地采用架空线输电的方式,这极大地增大了直流线路遭受故障的概率。
在发生直流侧短路故障时,基于MMC的柔性直流系统由于控制方式和自身拓扑结构的特殊性具有惯量小、故障电流上升速度极快、幅值极高的特点,往往在几个毫秒内故障电流就超过器件的耐受能力,因此必须依赖直流断路器快速隔离故障。直流断路器一方面需要承受因MMC迅速放电带来的巨大电压、电流应力,另一方面需要吸收极大的故障能量,故障能量包括储存于限流电抗器和系统等效电感中的磁场能量以及电源提供的能量,这对于直流断路器的耐压、耐流性能以及耗能支路的设计提出了挑战。同时,在故障隔离后,为了减小输电中断带来的损失,需要尽快重合直流断路器,恢复系统运行。由于直流系统的“低阻尼”特点,直流断路器一旦重合于永久性故障,将使得直流系统短时间内遭受故障二次冲击,对系统的安全和器件的使用寿命都将造成不利影响。因此,有必要对故障进行二次检测从而判断故障性质,以避免系统重合于永久性故障。
目前,现有的故障隔离后的重启/重合方法均通过直流断路器直接重合或改造直流断路器进行分布投入实现,一旦检测到故障仍然存在,再立刻断开直流断路器。现有方法只能尽可能地减小重合于永久性故障时带来的二次冲击,而无法避免二次冲击问题,且均需要改造直流断路器。而现有故障能量吸收方法多为串联型吸收方法和换流器侧吸收方法。串联型吸收方法通过混合式直流断路器串联金属氧化物避雷器(Metal OxideArrester,MOA)耗能支路或电阻型故障限流器实现。然而,MOA单体吸收能量十分有限;电阻型故障限流器需要配置复杂的水冷系统,正常工作时损耗较大,不适用于工程。换流器侧吸收方法需要对MMC的子模块进行改造,应用拓扑局限性较大。因此,研究一种实现故障二次检测且能够吸收短路故障能量的直流线路故障二次检测装置具有十分重要的意义。
发明内容
本发明的发明目的是针对上述背景技术的不足,提供了一种具备短路故障能量吸收能力的直流线路故障二次检测装置,不但能够降低对直流断路器耗能支路吸收容量的要求,而且能够缩短直流断路器承受极大电压应力的时间,在正常工作时没有增加任何损耗,吸收的故障能量可以用来对故障进行二次检测,实现故障性质的判别与故障定位功能,避免系统重合于永久性故障,解决了现有故障能量吸收方法吸收能量有限、正常工作损耗大、应用拓扑局限性大的技术问题。
本发明为实现上述发明目的采用如下技术方案:
本发明提供了一种具备短路故障能量吸收能力的直流线路故障二次检测装置,包括第一二极管组、第二二极管组、第三二极管组、第四二极管组、吸收电容、第一主动控制开关管、第二主动控制开关管、第一反并联二极管、第二反并联二极管。第一二极管组、第二二极管组、第三二极管组、第四二极管组均由多个二极管串联构成;第一主动控制开关管、第二主动控制开关管均为全控型电力电子器件IGBT;第一二极管组的阳极与负极直流线路相连接于C点;第一二极管组的阴极与第一主动控制开关管的集电极、第一反并联二极管的阴极、吸收电容的正极相连接于E点;第一主动控制开关管的发射极与第一反并联二极管的阳极、第三二极管组的阳极相连接;第三二极管组的阴极与正极直流线路相连接与B点;吸收电容的负极与第二主动控制开关管的发射极、第二反并联二极管的阳极、第二二极管组的阳极相连接于F点;第二主动控制开关管的集电极与第二反并联二极管的阴极、第四二极管组的阴极相连接;第四二极管组的阳极与负极直流线路相连接与D点;第二二极管组的阴极与正极直流线路相连接于A点。
第二二极管组、第三二极管组串联的二极管个数相同,设正极直流线路正常工作时电压为Udcp,单个二极管耐受的最大反向电压为U0,则串联的二极管个数N1应满足N1×U0>Udcp
第一二极管组、第四二极管组串联的二极管个数相同,设负极直流线路正常工作时电压为Udcn,单个二极管耐受的最大反向电压为U0,则串联的二极管个数N2应满足N2×U0>|Udcn|。
提出的一种具备短路故障能量吸收能力的直流线路故障二次检测装置,在直流系统正常工作、未发生直流故障时,第一主动控制开关管、第二主动控制开关管都设置为关断状态,吸收电容的电压为0。第一二极管组、第二二极管组、第三二极管组、第四二极管组承受反向电压,对于直流系统正常运行不产生任何影响,没有增加损耗。
所提出的一种具备短路故障能量吸收能力的直流线路故障二次检测装置的基本工作原理为:当直流线路发生双极短路故障后,该拓扑能够在直流断路器主断路支路开断后自动投入,进行故障能量吸收;随后通过主动控制能够利用吸收的故障能量进行故障二次检测。
当直流线路发生双极短路故障后,所提出的直流线路故障二次检测装置吸收短路故障能量的原理如下:直流线路发生双极短路故障后,直流断路器检测到故障并开始动作。当直流断路器中主断路支路关断时,流过限流电抗器的电流自动转移到本发明提出的故障二次检测装置进行续流,故障电流续流通路为:电流先后经过正极线路上的限流电抗器、正极直流线路、故障点、负极直流线路、负极直流线路上的限流电抗器、第一二极管组的阳极、第一二极管组的阴极、吸收电容的正极、吸收电容的负极、第二二极管组的阳极、第二二极管组的阴极、正极线路上的限流电抗器,当续流通路中电流衰减为零时,故障能量吸收完毕,电容电压由0充电至Uc,吸收电容吸收了限流电抗器中和直流线路中储存的残余故障能量,由此降低了对直流断路器耗能支路吸收容量的要求,并且缩短了直流断路器承受极大电压应力的时间。
故障能量吸收完毕后,利用吸收的故障能量进行故障二次检测的工作原理如下:续流通路中电流衰减为0时,电容电压由0充电至Uc,故障能量吸收完毕,控制第一主动控制开关管、第二主动控制开关管持续导通tm并记录两个主动控制开关管开始导通的时间t0,随后关断第一主动控制开关管、第二主动控制开关管。在正极直流线路初始端的电压检测点将检测到一个上升沿时刻为t0、幅值为电压Uc/2、持续时间为tm的一个正向电压行波信号,记录电压检测点处测量的反向电压行波,根据检测到反向电压行波的时间及极性定位故障点并判断故障性质。
若故障为永久性故障,则电压入射行波在故障点将发生折反射,经过一定的时间后,可在电压检测点检测到相应的反向电压行波,记录第一次检测到反向电压行波的时间t1。根据入射电压行波的入射时间t0、第一次检测到反向电压电压行波的时间t1以及行波的传播速度v,即可计算出反射点的具体位置;再对比入射电压行波和反向电压行波的极性,在反向电压行波和入射电压行波极性相反时进而判断出反向电压行波由故障点反射,即故障性质为永久性故障,同时实现了对故障点的准确定位。
若故障为暂时性故障,则电压入射行波将在直流线路的末端发生反射,经过固定的时间后,可在电压检测点检测到相应的反向电压行波,记录第一次检测到反向电压行波的时间t2。由于线路长度已知,可以计算出反向电压行波到达的理论时间,比较理论时间与实际检测到的时间是否匹配,即可判断故障点是否已经消失。根据线路末端阻抗固定的反射特性,比较反向电压行波与入射电压行波的极性,在反向电压行波和入射电压行波极性相同时实进一步判断出此反向电压行波由线路末端反射,故障点已经消失,故障为暂时性故障。
若判断出故障点已经消失、直流故障为暂时性故障后,即可重合直流断路器,系统重新运行,恢复输电。若判断出故障点仍然存在,可进行多次故障二次检测过程,在至少两次检测结果为永久性故障时确认是永久性故障,待故障处理完毕后,再重合直流断路器,系统重新运行,恢复输电。
本发明采用上述技术方案,具有以下有益效果:
(1)本发明提出的一种具备短路故障能量吸收能力的直流线路故障二次检测装置,能够吸收限流电抗器及直流线路的故障能量,不需要对现有直流断路器和MMC进行结构改造,应用方便。
(2)本发明提供了一种具备短路故障能量吸收能力的直流线路故障二次检测装置,不但能够降低对直流断路器耗能支路吸收容量的要求,而且能够缩短直流断路器承受极大电压应力的时间,在正常工作时没有增加任何损耗。
(3)本发明提供了一种具备短路故障能量吸收能力的直流线路故障二次检测装置,吸收的故障能量可以用来对故障进行二次检测,实现故障性质的判别与故障定位功能,进而实现了自适应重合闸功能,避免了系统重合于永久性故障。
附图说明
图1为本发明提出的具备短路故障能量吸收能力的直流线路故障二次检测装置拓扑图。
图2为故障电流续流通路的示意图。
图3为续流通路中电流衰减波形图。
图4为吸收电容的电压上升波形图。
图5为直流断路器耗能支路吸收的故障能量波形图。
图6为去除本发明提出的具备短路故障能量吸收能力的直流线路故障二次检测装置后的直流断路器耗能支路吸收的故障能量波形图。
图7为直流断路器两端承受的电压应力波形图。
图8为去除本发明提出的具备短路故障能量吸收能力的直流线路故障二次检测装置后的直流断路器两端承受的电压应力波形图。
图9为永久性故障下正向电压行波的波形图。
图10为永久性故障下反向电压行波的波形图。
图11为暂时性故障下正向电压行波的波形图。
图12为暂时性故障下反向电压行波的波形。
图中标号说明:T1~T4为第一至第四二极管组,T5、T6为第一、第二主动控制开关管,T7、T8为第一、第二反并联二极管,C为吸收电容,DCCB1和DCCB2为直流断路器,Lx1和Lx2为限流电抗器。
具体实施方式
下面结合附图对发明的技术方案进行详细说明。
如图1所示,本发明提出的一种具备短路故障能量吸收能力的直流线路故障二次检测装置,包括:基于半桥子模块的模块化多电平换流器、正极直流线路、负极直流线路、位于正极直流线路上的直流断路器DCCB1和限流电抗器Lx1、位于负极直流线路上的直流断路器DCCB2和限流电抗器Lx2、位于正负极线路之间的并联型故障二次检测装置。MMC采用伪双极结构,接地方式采用直流侧经钳位电阻接地。位于正负极线路之间的并联型故障二次检测装置包括第一二极管组T1、第二二极管组T2、第三二极管组T3、第四二极管组T4、吸收电容C、第一主动控制开关管T5、第二主动控制开关管T6、第一反并联二极管T7、第二反并联二极管T8。第一二极管组T1、第二二极管组T2、第三二极管组T3、第四二极管组T4均为多个二极管串联构成;第一主动控制开关管T5、第二主动控制开关管T6均为全控型电力电子器件IGBT。第一二极管组T1的阳极与负极直流线路相连接于C点(限流电抗器Lx2的电流流出端);第一二极管组T1的阴极与第一主动控制开关管T5的集电极、第一反并联二极管T7的阴极、吸收电容C的正极相连接于E点;第一主动控制开关管T5的发射极与第一反并联二极管T7的阳极、第三二极管组T3的阳极相连接;第三二极管组T3的阴极与正极直流线路相连接与B点(限流电抗器Lx1的电流流出端);吸收电容C的负极与第二主动控制开关管T6的发射极、第二反并联二极管T8的阳极、第二二极管组T2的阳极相连接于F点;第二主动控制开关管T6的集电极与第二反并联二极管T8的阴极、第四二极管组T4的阴极相连接;第四二极管组T4的阳极与负极直流线路相连接与D点(限流电抗器Lx2的电流流入端);第二二极管组T2的阴极与正极直流线路相连接于A点(限流电抗器Lx1的电流流入端)。
直流线路发生双极短路故障后,直流断路器检测到故障并开始动作。当直流断路器的主断路支路关断时,流过限流电抗器的电流自动转移到本发明提出的故障二次检测装置进行续流。如图2所示,故障电流续流通路为:电流先后经过正极线路上的限流电抗器、正极直流线路、故障点、负极直流线路、负极直流线路上的限流电抗器、第一二极管组的阳极、第一二极管组的阴极、吸收电容的正极、吸收电容的负极、第二二极管组的阳极、第二二极管组的阴极、正极线路上的限流电抗器。
运用PSCAD/EMTDC仿真实验平台对本发明提出的一种具备短路故障能量吸收能力的直流线路故障二次检测装置的短路故障能量吸收能力进行验证,仿真结果如图3至图8所示。1.8s发生双极短路故障,1.803s直流断路器主断路器支路开始关断,故障电流开始自动转移。
图3为续流通路中电流波形,图4为吸收电容C的电容电压波形。从图3和图4对比可以发现,1.803s故障电流开始减小,电容开始充电。1.864s时刻,流过限流电抗器的电流衰减为0,同时吸收电容两端电压达到最大值,即能量吸收完毕。
图5为直流断路器耗能支路吸收的故障能量,总共吸收了1273.98kJ的能量。图6为去除本发明提出的具备短路故障能量吸收能力的直流线路故障二次检测装置后直流断路器耗能支路吸收的故障能量,总共吸收了5360.94kJ的能量。可以发现增加本发明提出的具备短路故障能量吸收能力的直流线路故障二次检测装置后,直流断路器耗能支路所需吸收的故障能量有效减小了,降低了对直流断路器的耗能支路吸收容量的需求,降低了直流断路器的设计难度。
图7为直流断路器两端的电压应力变化情况,图8为去除本发明提出的具备短路故障能量吸收能力的直流线路故障二次检测装置后直流断路器两端的电压应力变化情况。可以发现去除本发明提出的具备短路故障能量吸收能力的直流线路故障二次检测装置后直流断路器两端承受极大电压应力的时间持续9.8ms,而增加本发明提出的具备短路故障能量吸收能力的直流线路故障二次检测装置后直流断路器两端承受极大电压应力的时间持续2.4ms,承受极大电压应力的时间得到极大的缩短,一定程度上提高了直流断路器的安全可靠性,延长了使用寿命。
对本发明提出的具备短路故障能量吸收能力的直流线路故障二次检测装置的故障二次检测功能进行验证,仿真结果如图9至图12所示。当故障能量吸收完毕后,经过一定的去游离时间,同时控制第一主动控制开关管T5、第二主动控制开关管T6导通,导通持续时间为0.1ms,随后关断第一主动控制开关管T5、第二主动控制开关管T6,记录第一主动控制开关管T4、第二主动控制开关管T5开始导通的时刻2.2s。
假设在线路100km处发生了永久性双极短路故障,正向电压行波和反向电压行波的波形分别如图9和图10所示。2.2s时发出正向电压行波,2.20067s时检测到第一个反向电压行波的波头,由于行波传播的波速接近于光速,可计算得到反射点位置为100.5km,与实际故障点的误差仅有500m。同时根据反向电压行波与正向电压行波极性相反,判断其为故障点的反射。
假设在线路100km处发生了暂时性双极短路故障,线路全长为300km,正向电压行波和反向电压行波的波形分别如图11和图12所示。2.2s时发出正向电压行波,2.202s时检测到第一个反向电压行波的波头,由于行波传播的波速接近于光速,可计算得到反射点位置为300km处,即线路末端处。根据反向电压行波与正向电压行波极性相同,判断其为线路末端边界处的反射。
通过上述详细说明可知,本发明提出的一种具备短路故障能量吸收能力的直流线路故障二次检测装置,能够有效吸收限流电抗器及线路上的故障能量,从而降低对直流断路器耗能支路吸收容量的要求,降低设计难度。同时,通过主动控制开关管的开断,还可以实现故障的二次检测,彻底避免直流系统重合于永久性故障而导致的二次冲击问题,实现自适应重合闸。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种具备短路故障能量吸收能力的直流线路故障二次检测装置,其特征在于,包括:第一二极管组、第二二极管组、第三二极管组、第四二极管组、吸收电容、第一主动控制开关管、第二主动控制开关管,
其中,第一二极管组的阳极与负极直流线路上限流电抗器的电流流出端相连接,第一二极管组的阴极与第一主动控制开关管的集电极、吸收电容的正极相连接,第一主动控制开关管的发射极与第三二极管组的阳极相连接,第三二极管组的阴极与正极直流线路上限流电抗器的电流流出端相连接,吸收电容的负极与第二主动控制开关管的发射极、第二二极管组的阳极相连接,第二主动控制开关管的集电极与第四二极管组的阴极相连接,第四二极管组的阳极与负极直流线路上限流电抗器的电流流入端相连接,第二二极管组的阴极与正极直流线路上限流电抗器的电流流入端相连接。
2.根据权利要求1所述的一种具备短路故障能量吸收能力的直流线路故障二次检测装置,其特征在于,所述第二二极管组和第三二极管组串联的二极管个数相同,第一二极管组和第四二极管组串联的二极管个数相同,根据第二二极管组耐受的最大反向电压超过正极直流线路正常工作时电压确定第二二极管组串联的二极管个数,根据第一二极管组耐受的最大反向电压超过负极直流线路正常工作时电压的绝对值确定第一二极管组串联的二极管个数。
3.根据权利要求1所述的一种具备短路故障能量吸收能力的直流线路故障二次检测装置,其特征在于,所述第一主动控制开关管的发射极和集电极之间接有第一反并联二极管,第二主动控制开关管的发射极和集电极之间接有第二反并联二极管。
4.利用权利要求1至3中任意一项所述直流线路故障二次检测装置进行故障二次检测的方法,其特征在于,初始化第一主动控制开关管和第二主动控制开关管为关断状态,检测吸收电容两极之间的电压,吸收电容两极的电压开始上升时表明直流线路发生故障,在吸收电容两极之间的电压稳定在其最大充电电压时,控制第一、第二主动控制开关管持续导通一段时间后关断,向正极直流线路初始端检测点施加一个上升沿时刻为两个主动控制开关管开始导通时间、幅值为吸收电容最大充电电压一半、持续时间为两个主动控制开关管持续导通时间的正向电压行波信号,记录正极直流线路初始端检测点检测到的反向电压行波信号,在第一次检测到的反向电压行波信号的极性和正向电压行波信号相同时判定反射点在线路末端且故障为暂时性故障,在第一次检测到的反向电压行波信号的极性和正向电压行波信号相反时判定反射点为故障点且故障为永久性故障。
5.根据权利要求4所述故障二次检测的方法,其特征在于,反射点的位置根据正向电压行波信号的入射时间、第一次检测到反向电压行波的时间及行波传播速度确定。
6.根据权利要求4所述故障二次检测的方法,其特征在于,在首次判定故障为永久性故障后,重复故障二次检测过程,在至少两次检测结果为永久性故障时最终确认故障为永久性故障。
CN202010080501.0A 2020-02-05 2020-02-05 一种具备短路故障能量吸收能力的直流线路故障二次检测装置 Active CN111142044B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010080501.0A CN111142044B (zh) 2020-02-05 2020-02-05 一种具备短路故障能量吸收能力的直流线路故障二次检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010080501.0A CN111142044B (zh) 2020-02-05 2020-02-05 一种具备短路故障能量吸收能力的直流线路故障二次检测装置

Publications (2)

Publication Number Publication Date
CN111142044A true CN111142044A (zh) 2020-05-12
CN111142044B CN111142044B (zh) 2022-03-18

Family

ID=70527140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010080501.0A Active CN111142044B (zh) 2020-02-05 2020-02-05 一种具备短路故障能量吸收能力的直流线路故障二次检测装置

Country Status (1)

Country Link
CN (1) CN111142044B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421585A (zh) * 2020-10-27 2021-02-26 国网江苏省电力有限公司扬州供电分公司 一种并联式故障能量再利用装置及直流线路双极短路故障检测方法
CN113315101A (zh) * 2021-05-28 2021-08-27 国网冀北综合能源服务有限公司 短路故障恢复装置及方法
CN114123748A (zh) * 2021-11-30 2022-03-01 华中科技大学 用于真双极连接直流变压器的故障穿越装置及控制方法
US20220224100A1 (en) * 2021-01-12 2022-07-14 Tianjin University Adaptive fault clearing scheme for mmc vsc-hvdc grid based on source-grid coordination
CN115480187A (zh) * 2022-08-22 2022-12-16 合肥工业大学 基于系统停机后三相电流波形特性的短路故障诊断方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800419A (zh) * 2009-09-07 2010-08-11 上海市电力公司超高压输变电公司 一种单相自适应重合闸及其实现方法
CN104393583A (zh) * 2014-11-27 2015-03-04 瓮福(集团)有限责任公司 一种短路故障限流装置
CN104796025A (zh) * 2015-05-05 2015-07-22 东南大学 一种模块化多电平换流器子模块拓扑结构
CN105445621A (zh) * 2015-12-22 2016-03-30 南京南瑞继保电气有限公司 一种柔性直流线路的故障检测装置及其充电方法、检测方法
CN105515353A (zh) * 2016-01-27 2016-04-20 东南大学 基于混合型模块化多电平变换器的四端口电力电子变压器
CN105675957A (zh) * 2016-01-22 2016-06-15 东南大学 一种基于状态监测的mmc模块电压测量和故障定位方法
CN106771947A (zh) * 2016-11-25 2017-05-31 全球能源互联网研究院 一种用于igbt浪涌电流的检测电路及其检测方法
CN107026577A (zh) * 2017-04-21 2017-08-08 清华大学 一种可切断直流短路故障电流的模块化多电平换流器
CN107069795A (zh) * 2017-04-27 2017-08-18 国家电网公司 一种多端mmc‑hvdc双极短路故障电流计算方法
CN108551161A (zh) * 2018-03-20 2018-09-18 西安交通大学 利用换流器主动注入和行波耦合的直流线路故障保护方法
CN108988303A (zh) * 2018-07-19 2018-12-11 西安交通大学 利用断路器注入脉冲信号的mmc-hvdc直流线路自适应重合闸方法
CN109713653A (zh) * 2018-12-24 2019-05-03 山东大学 混合式直流断路器的辅助电路、多端柔性直流电网故障性质识别方法及系统
CN110011282A (zh) * 2019-01-24 2019-07-12 华中科技大学 一种直流短路故障性质判断方法及直流系统重合闸方法
CN110021912A (zh) * 2019-04-28 2019-07-16 山东大学 基于混合式直流断路器的多端柔性直流电网自适应重合闸方法
CN110137923A (zh) * 2019-05-30 2019-08-16 华中科技大学 一种含直流断路器的柔性直流输电系统自适应重合闸方法
CN110456209A (zh) * 2019-08-16 2019-11-15 华中科技大学 一种直流短路故障性质判别方法及直流系统重合闸方法
CN111431389A (zh) * 2020-04-15 2020-07-17 中国南方电网有限责任公司超高压输电公司广州局 一种mmc功率模块快速放电电路
CN112421585A (zh) * 2020-10-27 2021-02-26 国网江苏省电力有限公司扬州供电分公司 一种并联式故障能量再利用装置及直流线路双极短路故障检测方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800419A (zh) * 2009-09-07 2010-08-11 上海市电力公司超高压输变电公司 一种单相自适应重合闸及其实现方法
CN104393583A (zh) * 2014-11-27 2015-03-04 瓮福(集团)有限责任公司 一种短路故障限流装置
CN104796025A (zh) * 2015-05-05 2015-07-22 东南大学 一种模块化多电平换流器子模块拓扑结构
CN105445621A (zh) * 2015-12-22 2016-03-30 南京南瑞继保电气有限公司 一种柔性直流线路的故障检测装置及其充电方法、检测方法
CN105675957A (zh) * 2016-01-22 2016-06-15 东南大学 一种基于状态监测的mmc模块电压测量和故障定位方法
CN105515353A (zh) * 2016-01-27 2016-04-20 东南大学 基于混合型模块化多电平变换器的四端口电力电子变压器
CN106771947A (zh) * 2016-11-25 2017-05-31 全球能源互联网研究院 一种用于igbt浪涌电流的检测电路及其检测方法
CN107026577A (zh) * 2017-04-21 2017-08-08 清华大学 一种可切断直流短路故障电流的模块化多电平换流器
CN107069795A (zh) * 2017-04-27 2017-08-18 国家电网公司 一种多端mmc‑hvdc双极短路故障电流计算方法
CN108551161A (zh) * 2018-03-20 2018-09-18 西安交通大学 利用换流器主动注入和行波耦合的直流线路故障保护方法
CN108988303A (zh) * 2018-07-19 2018-12-11 西安交通大学 利用断路器注入脉冲信号的mmc-hvdc直流线路自适应重合闸方法
CN109713653A (zh) * 2018-12-24 2019-05-03 山东大学 混合式直流断路器的辅助电路、多端柔性直流电网故障性质识别方法及系统
CN110011282A (zh) * 2019-01-24 2019-07-12 华中科技大学 一种直流短路故障性质判断方法及直流系统重合闸方法
CN110021912A (zh) * 2019-04-28 2019-07-16 山东大学 基于混合式直流断路器的多端柔性直流电网自适应重合闸方法
CN110137923A (zh) * 2019-05-30 2019-08-16 华中科技大学 一种含直流断路器的柔性直流输电系统自适应重合闸方法
CN110456209A (zh) * 2019-08-16 2019-11-15 华中科技大学 一种直流短路故障性质判别方法及直流系统重合闸方法
CN111431389A (zh) * 2020-04-15 2020-07-17 中国南方电网有限责任公司超高压输电公司广州局 一种mmc功率模块快速放电电路
CN112421585A (zh) * 2020-10-27 2021-02-26 国网江苏省电力有限公司扬州供电分公司 一种并联式故障能量再利用装置及直流线路双极短路故障检测方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ENRIC SÁNCHEZ-SÁNCHEZ ET AL: "Analysis of MMC Energy-Based Control Structures for VSC-HVDC Links", 《IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS》 *
JUN MEI ET AL: "An Adaptive Reclosing Scheme for MMC-HVDC Systems Based on Pulse Injection From Parallel Energy Absorption Module", 《IEEE TRANSACTIONS ON POWER DELIVERY》 *
LIU JIAN, LEI YU AND ZHANG ZHIHUA: "An Adaptive Reclosing Switch Based on Shunt Resistance", 《2019 4TH ASIA CONFERENCE ON POWER AND ELECTRICAL ENGINEERING》 *
QIANG SONG ET AL: "A Modular Multilevel Converter Integrated With DC Circuit Breaker", 《IEEE TRANSACTIONS ON POWER DELIVERY》 *
SAIZHAO YANG ET AL: "An Adaptive Reclosing Strategy for MMC-HVDC Systems With Hybrid DC Circuit Breakers", 《IEEE TRANSACTIONS ON POWER DELIVERY》 *
宋强等: "集成直流断路器功能的模块化多电平换流器", 《中国电机工程学报》 *
窦延辉: "基于MMC-HVDC系统运行状态评判的故障诊断方法研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 *
薛士敏等: "MMC-HVDC 故障暂态特性及自适应重合闸技术", 《电网技术》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421585A (zh) * 2020-10-27 2021-02-26 国网江苏省电力有限公司扬州供电分公司 一种并联式故障能量再利用装置及直流线路双极短路故障检测方法
US20220224100A1 (en) * 2021-01-12 2022-07-14 Tianjin University Adaptive fault clearing scheme for mmc vsc-hvdc grid based on source-grid coordination
US11444450B2 (en) * 2021-01-12 2022-09-13 Tianjin University Adaptive fault clearing scheme for MMC VSC-HVDC grid based on source-grid coordination
CN113315101A (zh) * 2021-05-28 2021-08-27 国网冀北综合能源服务有限公司 短路故障恢复装置及方法
CN113315101B (zh) * 2021-05-28 2024-03-12 国网冀北综合能源服务有限公司 短路故障恢复装置及方法
CN114123748A (zh) * 2021-11-30 2022-03-01 华中科技大学 用于真双极连接直流变压器的故障穿越装置及控制方法
CN114123748B (zh) * 2021-11-30 2023-10-20 华中科技大学 用于真双极连接直流变压器的故障穿越装置的控制方法
CN115480187A (zh) * 2022-08-22 2022-12-16 合肥工业大学 基于系统停机后三相电流波形特性的短路故障诊断方法
CN115480187B (zh) * 2022-08-22 2024-03-26 合肥工业大学 基于系统停机后三相电流波形特性的短路故障诊断方法

Also Published As

Publication number Publication date
CN111142044B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
CN111142044B (zh) 一种具备短路故障能量吸收能力的直流线路故障二次检测装置
CN109713653B (zh) 混合式直流断路器的辅助电路、多端柔性直流电网故障性质识别方法及系统
EP3131166B1 (en) Passive high-voltage direct-current circuit breaker and implementation method therefor
CN111463819A (zh) 一种能量吸收电路及能量吸收方法
Xiang et al. Research on fast solid state DC breaker based on a natural current zero-crossing point
CN109787187B (zh) 一种新型的双向直流短路电流阻断电路拓扑结构及其控制策略
CN107612015B (zh) 一种基于电阻耗能的高压直流系统换相失败抵御装置
CN107863760B (zh) 一种基于电容换流单元的限流式直流断路器及其控制方法
CN110943640B (zh) 一种t型逆变器fc桥臂冗余结构电力转换器拓扑结构
CN110768221A (zh) 一种架空柔直电网自适应重合闸方法
CN112311273B (zh) 一种基于谐振回路的混合式换流器拓扑结构及其控制方法
CN112421585A (zh) 一种并联式故障能量再利用装置及直流线路双极短路故障检测方法
Guo et al. An adaptive reclosing strategy for high-voltage DC grids with mechanical DC circuit breakers
CN116581720A (zh) 一种晶闸管型直流断路器及其控制方法
CN116613713A (zh) 一种基于晶闸管的混合式直流断路器及其使用方法
CN114050708B (zh) 一种换流器全控器件的控制方法、装置、设备和存储介质
CN112671024B (zh) 全桥晶闸管耗能子模块及辅助换相控制方法
CN201584906U (zh) 一种用于变压器中性点隔直装置中的晶闸管触发电路
CN111740389B (zh) 一种适用于重合闸的高分断性能直流断路器
CN103457504A (zh) 一种减少换流阀换相失败的电路
CN111245212A (zh) 一种抑制lcc-hvdc换相失败的晶闸管全桥耗能模块
CN115549164A (zh) 一种故障能量吸收及多种直流故障检测装置
CN113595125B (zh) 一种高压直流输电系统暂态过电压控制方法及装置
CN117991031A (zh) 一种直流线路故障检测的能量吸收电路及直流线路的故障定位方法
US20240014645A1 (en) Direct current circuit breaker device and control method therefor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant