CN111111735A - 一种Bi@Ti3C2/g-C3N4复合材料及其制备方法 - Google Patents

一种Bi@Ti3C2/g-C3N4复合材料及其制备方法 Download PDF

Info

Publication number
CN111111735A
CN111111735A CN201911409109.XA CN201911409109A CN111111735A CN 111111735 A CN111111735 A CN 111111735A CN 201911409109 A CN201911409109 A CN 201911409109A CN 111111735 A CN111111735 A CN 111111735A
Authority
CN
China
Prior art keywords
preparation
suspension
stirring
pvp
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201911409109.XA
Other languages
English (en)
Inventor
柏寄荣
许�鹏
邓瑶瑶
邵林锋
左武杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Institute of Technology
Original Assignee
Changzhou Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Institute of Technology filed Critical Changzhou Institute of Technology
Priority to CN201911409109.XA priority Critical patent/CN111111735A/zh
Publication of CN111111735A publication Critical patent/CN111111735A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Bi@Ti3C2/g‑C3N4复合材料及其制备方法,属于光催化制剂领域。本发明的制备方法具体为:(1)将g‑C3N4加入无水乙醇中,超声处理在室温下3小时;得到g‑C3N4的悬浮液;(2)将Bi@Ti3C2分散于去离子水中;并缓慢滴加到步骤(1)得到的g‑C3N4悬浮液中,搅拌,离心、干燥,即得到Bi@Ti3C2/g‑C3N4。本发明通过利用Bi纳米粒子对Ti3C2插层改性得到表面性能和层结构优化的双助催化剂,Ti3C2的层间限域效应得到粒径尺寸均一、分散较好的Bi纳米颗粒,同时又有效的抑制了Ti3C2的堆叠。

Description

一种Bi@Ti3C2/g-C3N4复合材料及其制备方法
技术领域
本发明涉及一种Bi@Ti3C2/g-C3N4复合材料及其制备方法,属于光催化制剂领域。
背景技术
MXenes是一类新型的二维(2D)早期过渡金属碳化物/碳氮化物材料,自2011年Gogotsi 及其同事发现以来,引起了人们极大的研究兴趣。由于其良好的导电性、亲水性和稳定性,氙在电化学超级电容器、电池、光催化等领域得到了广泛的研究。近年来,Ti3C2、Ti2C、Nb2C 等MXenes被研究作为光催化剂(如TiO2、Ag3PO4、CdS、g-C3N4)的高效共催化剂用于水分解。理论研究表明:MXenes的氢吸附的吉布斯自由能(ΔGH)几种接近于零,因此这些MXenes被视为有效电催化剂,并通过实验验证了这类催化剂的电催化析氢活性。其中,Ti3C2Mxene已被广泛研究,与半导体催化剂形成肖特基结,可以作为一种有效的光催化制氢助催化剂,形成Ti3C2和半导体界面,极大地促进光诱导电子和空穴的分离。研究表明Ti3C2可以显著促进光催化氢气的生产性能(λ≥420nm)。H2产生量和表观量子效率(AQE)cd/Ti3C2混合光催化剂可能达到14342μmol/(h·g)和40.1%,分别可以归因于导电性好和肖特基结的形成。
目前,采用HF制备的MXene容易形成层状堆垛结构,通过TEM观察可知每层堆垛又由若干单层MXene组成,相邻的MXene纳米片层间存在较强的范德华力,因此片层间的聚集和堆叠往往是不可避免的,这些都严重降低了MXene片层的电化学利用率。但是这样制得的MXene,由于干燥过程中的毛细效应和静电作用力,导致在堆垛的边缘处形成“塌缩”结构,从而减小了MXene的比表面积。
发明内容
为了解决上述至少一个问题,本发明选择Ti3C2作为助催化剂,并通过Bi纳米粒子插层形成一种双助催化剂(Bi@Ti3C2);通过2种助催化剂的之间的协同作用,提升了助催化能力。
本发明在层间引入Bi纳米粒子有效的抑制了堆叠的发生,Bi和MXene形成了双助催化剂体系,不但在层间得到尺寸均一且分散性较好的Bi纳米粒子,同时也有效的抑制了Mxene 的堆叠,形成的Bi@Ti3C2双助催化剂有利于加强电荷与物质的传输、拓宽光谱范围。本发明结合表面自组装技术,制备得到Bi@Ti3C2/g-C3N4新型肖特基结复合催化剂。将本发明的催化剂应用于光催化制氢反应,在两种助催化剂协同作用下显著提高了光催化产氢的性能。
本发明的第一个目的是提供一种Bi@Ti3C2的制备方法,具体包括以下步骤:
将PVP和BiCl3加入水中,搅拌均匀,然后加入NaBH4,反应完成之后,加入Ti3C2Tx纳米片,继续搅拌反应,反应结束之后将得到的产物进行离心、干燥即得到Bi@Ti3C2
在一种实施方式中,所述的Ti3C2Tx纳米片的制备方法为:
将0.5g Ti3AlC2粉末倒入一个含有10mL HF的塑料容器中,在35℃下浸泡24小时,以腐蚀铝层,得到混合物;然后将所得的混合物经多次纯水洗涤,使得其pH值为6~7;之后通过超声处理和低速离心去除杂质得到Ti3C2Tx纳米片。
在一种实施方式中,所述的PVP和BiCl3的质量比为1:1。
在一种实施方式中,所述的PVP和水的质量比为1:100。
在一种实施方式中,所述的PVP购自阿拉丁,平均分子量1300000,K88-96。
在一种实施方式中,所述的BiCl3购自阿拉丁,纯度为AR。
在一种实施方式中,所述的PVP和NaBH4的质量比为3:2。
在一种实施方式中,所述的NaBH4购自阿拉丁,浓度为98%。
在一种实施方式中,所述的Bi@Ti3C2的制备方法具体为:将0.3g PVP和0.3g BiCl3加入30mL纯水中,搅拌10min,得到混合液;然后加入0.2g NaBH4到混合液中去氧化Bi3+;反应完成后,加入28mg Ti3C2Tx纳米片,连续搅拌6小时,得到产物;最后将得到的产物进行离心,在真空条件下于35℃下干燥48h,即得到Bi@Ti3C2
本发明的第二个目的是本发明的制备方法制备得到的Bi@Ti3C2
本发明的第三个目的是利用本发明的Bi@Ti3C2制备Bi@Ti3C2/g-C3N4复合材料的方法。
在一种实施方式中,具体的制备方法为:
(1)将g-C3N4加入无水乙醇中,超声处理在室温下3小时;得到g-C3N4的悬浮液;
(2)将Bi@Ti3C2分散于去离子水中;并缓慢滴加到步骤(1)得到的g-C3N4悬浮液中,搅拌,离心、干燥,即得到Bi@Ti3C2/g-C3N4
在一种实施方式中,所述的g-C3N4和无水乙醇的质量体积比为:0.3:50,具体为0.3g: 50mL。
在一种实施方式中,所述的超声处理具体为:室温(25℃)下超声(500W)处理3h。
在一种实施方式中,所述的Bi@Ti3C2和水的质量比为0.08:40,具体为80mg Bi@Ti3C2分散于40mL去离子水中。
在一种实施方式中,所述的搅拌具体为:搅拌速度为500rpm,搅拌时间为1h。
在一种实施方式中,所述的离心具体为:离心时间为5min,速度为6000rpm。
在一种实施方式中,所述的干燥具体为:60℃干燥24h。
本发明的第四个目的是利用本发明的Bi@Ti3C2制备Bi@Ti3C2/g-C3N4复合材料的方法制得的Bi@Ti3C2/g-C3N4复合材料。
本发明的第五个目的是本发明的Bi@Ti3C2/g-C3N4复合材料制备得到的光催化剂。
本发明的第六个目的是本发明的光催化剂在光催化制氢中的应用。
本发明的有益效果:
(1)本发明通过利用Bi纳米粒子对Ti3C2插层改性得到表面性能和层结构优化的双助催化剂,Ti3C2的层间限域效应得到粒径尺寸均一、分散较好的Bi纳米颗粒,同时又有效的抑制了Ti3C2的堆叠。
(2)本发明利用双助催化剂Bi@Ti3C2 Mxene优化了g-C3N4的光催化性能。
附图说明
图1为Bi@Ti3C2/g-C3N4的制备过程示意图。
图2为实施例1的Bi@Ti3C2/g-C3N4的TEM图;(a-d)为TEM图像;(e-j)为元素映射图。
图3为实施例1的Bi@Ti3C2/g-C3N4和g-C3N4的UV-vis DRS光谱图。
图4为实施例1的Bi@Ti3C2/g-C3N4和g-C3N4的XPS图。
图5为实施例1的Bi@Ti3C2/g-C3N4和g-C3N4的PL图谱。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解实施例是为了更好地解释本发明,不用于限制本发明。
XRD测试:Bruker D8 X射线粉末衍射仪,参数设置如下:2θ=10-80°(扫描速度8°/min), 40kV,40mA,Cu靶。
XPS测试:ESCALAB250Xi光电子能谱仪(Mg/Al靶)。
UV-vis DRS测试:Cary 500紫外可见光漫反射光谱(测试范围200-800nm)。
PL光谱:爱丁堡RF-5301光致发光光谱(激发波长360nm,室温)。
TEM测试:Tecnai G2 F30 S-TWIN(FEI,美国)场发射透射电镜,加速电压300kv 实施例1
一种Bi@Ti3C2/g-C3N4复合材料的制备方法,包括以下步骤:具体如图1所示:
1、Ti3C2Tx纳米片的制备
将0.5g Ti3AlC2粉末倒入一个含有10mL HF塑料容器中,在35℃下浸泡24小时,以腐蚀铝层,得到混合物;所得的混合物经多次纯水洗涤,使得其pH值为6~7;然后通过超声处理和低速离心去除杂质得到了Ti3C2Tx纳米片。
2、Bi@Ti3C2的制备
将0.3g PVP和0.3g BiCl3加入30mL纯水中,搅拌10min,得到混合液,然后加入0.2g NaBH4到混合液中去氧化Bi3+;反应完成后,加入步骤1中的Ti3C2Tx纳米片,连续搅拌6 小时,得到产物;最后将得到的产物进行离心,在真空条件下于35℃下干燥48小时,制得 Bi@Ti3C2
3、Bi@Ti3C2/g-C3N4复合材料的制备
(1)将g-C3N4(0.3g)加入50mL无水乙醇溶液中,在室温下超声处理3小时,得到g-C3N4悬浮液;
(2)将80mg Bi@Ti3C2分散于40mL去离子水中,缓慢滴加到步骤(1)的g-C3N4悬浮液中,搅拌1h,6000rpm离心5min得到固体物质;
(3)将步骤(2)得到的固体在60℃下干燥24h,即得到Bi@Ti3C2/g-C3N4
将实施例1得到的Bi@Ti3C2/g-C3N4复合材料和g-C3N4进行性能测试,测试结果如下:
图2为实施例1的Bi@Ti3C2/g-C3N4的TEM图;(a-d)为TEM图像;(e-j)为元素映射图。从图中可以看出:Bi纳米粒子、Ti3C2和g-C3N4很好的复合到了一起,且分散性良好。
图3为实施例1的Bi@Ti3C2/g-C3N4和g-C3N4的UV-vis DRS光谱图,从图中可以看出:双助催化剂Bi@Ti3C2的加入有效的改善了光响应性能,有利于吸收更多的可见光从而产生更多的光生载流子。
图4为实施例1的Bi@Ti3C2/g-C3N4和g-C3N4的XPS图。图4进一步证实了各种元素的存在,和TEM中Maping(图2e-2j)的检测结果相符合。
图5为实施例1的Bi@Ti3C2/g-C3N4和g-C3N4的PL图谱,从图中可以看出:复合之后的光催化剂显示了更低的发射强度,说明更快的迁移速度和光生载流子的再复合可以被很好的抑制。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种Bi@Ti3C2的制备方法,其特征在于,包括以下步骤:
将PVP和BiCl3加入水中,搅拌均匀,然后加入NaBH4,反应完成之后,加入Ti3C2Tx纳米片,继续搅拌反应,反应结束之后将得到的产物进行离心、干燥即得到Bi@Ti3C2
2.根据权利要求1所述的制备方法,其特征在于,所述的PVP和BiCl3的质量比为1:1;所述的PVP和水的质量比为1:100;所述的PVP和NaBH4的质量比为3:2。
3.根据权利要求1或2所述的制备方法得到的Bi@Ti3C2
4.采用权利要求3的Bi@Ti3C2制备Bi@Ti3C2/g-C3N4复合材料的方法,其特征在于,包括以下步骤:
(1)将g-C3N4加入无水乙醇中,超声处理在室温下3小时,得到g-C3N4的悬浮液;
(2)将Bi@Ti3C2分散于去离子水中;并缓慢滴加到步骤(1)得到的g-C3N4悬浮液中,搅拌,离心、干燥,即得到Bi@Ti3C2/g-C3N4
5.根据权利要求4的制备方法,其特征在于,步骤(1)所述的g-C3N4和无水乙醇的质量体积比为0.3:50。
6.根据权利要求4的制备方法,其特征在于,步骤(2)所述的Bi@Ti3C2和水的质量比为0.08:40。
7.根据权利要求4的制备方法,其特征在于,具体的制备方法为:
(1)将0.3g的g-C3N4加入50mL无水乙醇溶液中,在室温下超声处理3小时,得到g-C3N4悬浮液;
(2)将80mg Bi@Ti3C2分散于40mL去离子水中,缓慢滴加到步骤(1)的g-C3N4悬浮液中,搅拌1h,6000rpm离心5min,得到固体物质;
(3)将步骤(2)得到的固体在60℃下干燥24h,即得到Bi@Ti3C2/g-C3N4
8.权利要求4-7任一所述的制备方法得到的Bi@Ti3C2/g-C3N4复合材料。
9.权利要求8所述的Bi@Ti3C2/g-C3N4复合材料制备得到的光催化剂。
10.权利要求9所述的光催化剂在光催化制氢中的应用。
CN201911409109.XA 2019-12-31 2019-12-31 一种Bi@Ti3C2/g-C3N4复合材料及其制备方法 Withdrawn CN111111735A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911409109.XA CN111111735A (zh) 2019-12-31 2019-12-31 一种Bi@Ti3C2/g-C3N4复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911409109.XA CN111111735A (zh) 2019-12-31 2019-12-31 一种Bi@Ti3C2/g-C3N4复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111111735A true CN111111735A (zh) 2020-05-08

Family

ID=70506556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911409109.XA Withdrawn CN111111735A (zh) 2019-12-31 2019-12-31 一种Bi@Ti3C2/g-C3N4复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111111735A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113617375A (zh) * 2021-08-09 2021-11-09 东莞理工学院 一种石墨相氮化碳光催化材料及其制备方法
CN114335458A (zh) * 2021-12-15 2022-04-12 北京航空航天大学 一种Ti3C2Tx@g-C3N4复合材料及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113617375A (zh) * 2021-08-09 2021-11-09 东莞理工学院 一种石墨相氮化碳光催化材料及其制备方法
CN113617375B (zh) * 2021-08-09 2023-06-30 东莞理工学院 一种石墨相氮化碳光催化材料及其制备方法
CN114335458A (zh) * 2021-12-15 2022-04-12 北京航空航天大学 一种Ti3C2Tx@g-C3N4复合材料及其制备方法和应用
CN114335458B (zh) * 2021-12-15 2024-04-09 北京航空航天大学 一种Ti3C2Tx@g-C3N4复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Su et al. 2D/2D heterojunction of Ti 3 C 2/gC 3 N 4 nanosheets for enhanced photocatalytic hydrogen evolution
Tasleem et al. Fabricating structured 2D Ti3AlC2 MAX dispersed TiO2 heterostructure with Ni2P as a cocatalyst for efficient photocatalytic H2 production
Liu et al. Regulating the active species of Ni (OH) 2 using CeO 2: 3D CeO 2/Ni (OH) 2/carbon foam as an efficient electrode for the oxygen evolution reaction
Hao et al. Controllable electrostatic self-assembly of sub-3 nm graphene quantum dots incorporated into mesoporous Bi 2 MoO 6 frameworks: efficient physical and chemical simultaneous co-catalysis for photocatalytic oxidation
Huang et al. Environmentally benign synthesis of Co3O4-SnO2 heteronanorods with efficient photocatalytic performance activated by visible light
Lv et al. Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals
Bakr et al. Synthesis and characterization of Z-scheme α-Fe2O3 NTs/ruptured tubular g-C3N4 for enhanced photoelectrochemical water oxidation
Zhang et al. Synthesis of Ag2O/NaNbO3 pn junction photocatalysts with improved visible light photocatalytic activities
Li et al. Constructing Ti3C2 MXene/ZnIn2S4 heterostructure as a Schottky catalyst for photocatalytic environmental remediation
Song et al. Stable single-atom cobalt as a strong coupling bridge to promote electron transfer and separation in photoelectrocatalysis
Min et al. Ti 3 C 2 T x MXene nanosheet-confined Pt nanoparticles efficiently catalyze dye-sensitized photocatalytic hydrogen evolution reaction
Tian et al. Ti3C2 nanosheets modified Zr-MOFs with Schottky junction for boosting photocatalytic HER performance
CN109012731B (zh) 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用
CN110743596A (zh) 钌纳米颗粒/三维多孔氮化碳复合材料及制备方法与用途
Liu et al. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity
Liu et al. Assembling UiO-66 into layered HTiNbO5 nanosheets for efficient photocatalytic CO2 reduction
Wang et al. Ag/polyaniline heterostructured nanosheets loaded with gC 3 N 4 nanoparticles for highly efficient photocatalytic hydrogen generation under visible light
CN112563515B (zh) 一种铁氮共掺杂碳与MXene复合物及其制备方法和应用
WO2009152003A2 (en) Mesoporous electrically conductive metal oxide catalyst supports
CN111359640B (zh) 多异质结二氧化钛-钒酸铋-黑磷/红磷复合膜的制备方法
CN111111735A (zh) 一种Bi@Ti3C2/g-C3N4复合材料及其制备方法
WO2019085532A1 (zh) 一种三价钛自掺杂二氧化钛纳米颗粒-部分还原氧化石墨烯纳米片复合材料及其制备方法
CN114039060B (zh) 一种N-TiO2/Ti3C2Tx异质MXene结构材料、制备及其应用
Hou et al. Fabrication of CdS/Zn2GeO4 heterojunction with enhanced visible-light photocatalytic H2 evolution activity
Kai et al. In situ growth of CdS spherical nanoparticles/Ti 3 C 2 MXene nanosheet heterojunction with enhanced photocatalytic hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200508

WW01 Invention patent application withdrawn after publication