CN111130633A - 一种基于NB-IoT技术的电力沟道内光缆故障定位系统及方法 - Google Patents
一种基于NB-IoT技术的电力沟道内光缆故障定位系统及方法 Download PDFInfo
- Publication number
- CN111130633A CN111130633A CN201911280051.3A CN201911280051A CN111130633A CN 111130633 A CN111130633 A CN 111130633A CN 201911280051 A CN201911280051 A CN 201911280051A CN 111130633 A CN111130633 A CN 111130633A
- Authority
- CN
- China
- Prior art keywords
- optical cable
- cable
- fault
- length
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 204
- 238000005516 engineering process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title description 7
- 238000012544 monitoring process Methods 0.000 claims abstract description 54
- 238000012423 maintenance Methods 0.000 claims abstract description 17
- 238000012360 testing method Methods 0.000 claims abstract description 17
- 238000001514 detection method Methods 0.000 claims description 34
- 238000004891 communication Methods 0.000 claims description 12
- 230000003993 interaction Effects 0.000 claims description 9
- 238000007726 management method Methods 0.000 claims description 9
- 230000008030 elimination Effects 0.000 claims description 6
- 238000003379 elimination reaction Methods 0.000 claims description 6
- 239000013307 optical fiber Substances 0.000 claims description 5
- 238000011084 recovery Methods 0.000 claims description 5
- 238000013024 troubleshooting Methods 0.000 claims description 4
- 230000000007 visual effect Effects 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/071—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
- Y04S10/52—Outage or fault management, e.g. fault detection or location
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
本发明涉及沟道内光缆故障定位领域,尤其涉及一种基于NB‑IoT技术的电力沟道内光缆故障定位系统,可以在沟道内出现光缆出现故障时不依靠光缆自身传输完成监测信息和故障信息的传递,可以通过远程光缆故障测试终端对光缆故障点和测试点的距离进行测定,并将测定的距离信息换算为具体竖井和沟道的地理位置信息显示在光缆运行状态监测模块的显示终端,及发送至远程移动监控端。运维人员在到达附近后,在带LED应答RFID标签的指引下实现在沟道内微弱光和无卫星定位环境下的光缆故障定位,从而提高运维人员的故障定位速度和运维效率。同时,本发明基于上述光缆故障定位系统还提出了结合光缆走径信息与实际地理位置的拟合算法,能够将光缆的故障距离信息转化为沟道内光缆的实际位置信息。
Description
技术领域
本发明涉及沟道内光缆故障定位领域,尤其涉及一种基于NB-IoT技术的电力沟道内光缆故障定位系统。
背景技术
光缆在通信领域广泛应用,为了保障光缆通信链路的畅通,需要在光缆发生故障时能够迅速发现、定位故障点位进行排除,以保障光缆通信系统的可靠性和安全性。沟道铺设是常见的一种光缆铺设方式,但是由于铺设环境的影响,线路走径复杂,同时沟道内的可视度差,给光缆的准确故障定位带来难度。现在的光缆故障定位方法用于沟道环境主要存在以下问题:
1.现有技术中,一般采用红光故障检测技术或光波时域反射(OTDR)技术进行光缆故障的定位。此方法需要工作人员现场检测,通过目测寻找出故障点,而沟道环境可视度差,在长距离大范围探测需要巨大的人力,同时不能监测到光缆的微小扰动,且不能对此发出预警,导致光缆的监控成本提高。即便是给出了光缆到测试设备的故障距离,也很难在沟道的可视环境下迅速的找到故障点位并予以排除。
2.现有技术中,也有通过通信数据链分析来进行光缆故障定位。这类检测方法存在的问题是在光缆出现故障后不能形成通信链路的回路,即在进行通信检测时,不但要能够发现故障线路,还要在光缆不能完成信息传递时,让故障端能够接收到检测端的测试数据,同时能够将测试要求回传给测试端。
3.对沟道内的光缆进行故障排除,不仅仅是要发现故障,也不是仅仅通过OTDR测出故障点到测试点的距离,还需要知道具体的地理位置,尤其是要将测试距离换算成光缆在井下沟道内的走径距离,再按照走径距离换算成实际的走径,最终通过走径确定电缆故障点的位置。而现有技术中基于OTDR测试光缆故障距离的方法,没有涉及或考虑到沟道内光缆走径的复杂情况,与定位故障的实际地理位置的误差较大。
发明内容
光缆在发生故障时,其表征为光缆所承载的业务数据交互出现异常,一般来说如果业务数据交互出现全面中断,或者同缆的多个业务出现中断可以确定光缆出现物理故障;如果是单业务中断则可能是设备的发光口出现或者收光口出现故障;如果是业务数据交互出现了偶发性的故障,则可能是光缆的中的活动连接器紧固不到位或者轻微污染,光缆接头盒连接不牢靠或收容盘压纤,光缆转向处曲率过小引发的故障。在对光缆进行故障定位时应该首先根据光缆承载业务数据的传递情况确定光缆故障的类型,在确定故障线路后,用OTDR技术对光缆测试,以确定光缆故障的性质和部位,并将故障类型信息以及定位信息传递给一线的运维人员,指示运维人员完成排故恢复。
本发明要解决的技术问题为:提供一种基于NB-IoT技术的电力沟道内光缆故障定位系统,可以在沟道内出现光缆出现故障时不依靠光缆自身传输完成监测信息和故障信息的传递,可以通过远程光缆故障测试终端对光缆故障点和测试点的距离进行测定,并将测定的距离信息换算为具体竖井和沟道的地理位置信息显示在光缆运行状态监测模块的显示终端,并发送至远程移动监控端。运维人员在到达附近后,在带LED应答RFID标签的指引下实现在沟道内微弱光和无卫星定位环境下的光缆故障定位,从而提高运维人员的故障定位速度和运维效率。
同时,本发明基于上述光缆故障定位系统还提出了结合光缆走径信息与实际地理位置的拟合算法,能够将光缆的故障距离信息转化为沟道内光缆的实际位置信息。
本发明技术方案为:一种基于NB-IoT技术的电力沟道内光缆故障定位系统,包括光缆运行状态监测模块(1)、光缆故障检测模块(2)、带LED应答RFID标签(3)、RFID读卡器(4)、NB-IoT基站(5)、NB-IoT终端(6)、NB-IoT核心网络(7)、远程移动监控端(8)、以及各设备和模块的供电模块(9),所述光缆运行状态监测模块(1)与光缆故障检测模块(2)和NB-IoT核心网络(7)连接,所述光缆运行状态监测模块(1)和光缆故障检测模块(2)设置于远程的监控中心,所述光缆运行状态监测模块(1)包括服务器集群(10)、显示终端模块(11),所述的光缆故障检测模块(2)为一个或者多个光波时域反射计(OTDR)(12),所述的带LED应答RFID标签(3)、RFID读卡器(4)、NB-IoT基站(5)、NB-IoT终端(6)设置于电力沟道内,带LED应答RFID标签(3)按照一定的间隔连接于光缆的表面、接头盒、终端盒、ODF架、竖井、特殊走径敷设点、入室点,RFID读卡器(4)与NB-IoT终端(6)连接,再通过NB-IoT基站(5)和NB-IoT核心网络(7)接收光缆运行状态监测模块(1)发出的读取RFID的信号,控制故障点附近光缆上带LED应答RFID标签(3)的LED进行状态转换,实现故障位置的可视化指引,所述远程移动监控端(8)与NB-IoT终端(6)连接,再通过NB-IoT基站(5)和NB-IoT核心网络(7)接收光缆运行状态监测模块(1)发出的指令信息,并上报排故和检测信息。
进一步地,所述的服务器集群(10)包括GIS服务器(13)、运维监控台账数据服务器(14)、电子标签管理服务器(15)、APP管理服务器(16)。
进一步地,所述远程移动监控端(8)为移动智能通信设备(17)、或平板电脑(18)、或笔记本电脑(19)。
进一步地,所述远程移动监控端(8)还包括RFID读取模块(20)和/或光波频域反射计(OFDR)模块(21),所述远程移动监控端(8)通过串行通信总线或WIFI与RFID读取模块(20)、光波频域反射计(OFDR)模块(21)相连。
进一步地,所述NB-IoT终端(6)为BC28(22),BC28(22)包括基带、射频电源管理、外围接口电路。
一种用于上述基于NB-IoT技术的电力沟道内光缆故障定位系统的拟合算法,结合光缆走径信息与实际地理位置,能够将光缆的故障距离信息转化为沟道内光缆的实际位置信息,包括以下实施步骤:
步骤1:建立光缆走径数据库,包括接头盒表示为第o条光缆的第i个接头盒;终端盒表示为第o条光缆的第j个终端盒;ODF架表示为第o条光缆的第k个ODF架;竖井表示为第o条光缆的第l个竖井;特殊走径敷设点表示为第o条光缆的第m个特殊走径敷设点;入室点表示为第o条光缆的第n个入室点;以及接头盒光缆长度表示为第o条光缆的第i个接头盒的光缆盘留长度;终端盒光缆长度表示为第o条光缆的第j个终端盒的光缆盘留长度;ODF架光缆长度表示为第o条光缆的第k个ODF架的光缆盘留长度;竖井光缆长度表示为第o条光缆的第l个竖井的光缆盘留长度;特殊走径敷设点光缆长度表示为第o条光缆的第m个特殊走径敷设点的光缆盘留长度;入室光缆长度表示为第o条光缆的第n个入室点光缆盘留长度信息。
步骤2:在光缆的走径上的每个接头盒、终端盒、ODF架、竖井、特殊走径敷设点、入室点上设置带LED应答RFID标签,同时,在每条光缆的上结合光波时域反射计(OTDR)的检测精度确定标签设置的间隔长度,并在间隔点上设置带LED应答RFID标签,根据设置的标签建立相应电子标签的数据库RFIDor,表示为第o条光缆的第r个带LED应答RFID标签的设置点,以及相邻两个电子标签标定点之间的长度数据库表示为第o条光缆的第r个带LED应答RFID标签与相邻第r+1个带LED应答RFID标签之间的长度;
步骤3:测定光缆接头盒终端盒入室点竖井的经纬坐标,建立实际地理位置与GIS关联的数据库,包括:接头盒<XX.XXXXXX°,YY.YYYYYY°>,终端盒<XX.XXXXXX°,YY.YYYYYY°>,入室点<XX.XXXXXX°,YY.YYYYYY°>,竖井<XX.XXXXXX°,YY.YYYYYY°>;
其中,为该业务所经过所有接头盒光缆的长度和,为该业务所经过所有终端盒光缆的长度和,为该业务所经过所有终端盒光缆的长度和,为该业务所经过所有ODF架光缆的长度和,为该业务所经过所有特殊走径敷设点光缆的长度和,为该业务所经过所有入室点光缆的长度和,为该业务所经过所有带LED应答RFID标签相邻之间的长度和,a为光缆自然弯曲率;
步骤7:对业务运行状态进行循环检查,如果业务数据交互出现全面中断,或者同缆的多个业务出现中断则转至步骤7;如果是单业务中断或业务数据交互出现了偶发性的故障,转至步骤13;
步骤8:用光波时域反射计(OTDR)测量故障光缆数值长度L1,计算测量实际长度L2,
L2=L1/(1+p) (2)
其中p为光纤在光缆中的绞缩率,p值随光缆结构的不同而有所变化;
步骤12:上报排除结果,并通知光缆故障检测模块进行恢复测试,并转到步骤7;
步骤13:控制该业务对应的接头盒终端盒处的带LED应答RFID标签灯亮或者闪烁,对对应的接头盒终端盒处的光缆头进行拆下、除尘处理,再用光波频域反射计(OFDR)进行检查,如是接头盒、终端盒、或连接设备故障,进行更换维修后,再插上光缆头,上报排除结果,并通知光缆故障检测模块进行恢复测试,并转到步骤7。
本发明的有益效果:本发明设计实现了一种基于NB-IoT技术的电力沟道内光缆故障定位系统,包括光缆运行状态监测模块、光缆故障检测模块、带LED应答RFID标签、RFID读卡器、NB-IoT基站、NB-IoT终端、NB-IoT核心网络、远程移动监控端、以及各设备和模块的供电模块。通过本系统可以连续、动态、实时的监控沟道内光缆承载的数据业务交互状态,并将采集到的异常状态信息分别传送给远端的光缆故障检测模块和远程移动监控端。可以在沟道内出现光缆出现故障时不依靠光缆自身传输完成监测信息和故障信息的传递,可以通过远程光缆故障测试终端对光缆故障点和测试点的距离进行测定,并将测定的距离信息换算为具体竖井和沟道的地理位置信息显示在光缆运行状态监测模块的显示终端,并发送至远程移动监控端。运维人员在到达附近后,在带LED应答RFID标签的指引下实现在沟道内微弱光和无卫星定位环境下的光缆故障定位,从而提高运维人员的故障定位速度和运维效率。同时,本发明基于上述光缆故障定位系统还提出了结合光缆走径信息与实际地理位置的拟合算法,能够将光缆的故障距离信息转化为沟道内光缆的实际位置信息。
附图说明
图1基于NB-IoT技术的电力沟道内光缆故障定位系统的连接图
图2光缆运行状态监测模块拓扑连接图
图3远程移动监控端连接图
图4光缆故障定位系统拟合算法流程图
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
根据本发明的一个实施方式,结合图1本发明的一种基于NB-IoT技术的电力沟道内光缆故障定位系统,包括光缆运行状态监测模块(1)、光缆故障检测模块(2)、带LED应答RFID标签(3)、RFID读卡器(4)、NB-IoT基站(5)、NB-IoT终端(6)、NB-IoT核心网络(7)、远程移动监控端(8)、以及各设备和模块的供电模块(9),所述光缆运行状态监测模块(1)与光缆故障检测模块(2)和NB-IoT核心网络(7)连接,所述光缆运行状态监测模块(1)和光缆故障检测模块(2)设置于远程的监控中心,所述光缆运行状态监测模块(1)包括服务器集群(10)、显示终端模块(11),所述的光缆故障检测模块(2)为一个或者多个光波时域反射计(OTDR)(12),所述的带LED应答RFID标签(3)、RFID读卡器(4)、NB-IoT基站(5)、NB-IoT终端(6)设置于电力沟道内,带LED应答RFID标签(3)按照一定的间隔连接于光缆的表面、接头盒、终端盒、ODF架、竖井、特殊走径敷设点、入室点,RFID读卡器(4)与NB-IoT终端(6)连接,再通过NB-IoT基站(5)和NB-IoT核心网络(7)接收光缆运行状态监测模块(1)发出的读取RFID的信号,控制故障点附近光缆上带LED应答RFID标签(3)的LED进行状态转换,实现故障位置的可视化指引,所述远程移动监控端(8)与NB-IoT终端(6)连接,再通过NB-IoT基站(5)和NB-IoT核心网络(7)接收光缆运行状态监测模块(1)发出的指令信息,并上报排故和检测信息。
根据本发明的一个实施方式,结合图2本发明所述的服务器集群(10)包括GIS服务器(13)、运维监控台账数据服务器(14)、电子标签管理服务器(15)、APP管理服务器(16)。
根据本发明的一个实施方式,结合图3本发明所述的所述远程移动监控端(8)为移动智能通信设备(17)、或平板电脑(18)、或笔记本电脑(19)。
根据本发明的一个实施方式,结合图3本发明所述远程移动监控端(8)还包括RFID读取模块(20)和/或光波频域反射计(OFDR)模块(21),所述远程移动监控端(8)通过串行通信总线或WIFI与RFID读取模块(20)、光波频域反射计(OFDR)模块(21)相连。
根据本发明的一个实施方式,所述的NB-IoT终端(5)为BC28(22),BC28(22)包括基带、射频电源管理、外围接口电路。
根据本发明的一个实施方式,结合图4所述的一种用于上述基于NB-IoT技术的电力沟道内光缆故障定位系统的拟合算法,包括以下实施步骤:
步骤1:建立光缆走径数据库,假设有两条光缆,每条光缆承载一个数据交换业务,两条光缆的走径数据见表1、2,表1、2中的长度单位为米,
表1
表2
其中,接头盒表示为第o条光缆的第i个接头盒;终端盒表示为第o条光缆的第j个终端盒;ODF架表示为第o条光缆的第k个ODF架;竖井表示为第o条光缆的第l个竖井;特殊走径敷设点表示为第o条光缆的第m个特殊走径敷设点;入室点表示为第o条光缆的第n个入室点;以及接头盒光缆长度表示为第o条光缆的第i个接头盒的光缆盘留长度;终端盒光缆长度表示为第o条光缆的第j个终端盒的光缆盘留长度;ODF架光缆长度表示为第o条光缆的第k个ODF架的光缆盘留长度;竖井光缆长度表示为第o条光缆的第l个竖井的光缆盘留长度;特殊走径敷设点光缆长度表示为第o条光缆的第m个特殊走径敷设点的光缆盘留长度;入室光缆长度表示为第o条光缆的第n个入室点光缆盘留长度信息;
步骤2:建立电子标签的数据库RFIDor,设置在电缆标签上的带LED应答RFID标签的距离间隔为≤25米,两条光缆的电子标签的数据相邻两个电子标签标定点之间的长度数据及见表3、4,表3、4中长度单位为米,
表3
表4
表5
表6
表7
表8
其中,为该业务所经过所有接头盒光缆的长度和,为该业务所经过所有终端盒光缆的长度和,为该业务所经过所有终端盒光缆的长度和,为该业务所经过所有ODF架光缆的长度和,为该业务所经过所有特殊走径敷设点光缆的长度和,为该业务所经过所有入室点光缆的长度和,为该业务所经过所有带LED应答RFID标签相邻之间的长度和,a为光缆自然弯曲率,取0.5%,根据上式并结合表1可以得到第1项业务在第1条光缆上每个电子标签到第1个接头盒的长度,见表9,根据上式并结合表2可以得到第2项业务在第2条光缆上每个电子标签到第1个接头盒的长度,见表10,表9,10的单位为米;
表9
表10
表11
表12
步骤7:对业务运行状态进行循环检查,检查到业务2数据交互出现全面中断,转至步骤8;
步骤8:用光波时域反射计(OTDR)测量故障光缆数值长度L1=300米,其中,p取0.01,计算测量实际长度L2,
L2=300/(1+0.01)=297.03米 (2)
则minRFIDor为RFID2,15;
步骤11:如果说明故障点从最近的竖井向终端盒方向,如果说明故障点从最近的竖井向接头盒方向,因为则故障点从竖井向接头盒方向,维人员根据远程移动监控端接受检测方向信息,并且在带LED应答RFID标签指引下找到并对故障点进行排除;
步骤12:上报排除结果,并通知光缆故障检测模块进行恢复测试,并转到步骤7;
以上所述为本发明较佳实施例,对于本领域的普通技术人员而言,根据本发明的引导,在不脱离本发明的原理与精神的情况下,对实施方式所进行的改变、修改、替换和变形仍落入本发明的保护范围之内。
Claims (6)
1.一种基于NB-IoT技术的电力沟道内光缆故障定位系统,包括光缆运行状态监测模块(1)、光缆故障检测模块(2)、带LED应答RFID标签(3)、RFID读卡器(4)、NB-IoT基站(5)、NB-IoT终端(6)、NB-IoT核心网络(7)、远程移动监控端(8)、以及各设备和模块的供电模块(9),其特征在于所述光缆运行状态监测模块(1)与光缆故障检测模块(2)和NB-IoT核心网络(7)连接,所述光缆运行状态监测模块(1)和光缆故障检测模块(2)设置于远程的监控中心,所述光缆运行状态监测模块(1)包括服务器集群(10)、显示终端模块(11),所述的光缆故障检测模块(2)为一个或者多个光波时域反射计(OTDR)(12),所述的带LED应答RFID标签(3)、RFID读卡器(4)、NB-IoT基站(5)、NB-IoT终端(6)设置于电力沟道内,带LED应答RFID标签(3)按照一定的间隔连接于光缆的表面、接头盒、终端盒、ODF架、竖井、特殊走径敷设点、入室点,RFID读卡器(4)与NB-IoT终端(6)连接,再通过NB-IoT基站(5)和NB-IoT核心网络(7)接收光缆运行状态监测模块(1)发出的读取RFID的信号,控制故障点附近光缆上带LED应答RFID标签(3)的LED进行状态转换,实现故障位置的可视化指引,所述远程移动监控端(8)与NB-IoT终端(6)连接,再通过NB-IoT基站(5)和NB-IoT核心网络(7)接收光缆运行状态监测模块(1)发出的指令信息,并上报排故和检测信息。
2.根据权利要求1的一种基于NB-IoT技术的电力沟道内光缆故障定位系统,其特征在于所述的服务器集群(10)包括GIS服务器(13)、运维监控台账数据服务器(14)、电子标签管理服务器(15)、APP管理服务器(16)。
3.根据权利要求1的一种基于NB-IoT技术的电力沟道内光缆故障定位系统,其特征在于所述远程移动监控端(8)为移动智能通信设备(17)、或平板电脑(18)、或笔记本电脑(19)。
4.根据权利要求1的一种基于NB-IoT技术的电力沟道内光缆故障定位系统,其特征在于所述远程移动监控端(8)还包括RFID读取模块(20)和/或光波频域反射计(OFDR)模块(21),所述远程移动监控端(8)通过串行通信总线或WIFI与RFID读取模块(20)、光波频域反射计(OFDR)模块(21)相连。
5.根据权利要求1的一种基于NB-IoT技术的电力沟道内光缆故障定位系统,其特征在于所述NB-IoT终端(6)为BC28(22),BC28(22)包括基带、射频电源管理、外围接口电路。
6.一种用于上述基于NB-IoT技术的电力沟道内光缆故障定位系统的拟合算法,结合光缆走径信息与实际地理位置,能够将光缆的故障距离信息转化为沟道内光缆的实际位置信息,其特征在于包括以下实施步骤:
步骤1:建立光缆走径数据库,包括接头盒表示为第o条光缆的第i个接头盒;终端盒表示为第o条光缆的第j个终端盒;ODF架表示为第o条光缆的第k个ODF架;竖井表示为第o条光缆的第l个竖井;特殊走径敷设点表示为第o条光缆的第m个特殊走径敷设点;入室点表示为第o条光缆的第n个入室点;以及接头盒光缆长度表示为第o条光缆的第i个接头盒的光缆盘留长度;终端盒光缆长度表示为第o条光缆的第j个终端盒的光缆盘留长度;ODF架光缆长度表示为第o条光缆的第k个ODF架的光缆盘留长度;竖井光缆长度表示为第o条光缆的第l个竖井的光缆盘留长度;特殊走径敷设点光缆长度表示为第o条光缆的第m个特殊走径敷设点的光缆盘留长度;入室光缆长度表示为第o条光缆的第n个入室点光缆盘留长度信息;
步骤2:在光缆的走径上的每个接头盒、终端盒、ODF架、竖井、特殊走径敷设点、入室点上设置带LED应答RFID标签,同时,在每条光缆的上结合光波时域反射计(OTDR)的检测精度确定标签设置的间隔长度,并在间隔点上设置带LED应答RFID标签,根据设置的标签建立相应电子标签的数据库RFIDor,表示为第o条光缆的第r个带LED应答RFID标签的设置点,以及相邻两个电子标签标定点之间的长度数据库表示为第o条光缆的第r个带LED应答RFID标签与相邻第r+1个带LED应答RFID标签之间的长度;
其中,为该业务所经过所有接头盒光缆的长度和,为该业务所经过所有终端盒光缆的长度和,为该业务所经过所有终端盒光缆的长度和,为该业务所经过所有ODF架光缆的长度和,为该业务所经过所有特殊走径敷设点光缆的长度和,为该业务所经过所有入室点光缆的长度和,为该业务所经过所有带LED应答RFID标签相邻之间的长度和,a为光缆自然弯曲率;
步骤7:对业务运行状态进行循环检查,如果业务数据交互出现全面中断,或者同缆的多个业务出现中断则转至步骤7;如果是单业务中断或业务数据交互出现了偶发性的故障,转至步骤13;
步骤8:用光波时域反射计(OTDR)测量故障光缆数值长度L1,计算测量实际长度L2,
L2=L1/(1+p) (2)
其中p为光纤在光缆中的绞缩率,p值随光缆结构的不同而有所变化;
步骤12:上报排除结果,并通知光缆故障检测模块进行恢复测试,并转到步骤7。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911280051.3A CN111130633B (zh) | 2019-12-07 | 2019-12-07 | 一种基于NB-IoT技术的电力沟道内光缆故障定位方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911280051.3A CN111130633B (zh) | 2019-12-07 | 2019-12-07 | 一种基于NB-IoT技术的电力沟道内光缆故障定位方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111130633A true CN111130633A (zh) | 2020-05-08 |
CN111130633B CN111130633B (zh) | 2024-06-21 |
Family
ID=70499988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911280051.3A Active CN111130633B (zh) | 2019-12-07 | 2019-12-07 | 一种基于NB-IoT技术的电力沟道内光缆故障定位方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111130633B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111988086A (zh) * | 2020-08-31 | 2020-11-24 | 沈阳易达讯通科技有限公司 | 一种固定资产跟踪系统及跟踪方法 |
CN112364218A (zh) * | 2020-12-11 | 2021-02-12 | 国网湖北省电力有限公司荆门供电公司 | 一种基于实物id的泛在接入电力光缆数据管理系统 |
CN112671459A (zh) * | 2020-12-03 | 2021-04-16 | 国网浙江省电力有限公司杭州供电公司 | 一种基于窄带物联网的地下光缆实时定位装置 |
CN112769475A (zh) * | 2021-02-05 | 2021-05-07 | 苏州宜达信通信工程有限公司 | 光缆故障点定位抢修方法、系统及存储介质 |
CN113872681A (zh) * | 2021-12-06 | 2021-12-31 | 高勘(广州)技术有限公司 | 一种移动终端的光缆监管方法、系统及存储介质 |
CN117768018A (zh) * | 2023-12-22 | 2024-03-26 | 北京交科公路勘察设计研究院有限公司 | 一种高速公路光缆数字化监测与智慧应用系统及方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105591691A (zh) * | 2016-02-29 | 2016-05-18 | 国网河南省电力公司南阳供电公司 | 基于gis的通信光缆在线监测系统及其故障点定位方法 |
CN106330306A (zh) * | 2016-11-24 | 2017-01-11 | 国网山西省电力公司忻州供电公司 | 基于gis的光缆故障点定位方法 |
CN106547669A (zh) * | 2015-09-21 | 2017-03-29 | 中兴通讯股份有限公司 | 一种指示端口的方法和装置 |
CN206673702U (zh) * | 2017-05-04 | 2017-11-24 | 中国科学院高能物理研究所 | 基于rfid的电源控制设备的监控系统 |
CN108234024A (zh) * | 2016-12-21 | 2018-06-29 | 中兴通讯股份有限公司 | Odn系统及其工作方法 |
CN108696313A (zh) * | 2018-04-28 | 2018-10-23 | 长春理工大学 | 一种光缆故障精确定位方法 |
CN108880667A (zh) * | 2018-05-28 | 2018-11-23 | 大唐岩滩水力发电有限责任公司 | 一种光缆故障点定位方法及装置 |
CN109409445A (zh) * | 2017-08-18 | 2019-03-01 | 中兴通讯股份有限公司 | 光分配网络中的载体管理方法、管理终端、设备及系统 |
CN211127810U (zh) * | 2019-12-07 | 2020-07-28 | 西安瑞宝电子科技有限公司 | 一种基于NB-IoT技术的电力沟道内光缆故障定位系统 |
-
2019
- 2019-12-07 CN CN201911280051.3A patent/CN111130633B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106547669A (zh) * | 2015-09-21 | 2017-03-29 | 中兴通讯股份有限公司 | 一种指示端口的方法和装置 |
CN105591691A (zh) * | 2016-02-29 | 2016-05-18 | 国网河南省电力公司南阳供电公司 | 基于gis的通信光缆在线监测系统及其故障点定位方法 |
CN106330306A (zh) * | 2016-11-24 | 2017-01-11 | 国网山西省电力公司忻州供电公司 | 基于gis的光缆故障点定位方法 |
CN108234024A (zh) * | 2016-12-21 | 2018-06-29 | 中兴通讯股份有限公司 | Odn系统及其工作方法 |
CN206673702U (zh) * | 2017-05-04 | 2017-11-24 | 中国科学院高能物理研究所 | 基于rfid的电源控制设备的监控系统 |
CN109409445A (zh) * | 2017-08-18 | 2019-03-01 | 中兴通讯股份有限公司 | 光分配网络中的载体管理方法、管理终端、设备及系统 |
CN108696313A (zh) * | 2018-04-28 | 2018-10-23 | 长春理工大学 | 一种光缆故障精确定位方法 |
CN108880667A (zh) * | 2018-05-28 | 2018-11-23 | 大唐岩滩水力发电有限责任公司 | 一种光缆故障点定位方法及装置 |
CN211127810U (zh) * | 2019-12-07 | 2020-07-28 | 西安瑞宝电子科技有限公司 | 一种基于NB-IoT技术的电力沟道内光缆故障定位系统 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111988086A (zh) * | 2020-08-31 | 2020-11-24 | 沈阳易达讯通科技有限公司 | 一种固定资产跟踪系统及跟踪方法 |
CN112671459A (zh) * | 2020-12-03 | 2021-04-16 | 国网浙江省电力有限公司杭州供电公司 | 一种基于窄带物联网的地下光缆实时定位装置 |
CN112364218A (zh) * | 2020-12-11 | 2021-02-12 | 国网湖北省电力有限公司荆门供电公司 | 一种基于实物id的泛在接入电力光缆数据管理系统 |
CN112364218B (zh) * | 2020-12-11 | 2024-03-19 | 国网湖北省电力有限公司荆门供电公司 | 一种基于实物id的泛在接入电力光缆数据管理系统 |
CN112769475A (zh) * | 2021-02-05 | 2021-05-07 | 苏州宜达信通信工程有限公司 | 光缆故障点定位抢修方法、系统及存储介质 |
CN113872681A (zh) * | 2021-12-06 | 2021-12-31 | 高勘(广州)技术有限公司 | 一种移动终端的光缆监管方法、系统及存储介质 |
CN117768018A (zh) * | 2023-12-22 | 2024-03-26 | 北京交科公路勘察设计研究院有限公司 | 一种高速公路光缆数字化监测与智慧应用系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111130633B (zh) | 2024-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111130633A (zh) | 一种基于NB-IoT技术的电力沟道内光缆故障定位系统及方法 | |
CN111082859B (zh) | 一种基于LoRa技术的电力沟道内光缆故障定位方法 | |
CN105591691B (zh) | 一种基于gis的通信光缆的故障点定位方法 | |
CN210724803U (zh) | 一种基于LoRa技术的电力沟道内光缆故障定位系统 | |
CN103441794B (zh) | 变电站光纤故障定位系统和方法 | |
CN108696313B (zh) | 一种光缆故障精确定位方法 | |
CN110708114B (zh) | 基于ai图像辨别的光缆线路故障定位及可视化方法及系统 | |
CN112637261A (zh) | 基于手持终端的设备检修信息化管理系统 | |
CN110460373A (zh) | 一种电力光缆故障快速定位方法和系统 | |
CN108921239A (zh) | 基于二维码的管道信息监控系统 | |
CN210431427U (zh) | 一种基于ai图像辨别的光缆线路故障定位及可视化系统 | |
CN114362814A (zh) | 一种基于gis地图光缆定位点的显示方法及监控系统 | |
CN211127810U (zh) | 一种基于NB-IoT技术的电力沟道内光缆故障定位系统 | |
KR101812999B1 (ko) | 모바일 점검자 단말기를 이용한 현장설비 점검시스템 | |
CN111049574A (zh) | 一种光缆中断位置快速定位的方法及系统 | |
CN109660307B (zh) | 便携式室分验收及巡检的方法和系统 | |
CN113556171A (zh) | 基于光缆路径的线路故障位置测定方法 | |
CN114189278A (zh) | 一种便携式多用途光缆运维工具 | |
CN204256103U (zh) | 一种基于移动互联网的输电线路行波故障定位的监测系统 | |
CN206096279U (zh) | 一种漏缆在线监测系统 | |
CN111934754A (zh) | 一种光缆在线监测告警管理调用系统 | |
CN109495166A (zh) | 一种基于通信数据链分析的光纤故障定位分析系统 | |
WO2022080592A1 (ko) | Ai기반 능동형 광선로 관리 시스템 | |
CN113224841A (zh) | 一种电表智能检测信息采集管控系统 | |
CN221487722U (zh) | 基于光时域反射仪的光缆普查定位系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |