CN111129512A - Nano carambola-shaped oxygen reduction electrocatalyst and preparation method and application thereof - Google Patents

Nano carambola-shaped oxygen reduction electrocatalyst and preparation method and application thereof Download PDF

Info

Publication number
CN111129512A
CN111129512A CN201911381089.XA CN201911381089A CN111129512A CN 111129512 A CN111129512 A CN 111129512A CN 201911381089 A CN201911381089 A CN 201911381089A CN 111129512 A CN111129512 A CN 111129512A
Authority
CN
China
Prior art keywords
carambola
oxygen reduction
nano
tetracarboxylporphyrin
carboxyphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911381089.XA
Other languages
Chinese (zh)
Other versions
CN111129512B (en
Inventor
宋玉江
韩洪仨
张云龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201911381089.XA priority Critical patent/CN111129512B/en
Publication of CN111129512A publication Critical patent/CN111129512A/en
Application granted granted Critical
Publication of CN111129512B publication Critical patent/CN111129512B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Catalysts (AREA)

Abstract

The invention discloses a nano carambola-shaped oxygen reduction electrocatalyst, a preparation method and application thereof, and belongs to the field of polymer membrane fuel cell catalysts. Zirconium chloride, benzoic acid, tetracarboxyl porphyrin or porphin in a specific ratio are mixed and reacted in an N, N dimethylformamide solution, and the obtained product is pyrolyzed at high temperature under inert gas to obtain the nanometer carambola-shaped oxygen reduction electrocatalyst. The method is simple to operate and easy to control, and the prepared nano carambola-shaped electrocatalyst has uniform and attractive micro-morphology and good oxygen reduction activity, and can be used for polymer membrane fuel cells.

Description

Nano carambola-shaped oxygen reduction electrocatalyst and preparation method and application thereof
Technical Field
The invention belongs to the field of polymer membrane fuel cell electrocatalysts, and relates to a nanometer carambola-shaped oxygen reduction electrocatalyst, and a preparation method and application thereof.
Background
Polymer membrane fuel cells have received much attention due to their advantages of high power density, environmental friendliness, and the like. Platinum-based electrocatalysts are one of the core materials of polymer membrane fuel cells, but platinum is expensive, which limits the wide application of polymer membrane fuel cells. One of the solutions is to develop a non-noble metal electrocatalyst with low cost, high efficiency and high stability to replace the platinum-based electrocatalyst in order to promote the commercialization process of the polymer membrane fuel cell.
Since Jasinski discovered from 1964 that cobalt phthalocyanine has oxygen reduction activity in a basic system (Nature,1964,201,1212-1213), many oxygen reduction electrocatalysts of macrocyclic compounds such as metallophthalocyanines and metalloporphyrins have been studied extensively. However, the non-noble metal electrocatalysts prepared by simply using macrocyclic compounds such as metal phthalocyanine or metalloporphyrin and the like as precursors have irregular microscopic appearance, small specific surface area and poor performance.
Disclosure of Invention
The invention aims to provide a preparation method and application of a nano carambola-shaped oxygen reduction electrocatalyst. The porphyrin material after pyrolysis has better performance as a catalyst in the current research. Zirconium chloride, benzoic acid, tetracarboxyl porphyrin or porphine in a specific ratio are mixed and reacted with an N, N dimethylformamide solution, and the obtained product is pyrolyzed at high temperature under inert gas to obtain the nanometer carambola-shaped oxygen reduction electrocatalyst. The method is simple to operate, the prepared catalyst has good consistency and beautiful appearance in microscopic morphology, and the specific surface area reaches 594m2Has excellent oxygen reduction activity and can be used for polymer membrane fuel cells. The electrocatalyst shows better oxygen reduction activity and stability.
The method is simple to operate and easy to control. The nano carambola-shaped oxygen reduction electrocatalyst has high specific surface area and high conductivity, porphyrin or porphin with oxygen reduction catalytic capability is coordinated with metal zirconium, and then the obtained reaction product is subjected to high-temperature heat treatment in inert gas, so that the finally prepared nano carambola-shaped electrocatalyst has good oxygen reduction comprehensive performance and can be used for the oxygen reduction side of a polymer membrane fuel cell.
In order to achieve the purpose, the technical scheme of the invention is as follows:
a preparation method of a nano carambola-shaped oxygen reduction electrocatalyst comprises the following steps:
uniformly dispersing zirconium chloride, benzoic acid, tetracarboxylporphyrin or tetracarboxylporphyrin and water in N, N Dimethylformamide (DMF), carrying out hydrothermal reaction, carrying out centrifugal separation on the obtained mixed solution, washing the obtained solid product with ethanol until the washed filtrate is colorless, drying, and carrying out heat treatment on the dried product to obtain the nanometer carambola-shaped oxygen reduction catalyst.
Wherein the concentration of the benzoic acid in the DMF is 45-150mg/ml, the concentration of the zirconium chloride in the DMF is 3-10mg/ml, and the concentration of the tetracarboxylporphyrin or the tetracarboxylporphyrin in the N, N-dimethylformamide is 3-10 mg/ml. The mass ratio of the benzoic acid to the tetracarboxyl porphyrin or the tetracarboxyl porphine to the zirconium chloride is 8-30: 0.8-1.2: 1, the volume of the water is 5-20% of the volume of the DMF.
Further, the hydrothermal reaction condition is that the reaction is carried out for 4 to 48 hours at a temperature of between 80 and 150 ℃.
Further, the heat treatment is performed under an argon or nitrogen atmosphere.
Further, the temperature of the heat treatment is 500-900 ℃, and the time is 0.5-10 h.
All of the above reaction conditions need to be satisfied simultaneously.
Further, the tetracarboxylporphyrin or tetracarboxylporphyrin comprises: one, two or more of 5,10,15, 20-tetra (4-carboxyphenyl) porphin, 5,10,15, 20-tetra (4-carboxyphenyl) ferriporphyrin, 5,10,15, 20-tetra (4-carboxyphenyl) cobalt porphyrin, 5,10,15, 20-tetra (4-carboxyphenyl) manganese porphyrin and 5,10,15, 20-tetra (4-carboxyphenyl) copper porphyrin.
The invention also provides the nano carambola-shaped oxygen reduction catalyst prepared by the preparation method, wherein the cross section of the nano carambola-shaped oxygen reduction catalyst is hexagonal, and the micro appearance of the nano carambola-shaped oxygen reduction catalyst is similar to that of a carambola (five corners). The transverse section diameter is 50nm-3 μm, and the longitudinal diameter is 100nm-10 μm.
The invention also provides the application of the nano carambola-shaped oxygen reduction catalyst electrocatalyst in a polymer membrane fuel cell. Particularly for use on the oxygen reduction side of a polymer membrane fuel cell.
Compared with the existing reports, the beneficial effects of the invention are as follows: the catalyst has large specific surface area, special and regular microstructure, good appearance, good consistency and excellent performance.
Drawings
FIG. 1 is a comparison of the microscopic morphology (SEM) of the nano carambola-like catalyst obtained in example 1 of the present invention with a fruit carambola photograph;
FIG. 2 is a graph showing the oxygen reduction polarization curve of the product obtained in example 1 of the present invention compared with the oxygen reduction curve of a currently commercially available 20% Pt/C catalyst;
FIG. 3 is a nitrogen adsorption and desorption curve of the specific surface area of the nano carambola catalyst.
Detailed Description
The invention is further described in the following with reference to the drawings and examples, which are provided only for the purpose of illustrating the invention more clearly, but the scope of the invention as claimed is not limited to the scope of the embodiments presented below.
Example 1
75mg of benzoic acid, 8.5mg of 5,10,15, 20-tetra (4-carboxyphenyl) cobalt porphyrin, 8.5mg of zirconium chloride and 0.15mL of water are dispersed in 1.5mL of DMF solution, the mixture is subjected to oil bath reaction at 120 ℃ for 4 hours, a product is centrifuged, the lower layer is left and washed by ethanol, the filtrate is washed to be colorless, the filtrate is dried at 65 ℃ to finally obtain solid powder, and the powder is subjected to heat treatment at 600 ℃ for 8 hours under the argon condition to obtain the final nanometer carambola-shaped oxygen reduction catalyst.
As shown in fig. 1, the scanning electron microscope image of the final nano carambola-shaped oxygen reduction catalyst is compared with the photo of the fruit carambola.
Fig. 2 shows the oxygen reduction polarization curve of the prepared nano carambola-shaped oxygen reduction catalyst.
And (3) testing conditions are as follows: the potential sweep test was carried out at a sweep rate of 10mV/s in 0.1M KOH saturated with oxygen at 25 ℃ and at a voltage of 0-1.2V (vsRhE), with an electrode rotation rate of 1600 r/min. The polarization curve shows that the non-noble metal electrocatalyst obtained in example 1 has better oxygen reduction catalytic activity.
Example 2
105mg of benzoic acid, 10mg of 5,10,15, 20-tetra (4-carboxyphenyl) ferriporphyrin, 12mg of zirconium chloride and 0.18mL of water are dispersed in 2mL of DMF solution, hydrothermal reaction is carried out in a reaction kettle at 120 ℃ for 48h, a product is centrifuged, a lower layer is left and washed by ethanol, the filtrate is washed to be colorless, drying is carried out at 65 ℃ to finally obtain solid powder, and the powder is subjected to heat treatment for 1h under the condition of 800 ℃ nitrogen to obtain the final nanometer carambola-shaped oxygen reduction catalyst.
Example 3
2000mg of benzoic acid, 120mg of 5,10,15, 20-tetra (4-carboxyphenyl) copper porphyrin, 100mg of zirconium chloride and 5mL of water are dispersed in 30mL of DMF solution, the mixture is subjected to oil bath reaction at 110 ℃ for 20 hours, a product is centrifuged, a lower layer is left and washed by ethanol, the filtrate is washed to be colorless, the filtrate is dried at 65 ℃ to obtain solid powder finally, and the powder is subjected to heat treatment at 800 ℃ for 5 hours under the condition of nitrogen, so that the final nanometer carambola-shaped oxygen reduction catalyst is obtained.
Example 4
Dispersing 500mg of benzoic acid, 15mg of 5,10,15, 20-tetra (4-carboxyphenyl) porphin, 20mg of 5,10,15, 20-tetra (4-carboxyphenyl) ferriporphyrin, 30mg of zirconium chloride and 0.4mL of water in 5mL of DMF solution, reacting in a hydrothermal reaction kettle at 130 ℃ for 10h, centrifuging a product, taking a lower layer, washing the lower layer with ethanol, washing the filtrate until the filtrate is colorless, drying at 65 ℃ to finally obtain solid powder, and performing heat treatment on the powder for 4h at 900 ℃ under the condition of argon gas to obtain the final nanometer carambola-shaped oxygen reduction catalyst.
Example 5
5800mg of benzoic acid, 200mg of 5,10,15, 20-tetra (4-carboxyphenyl) manganese porphyrin, 300mg of 5,10,15, 20-tetra (4-carboxyphenyl) cobalt porphyrin, 550mg of zirconium chloride and 7mL of water are dispersed in 50mL of DMF solution, oil bath reaction is carried out at 90 ℃ for 48h, the product is centrifuged, the lower layer is left and washed by ethanol, the filtrate is washed to be colorless and dried at 65 ℃ to finally obtain solid powder, and the powder is thermally treated for 3h under the condition of argon gas at 500 ℃ to obtain the final nanometer carambola-shaped oxygen reduction catalyst.

Claims (7)

1. A preparation method of a nano carambola-shaped oxygen reduction catalyst is characterized by comprising the following steps:
dispersing zirconium chloride, benzoic acid, tetracarboxylporphyrin or tetracarboxylporphyrin and water in N, N dimethylformamide, carrying out hydrothermal reaction, carrying out centrifugal separation on the obtained mixed solution, washing the obtained solid product with ethanol until the washed filtrate is colorless, drying, and carrying out heat treatment on the dried product to obtain the nano carambola-shaped oxygen reduction catalyst;
wherein, the concentration of the benzoic acid in the N, N-dimethylformamide is 45-150mg/mL, the concentration of the zirconium chloride in the N, N-dimethylformamide is 3-10mg/mL, and the concentration of the tetracarboxylporphyrin or the tetracarboxylporphyrin in the N, N-dimethylformamide is 3-10 mg/mL; the mass ratio of the benzoic acid to the tetracarboxyl porphyrin or the tetracarboxyl porphine to the zirconium chloride is 8-30: 0.8-1.2: 1; the volume of the water is 5-20% of the volume of the N, N-dimethylformamide.
2. The preparation method according to claim 1, wherein the hydrothermal reaction is carried out at 80-150 ℃ for 4-48 h.
3. The method according to claim 1, wherein the heat treatment is performed under an argon or nitrogen atmosphere.
4. The method as claimed in claim 1, wherein the heat treatment is carried out at a temperature of 500 ℃ and 900 ℃ for a time of 0.5-10 h.
5. The method of claim 1, wherein the tetracarboxylporphyrin or tetracarboxylporphyrin comprises: one, two or more of 5,10,15, 20-tetra (4-carboxyphenyl) porphin, 5,10,15, 20-tetra (4-carboxyphenyl) ferriporphyrin, 5,10,15, 20-tetra (4-carboxyphenyl) cobalt porphyrin, 5,10,15, 20-tetra (4-carboxyphenyl) manganese porphyrin and 5,10,15, 20-tetra (4-carboxyphenyl) copper porphyrin.
6. The nano carambola-shaped oxygen reduction catalyst prepared by the preparation method according to any one of claims 1 to 5, wherein the cross section of the nano carambola-shaped oxygen reduction catalyst is hexagonal, the transverse section diameter is 50nm to 3 μm, and the longitudinal diameter is 100nm to 10 μm.
7. The use of the nano carambola-like oxygen reduction catalyst of claim 6 in a polymer membrane fuel cell.
CN201911381089.XA 2019-12-27 2019-12-27 Nano carambola-shaped oxygen reduction electrocatalyst and preparation method and application thereof Active CN111129512B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911381089.XA CN111129512B (en) 2019-12-27 2019-12-27 Nano carambola-shaped oxygen reduction electrocatalyst and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911381089.XA CN111129512B (en) 2019-12-27 2019-12-27 Nano carambola-shaped oxygen reduction electrocatalyst and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN111129512A true CN111129512A (en) 2020-05-08
CN111129512B CN111129512B (en) 2021-09-14

Family

ID=70504740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911381089.XA Active CN111129512B (en) 2019-12-27 2019-12-27 Nano carambola-shaped oxygen reduction electrocatalyst and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN111129512B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114073922A (en) * 2020-08-20 2022-02-22 中国科学院苏州纳米技术与纳米仿生研究所 Porphyrin-based metal-organic framework nanosphere and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959279A (en) * 2017-04-14 2017-07-18 浙江省农业科学院 A kind of metal-organic framework materials of PCN 222 and its preparation method and application
CN107694605A (en) * 2017-11-01 2018-02-16 中国科学院福建物质结构研究所 Carbon quantum dot@porphyryl metal organic framework catalyst and preparation method and application
CN108517038A (en) * 2018-03-15 2018-09-11 河南大学 A kind of size regulation and control method of porphyrin metal organic framework material
CN108620136A (en) * 2018-05-21 2018-10-09 西北师范大学 The preparation and application of copper porphyrin functional metal organic frame/composite titania material
CN109254066A (en) * 2018-09-19 2019-01-22 扬州大学 The carbon paper electrode and the preparation method and application thereof of PCN-222 (Fe) catalyst modification
CN109464986A (en) * 2018-11-29 2019-03-15 西北师范大学 A kind of preparation and application of the nanocomposite based on porphyrin metal organic frame and ternary sulfide
CN109647381A (en) * 2017-10-12 2019-04-19 中国科学院福建物质结构研究所 A kind of method of the mesoporous C-base composte material of controllable preparation platinum grain high degree of dispersion as highly effective hydrogen yield elctro-catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959279A (en) * 2017-04-14 2017-07-18 浙江省农业科学院 A kind of metal-organic framework materials of PCN 222 and its preparation method and application
CN109647381A (en) * 2017-10-12 2019-04-19 中国科学院福建物质结构研究所 A kind of method of the mesoporous C-base composte material of controllable preparation platinum grain high degree of dispersion as highly effective hydrogen yield elctro-catalyst
CN107694605A (en) * 2017-11-01 2018-02-16 中国科学院福建物质结构研究所 Carbon quantum dot@porphyryl metal organic framework catalyst and preparation method and application
CN108517038A (en) * 2018-03-15 2018-09-11 河南大学 A kind of size regulation and control method of porphyrin metal organic framework material
CN108620136A (en) * 2018-05-21 2018-10-09 西北师范大学 The preparation and application of copper porphyrin functional metal organic frame/composite titania material
CN109254066A (en) * 2018-09-19 2019-01-22 扬州大学 The carbon paper electrode and the preparation method and application thereof of PCN-222 (Fe) catalyst modification
CN109464986A (en) * 2018-11-29 2019-03-15 西北师范大学 A kind of preparation and application of the nanocomposite based on porphyrin metal organic frame and ternary sulfide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114073922A (en) * 2020-08-20 2022-02-22 中国科学院苏州纳米技术与纳米仿生研究所 Porphyrin-based metal-organic framework nanosphere and preparation method and application thereof
CN114073922B (en) * 2020-08-20 2024-02-20 中国科学院苏州纳米技术与纳米仿生研究所 Porphyrin-based metal-organic framework nanosphere and preparation method and application thereof

Also Published As

Publication number Publication date
CN111129512B (en) 2021-09-14

Similar Documents

Publication Publication Date Title
Ying et al. Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst
Yang et al. MOF-derived Cu@ Cu2O heterogeneous electrocatalyst with moderate intermediates adsorption for highly selective reduction of CO2 to methanol
Yang et al. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea
Zhou et al. Nitrogen-doped hollow mesoporous carbon spheres as a highly active and stable metal-free electrocatalyst for oxygen reduction
Zhang et al. Biomass derived N‐doped porous carbon supported single Fe atoms as superior electrocatalysts for oxygen reduction
Ai et al. Construction of CdS@ Ti3C2@ CoO hierarchical tandem pn heterojunction for boosting photocatalytic hydrogen production in pure water
CN110075902B (en) Defective covalent triazine framework material derivative material catalyst and preparation method and application thereof
Wu et al. High-density active sites porous Fe/N/C electrocatalyst boosting the performance of proton exchange membrane fuel cells
Zhang et al. Fe–N x moiety-modified hierarchically porous carbons derived from porphyra for highly effective oxygen reduction reaction
CN110444776A (en) A kind of base metal N doping MOF economic benefits and social benefits elctro-catalyst and preparation method thereof
He et al. NH2-MIL-125 (Ti) encapsulated with in situ-formed carbon nanodots with up-conversion effect for improving photocatalytic NO removal and H2 evolution
Peng et al. Ordered macroporous MOF-based materials for catalysis
CN109494381A (en) The monatomic iron-based carbon material of one kind and preparation method and electro-catalysis application
JP2012164492A (en) Air electrode catalyst for fuel cell and method for producing the same
JP4204272B2 (en) Fuel cell electrode catalyst and fuel cell
Qiao et al. Rational design of hierarchical, porous, co‐supported, N‐doped carbon architectures as electrocatalyst for oxygen reduction
CN111215056B (en) Preparation method and application of low-load Pd/hollow carbon sphere oxygen reduction electrocatalyst
CN104645989A (en) Heteroatom-doping porous carbon material and preparation method thereof
CN113117709A (en) High-efficiency zinc-air battery catalyst prepared based on MXene and sodium alginate
Wei et al. Hierarchically tubular nitrogen-doped carbon structures for the oxygen reduction reaction
CN109694071A (en) A kind of method and application preparing nitrogen-doped porous carbon material using coconut husk as raw material
Bai et al. A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework
CN110975912A (en) Preparation and application of cobalt-nitrogen doped catalyst derived from bimetallic MOFs (metal-organic frameworks)
Bu et al. Co-catalyst free direct Z–scheme photocatalytic system with simultaneous hydrogen evolution and degradation of organic pollutants
Xing et al. In situ C–H activation-derived polymer@ TiO 2 p–n heterojunction for photocatalytic hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant