CN111100931A - Primer probe set, kit and method for quantitatively detecting SMIM3 gene expression quantity - Google Patents
Primer probe set, kit and method for quantitatively detecting SMIM3 gene expression quantity Download PDFInfo
- Publication number
- CN111100931A CN111100931A CN201911212698.2A CN201911212698A CN111100931A CN 111100931 A CN111100931 A CN 111100931A CN 201911212698 A CN201911212698 A CN 201911212698A CN 111100931 A CN111100931 A CN 111100931A
- Authority
- CN
- China
- Prior art keywords
- smim3
- probe
- abl1
- gene
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000523 sample Substances 0.000 title claims abstract description 87
- 101000652111 Homo sapiens Small integral membrane protein 3 Proteins 0.000 title claims abstract description 76
- 230000014509 gene expression Effects 0.000 title claims abstract description 36
- 102100030568 Small integral membrane protein 3 Human genes 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 19
- 238000001514 detection method Methods 0.000 claims abstract description 7
- 239000013612 plasmid Substances 0.000 claims description 55
- 239000013641 positive control Substances 0.000 claims description 23
- 101100268646 Homo sapiens ABL1 gene Proteins 0.000 claims description 19
- 239000002299 complementary DNA Substances 0.000 claims description 19
- 239000002773 nucleotide Substances 0.000 claims description 18
- 125000003729 nucleotide group Chemical group 0.000 claims description 18
- 239000012634 fragment Substances 0.000 claims description 17
- 239000013643 reference control Substances 0.000 claims description 11
- 230000003321 amplification Effects 0.000 claims description 8
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 8
- 102000004190 Enzymes Human genes 0.000 claims description 6
- 108090000790 Enzymes Proteins 0.000 claims description 6
- 238000010791 quenching Methods 0.000 claims description 6
- 230000000171 quenching effect Effects 0.000 claims description 6
- 238000010839 reverse transcription Methods 0.000 claims description 4
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 claims description 3
- 239000003973 paint Substances 0.000 claims 1
- 210000004027 cell Anatomy 0.000 abstract description 50
- 208000031261 Acute myeloid leukaemia Diseases 0.000 abstract description 10
- 230000035945 sensitivity Effects 0.000 abstract description 9
- 101000823316 Homo sapiens Tyrosine-protein kinase ABL1 Proteins 0.000 abstract description 6
- 102100022596 Tyrosine-protein kinase ABL1 Human genes 0.000 abstract description 6
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 abstract description 5
- 210000004881 tumor cell Anatomy 0.000 abstract description 5
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 abstract description 3
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 abstract description 3
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 abstract description 3
- 238000003745 diagnosis Methods 0.000 abstract description 3
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 abstract description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 206010035226 Plasma cell myeloma Diseases 0.000 description 5
- 238000011529 RT qPCR Methods 0.000 description 5
- 230000001154 acute effect Effects 0.000 description 5
- 201000000050 myeloid neoplasm Diseases 0.000 description 5
- 208000032839 leukemia Diseases 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 239000012086 standard solution Substances 0.000 description 3
- 206010000830 Acute leukaemia Diseases 0.000 description 2
- OHCQJHSOBUTRHG-KGGHGJDLSA-N FORSKOLIN Chemical compound O=C([C@@]12O)C[C@](C)(C=C)O[C@]1(C)[C@@H](OC(=O)C)[C@@H](O)[C@@H]1[C@]2(C)[C@@H](O)CCC1(C)C OHCQJHSOBUTRHG-KGGHGJDLSA-N 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- HIYAVKIYRIFSCZ-CYEMHPAKSA-N 5-(methylamino)-2-[[(2S,3R,5R,6S,8R,9R)-3,5,9-trimethyl-2-[(2S)-1-oxo-1-(1H-pyrrol-2-yl)propan-2-yl]-1,7-dioxaspiro[5.5]undecan-8-yl]methyl]-1,3-benzoxazole-4-carboxylic acid Chemical compound O=C([C@@H](C)[C@H]1O[C@@]2([C@@H](C[C@H]1C)C)O[C@@H]([C@@H](CC2)C)CC=1OC2=CC=C(C(=C2N=1)C(O)=O)NC)C1=CC=CN1 HIYAVKIYRIFSCZ-CYEMHPAKSA-N 0.000 description 1
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- SUZLHDUTVMZSEV-UHFFFAOYSA-N Deoxycoleonol Natural products C12C(=O)CC(C)(C=C)OC2(C)C(OC(=O)C)C(O)C2C1(C)C(O)CCC2(C)C SUZLHDUTVMZSEV-UHFFFAOYSA-N 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 101710200168 Small integral membrane protein 3 Proteins 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- OHCQJHSOBUTRHG-UHFFFAOYSA-N colforsin Natural products OC12C(=O)CC(C)(C=C)OC1(C)C(OC(=O)C)C(O)C1C2(C)C(O)CCC1(C)C OHCQJHSOBUTRHG-UHFFFAOYSA-N 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 208000019691 hematopoietic and lymphoid cell neoplasm Diseases 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 208000028591 pheochromocytoma Diseases 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/166—Oligonucleotides used as internal standards, controls or normalisation probes
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The invention discloses a primer probe set, a kit and a method for quantitatively detecting SMIM3 gene expression quantity, wherein the primer probe set comprises a component A and a component B, the component A comprises an upstream primer SMIM3-FP, a downstream primer SMIM3-RP and a probe SMIM3-probe, and the component B comprises an upstream primer ABL1-FP, a downstream primer ABL1-RP and a probe ABL 1-probe. The invention has the advantages that the quantitative detection of the relative expression quantity of SMIM3 in cells is realized, the sensitivity of SMIM3 and the sensitivity of ABL1 are both up to 100 copies, the sensitivity is high, the result is accurate, the reliability is high, a novel auxiliary diagnosis method or an auxiliary identification method is provided for blood tumor cells (especially acute myeloid leukemia and acute lymphocytic leukemia), and the application prospect is wide.
Description
Technical Field
The invention relates to the field of biochemical detection, in particular to a primer probe set for quantitatively detecting SMIM3 gene expression quantity, a kit containing the primer probe set and a method for quantitatively detecting SMIM3 gene expression quantity.
Background
Small Integral Membrane Protein 3, SMIM3, also known as C5orf62 or NID67, SMIM3 gene encodes a single-chain transmembrane Protein. SMIM3 mRNA is most abundant in heart, ovary, and adrenal gland, and is only expressed at low levels in most brain regions, testis, thyroid, thymus, pituitary, kidney, and intestinal tract, with little SMIM3 in skeletal muscle and cerebellum; however, in the PC12 pheochromocytoma cell, SMIM3 can be induced preferentially by NGF and EGF, and SMIM3 can also be induced strongly by forskolin, A23187 and ATP.
The human SMIM3 gene is located at 5q33.1, and the cDNA of SMIM3 contains a 180 bp Open Reading Frame (ORF) and encodes a 60 amino acid protein, 29 amino acids of which are more hydrophobic in the center and most likely contain a transmembrane domain. SMIM3 may be involved in forming or modulating ion channels, but currently there is little research on SMIM3 and its function is not yet clear.
Disclosure of Invention
The invention aims to provide a primer probe group for quantitatively detecting the expression level of SMIM3 gene, a kit containing the primer probe group and a method for quantitatively detecting the expression level of SMIM3 gene.
In order to achieve the purpose, the invention adopts the following technical scheme:
the primer probe set for quantitatively detecting the SMIM3 gene expression level comprises a component A and a component B, wherein the component A comprises:
an upstream primer SMIM3-FP of the nucleotide sequence shown in SEQ ID NO.1,
a downstream primer SMIM3-RP of the nucleotide sequence shown in SEQ ID NO.2,
and a probe SMIM3-probe containing a nucleotide sequence shown in SEQ ID NO.3, wherein the 5 'end of the probe SMIM3-probe is marked with a FAM luminous group, and the 3' end is marked with a fluorescence quenching group BHQ;
the component B comprises:
an upstream primer ABL1-FP of the nucleotide sequence shown in SEQ ID NO.4,
a downstream primer ABL1-RP of the nucleotide sequence shown in SEQ ID NO.5,
and a probe ABL1-probe containing a nucleotide sequence shown in SEQ ID NO.6, wherein the 5 'end of the probe ABL1-probe is marked with FAM luminous group, and the 3' end is marked with fluorescence quenching group TAMRA.
The invention also provides a kit for quantitatively detecting the SMIM3 gene expression level, which comprises the primer probe set, a positive control plasmid containing the SMIM3 gene fragment shown in SEQ ID NO.7 and an internal reference control plasmid containing the ABL1 gene fragment shown in SEQ ID NO. 8.
Furthermore, the molar ratio of the upstream primer SMIM3-FP, the downstream primer SMIM3-RP, the probe SMIM3-probe in the component A in the kit is 3:3:2, and the molar ratio of the upstream primer ABL1-FP, the downstream primer ABL1-RP, the probe ABL1-probe in the component B in the kit is 3:3: 2.
Furthermore, the positive control plasmid is a positive plasmid with the SMIM3 gene fragment shown in SEQ ID No.7 inserted into the XhoI/KpnI enzyme cutting site of the GV219 plasmid, and the internal control plasmid is an internal control plasmid with the ABL1 gene fragment shown in SEQ ID No.8 inserted into the XhoI/KpnI enzyme cutting site of the GV219 plasmid.
The invention also provides a method for quantitatively detecting the SMIM3 gene expression level, which comprises the following steps:
firstly, extracting RNA in a sample to be detected, and performing reverse transcription to obtain cDNA;
secondly, drawing a fluorescence standard curve of the positive control plasmid and a fluorescence standard curve of the internal reference control plasmid;
and thirdly, taking the cDNA obtained in the first step as a template, respectively adding the component A and the component B for amplification reaction, respectively carrying out RQ-PCR detection, obtaining the cycle number of the SMIM3 gene segment and the cycle number of the ABL1 gene segment in the sample, respectively calculating by using the fluorescence standard curve of the positive control plasmid and the fluorescence standard curve of the internal reference control plasmid in the second step to obtain the copy number of the SMIM3 gene segment and the copy number of the ABL1 gene in the sample, and obtaining the ratio of the copy number of the SMIM3 gene segment to the copy number of the ABL1 gene in the sample, namely the SMIM3 gene expression quantity in the sample.
The invention has the advantages that the method for quantitatively detecting the relative expression quantity of the SMIM3 gene is provided, the quantitative detection of the relative expression quantity of the SMIM3 in cells is realized, the relative expression quantity of the SMIM3 gene is equal to the ratio of the copy quantity of the SMIM3 gene in the cells to the copy quantity of ABL1 in the cells, the sensitivity of the SMIM3 and the sensitivity of ABL1 are both as high as 100 copies, the sensitivity is high, the result is accurate, the reliability is high, a novel auxiliary diagnosis method or an auxiliary identification method is provided for blood tumor cells (especially acute myeloid leukemia and acute lymphocytic leukemia), and the application prospect is wide.
Drawings
FIG. 1 is a graph of fluorescence standards for reference masses according to the present invention.
FIG. 2 is a fluorescence standard curve of the positive control plasmid of the present invention.
FIG. 3 is a bar graph showing the expression level of SMIM3 gene in each cell system in example 4 of the present invention.
FIG. 4 is a statistical graph showing the expression level of SMIM3 gene in patients and healthy specimens according to example 5 of the present invention.
Detailed Description
The present invention will be described in more detail with reference to the accompanying drawings and specific embodiments.
Example 1 primer probe set for detecting the expression level of SMIM3 gene according to the present invention
The primer probe set comprises a component A and a component B, wherein the component A comprises:
the upstream primer SMIM3-FP: 5' -TCATCATGACCTCGTTGTTGCT-3 (namely the nucleotide sequence shown in SEQ ID NO. 1), downstream primer SMIM3-RP: 5'-CTCAAACAGCCCCACTAAGGAT-3' (i.e., the nucleotide sequence shown in SEQ ID NO. 2) and the probe SMIM 3-probe: FAM-ACTGCAGTAATCATCTATCGCATGCGGAC-BHQ (namely the nucleotide sequence shown in SEQ ID NO. 3), wherein the 5 'end of the probe SMIM3-probe is marked with FAM luminescent group, and the 3' end is marked with fluorescence quenching group BHQ;
the component B comprises:
the upstream primer ABL1-FP: 5'-TGGAGATAACACTCTAAGCATAACTAAAGGT-3' (i.e., the nucleotide sequence shown in SEQ ID NO. 4), a downstream primer ABL1-RP: 5'-GATGTAGTTGCTTGGGACCCA-3' (i.e., the nucleotide sequence shown in SEQ ID NO. 5), and the probe ABL 1-probe: FAM-CCATTTTTGGTTTGGGCTTCACACCATT-TAMRA (namely the nucleotide sequence shown in SEQ ID NO. 6), the 5 'end of the probe ABL1-probe is marked with FAM luminous group, and the 3' end is marked with fluorescence quenching group TAMRA.
Example 2 kit for detecting SMIM3 Gene expression level according to the present invention
The kit comprises a component A and a component B in the embodiment, and also comprises a positive control plasmid and an internal reference control plasmid, wherein the molar ratio of an upstream primer SMIM3-FP to a downstream primer SMIM3-RP to a probe SMIM3-probe in the component A is 3:3: 2; the molar ratio of the upstream primer ABL1-FP, the downstream primer ABL1-RP and the probe ABL1-probe in the component B is 3:3: 2;
wherein the positive control plasmid is a positive plasmid of SMIM3 gene fragment shown in SEQ ID NO.7 inserted into the XhoI/KpnI enzyme cutting site of the GV219 plasmid;
the internal reference plasmid is formed by inserting the ABL1 gene segment shown in SEQ ID NO.8 into the XhoI/KpnI enzyme cutting site of the GV219 plasmid.
Embodiment 3 the detection of the sensitivity of the positive control plasmid and the internal reference plasmid and the drawing of the fluorescence standard curve of the present invention specifically comprise the following steps:
in the first step, the positive control plasmid of example 2 was diluted in sterile double-distilled water for injection in a 10-fold gradientObtaining positive control plasmid standard solution containing different copy numbers of SMIM3 gene fragments, wherein the copy number of SMIM3 gene fragments in each 1 mu L of positive control plasmid is 106、105、104、103、102;
The internal reference plasmid in example 2 was diluted in sterile double-distilled water for injection in 10-fold gradient to obtain standard solutions of the internal reference plasmid containing different copy numbers of the ABL1 gene fragment, wherein the copy number of the ABL1 gene fragment in each 1. mu.L of the standard solution of the internal reference plasmid was 106、105、104、103、102;
And secondly, respectively carrying out PCR reaction on the positive control plasmid solution and the internal reference plasmid solution with different concentrations obtained in the first step, wherein the PCR reaction system (10 mu L) of the positive control plasmid: 1 μ L of positive control plasmid, 0.3 μ L of forward primer SMIM3-FP (10 μ M), 0.3 μ L of reverse primer SMIM3-RP (10 μ M), 0.2 μ L of probe SMIM3-probe (10 μ M), 5 μ L of 2 × TaqMan Universal PCR public System (available from ABI, USA), and balance water;
PCR reaction of internal reference control plasmid (10 μ L): 1 μ L of internal reference plasmid, 0.3 μ L of upstream primer ABL1-FP, 0.3 μ L of downstream primer ABL1-RP (10 μ M), 0.2 μ L of 10 μ M probe ABL1-probe (10 μ M), 5 μ L of 2 × TaqMan universal PCR public system, and the balance of water;
the PCR conditions for the positive control plasmid and the internal control plasmid were: 2min at 50 ℃ for 1 cycle; 10min at 95 ℃ for 1 cycle; 50 cycles of 95 ℃ for 15s and 60 ℃ for 1 min;
thirdly, after PCR reaction, RQ-PCR detection is respectively carried out on the amplified positive control plasmid solution and the amplified internal reference control plasmid solution by using a fluorescent real-time quantitative PCR instrument (Quant Studio 5 type, ABI company, USA), and the RQ-PCR fluorescence standard curve of the obtained internal reference control plasmid is shown as the figure 1, and the functional formula is as follows:
log 10 ABL1=(Ct-41.65)/-3.52
in the formulaABL1The copy number of the ABL1 gene in the sample,Ctthe number of cycles required for the amplification curve to reach a threshold value of0.082; the correlation coefficient of the standard curve function is 1, and the sensitivity of the internal reference ABL1 gene reaches 100 copies;
the RQ-PCR fluorescence standard curve of the positive control plasmid is shown in FIG. 2, and is a function of:
log 10 SMIM3=(Ct-40.36)/-3.32
in the formulaSMIM3The copy number of the SMIM3 gene in the sample,Ctthe threshold was 0.082 for the number of cycles required for the amplification curve to reach the threshold; the correlation coefficient of the standard curve function is 0.995, and the sensitivity of the SMIM3 gene fragment reaches 100 copies.
The kit in example 2 was used for quantitative determination of the relative expression of SMIM3 gene in Kasumi-1, HEL, SKNO-1, HL-60, BV173, NALM-6, SUPB15, BALL-1, K562, RPMI8226, KM3, MOLP-2, SKO-007 and RAMOS fourteen tumor cell lines (all provided by the first subsidiary hospital of Zheng State university), each cell line was tested in three replicates, specifically comprising the following steps:
firstly, extracting RNA in each cell by using a TRIzol kit according to the instruction of the TRIzol kit (purchased from Invitrogen company in America), and detecting the concentration and purity of the RNA by using an ND-1000 spectrophotometer to ensure that the ratio of A260 to A280 of the RNA of each cell is between 1.8 and 2.0; then reverse transcribing the purified RNA from each cell into cDNA using a reverse transcription kit (ABI, USA);
secondly, taking the cDNA of each purified cell as a template, adding the component A to carry out PCR reaction on the cDNA template of each cell respectively, wherein a PCR system (10 mu L): mu.L of cDNA, 0.3 mu.L of upstream primer SMIM3-FP (10 mu.M), 0.3 mu.L of downstream primer SMIM3-RP (10 mu.M), 0.2 mu.L of probe SMIM3-probe (10 mu.M), 5 mu.L of 2 xTaqMan universal PCR public system, and the balance of water;
and (3) taking the cDNA of each purified cell as a template, adding the component B to carry out PCR reaction on the cDNA template of each cell respectively, wherein the PCR system (10 mu L): mu.L of cDNA, 0.3 mu.L of upstream primer ABL1-FP (10 mu.M), 0.3 mu.L of downstream primer ABL1-RP (10 mu.M), 0.2 mu.L of probe ABL1-probe (10 mu.M), 5 mu.L of 2 XTaqMan universal PCR public system, and the balance of water;
the PCR conditions of the above cells were: 2min at 50 ℃ for 1 cycle; 10min at 95 ℃ for 1 cycle; 50 cycles of 95 ℃ for 15s and 60 ℃ for 1 min;
thirdly, after the PCR reaction is finished, adding the component A into each cell by using a fluorescent real-time quantitative PCR instrument to perform RQ-PCR, so as to obtain the cycle number of each cell reaching the threshold value of 0.082 by using the component A for amplification, and calculating the copy number of the SMIM3 gene segment in each cell according to the positive control plasmid fluorescence standard curve obtained in the embodiment 3;
respectively adding the component B into each cell by using a fluorescent real-time quantitative PCR instrument to perform RQ-PCR to obtain the cycle number of each cell reaching the threshold value of 0.082 by using the component B for amplification, and calculating according to the internal reference control plasmid fluorescence standard curve obtained in the example 3 to obtain the copy number of the ABL1 gene in each cell; the ratio of the copy number of the SMIM3 gene fragment to the copy number of the ABL1 gene in the same cell is the relative expression amount of the SMIM3 gene in the cell, and the results are shown in Table 1 and FIG. 3.
TABLE 1 relative expression amounts of SMIM3 gene in respective tumor cells
Cell name | Cell type | Relative expression level of SMIM3 Gene% |
Kasumi-1 | Human acute myeloid leukemia cell line | 173.02% |
SKNO-1 | Human acute myeloid leukemia cell line | 239.47% |
HL-60 | Human acute promyelocytic leukemia cell line | 425.23% |
HEL | Human erythroleukemia cell line | 393.74% |
SUPB15 | Acute stranguria of human bodyBlast cell leukemia cell line | 37.06% |
NALM6 | Human acute B lymphocyte leukemia cell line | 0.31% |
BALL-1 | Human acute B lymphocyte leukemia cell line | 0.20% |
BV173 | Human acute B lymphocyte leukemia cell line | 8.61% |
K562 | Acute transformation cell line of human chronic granulocytic leukemia | 14.44% |
KM3 | Human myeloma cell line | 11.27% |
MOLP2 | Human myeloma cell line | 0.33% |
RPMI8226 | Human myeloma cell line | 21.27% |
SKO007 | Human myeloma cell line | 8.03% |
RAMOS | Human Burkitt lymphoma cell line | 0.58% |
The results showed that SMIM3 was expressed in all of the 14 hematological tumor cell lines described above, with relatively high expression, up to 173% or more, in acute myeloid leukemia cell lines (Kasumi-1, SKNO-1, HL-60, HEL), and relatively low expression in acute lymphoblastic leukemia cell lines (BV 173, NALM-6, SUPB15 and BALL-1), slow granulocyte cell line (K562), myeloma cell lines (RPMI 8226, KM3, MOLP-2, SKO-007) and lymphoma cell line (RAMOS).
Example 5 the kit of example 2 was used to quantitatively determine the expression level of SMIM3 gene in bone marrow cells of acute leukemia patients (including 239 primary patients with AML and 83 primary patients with ALL, both provided in the first subsidiary hospital of zheng state university), and the expression level of SMIM3 gene in 22 healthy bone marrow specimens was used as a control, and specifically included the following steps:
first, RNA in each bone marrow sample was extracted using a TRIzol kit (available from Invitrogen, usa) according to the instructions of the TRIzol kit, and then purified RNA of each cell was reverse-transcribed into cDNA using a reverse transcription kit (ABI, usa);
and secondly, respectively taking the cDNA of each purified sample as a template, adding the component A to carry out PCR reaction on the cDNA template of each sample, wherein a PCR system (10 mu L): mu.L of cDNA, 0.3 mu.L of upstream primer SMIM3-FP (10 mu.M), 0.3 mu.L of downstream primer SMIM3-RP (10 mu.M), 0.2 mu.L of probe SMIM3-probe (10 mu.M), 5 mu.L of 2 xTaqMan universal PCR public system, and the balance of water;
and (3) taking the cDNA of each purified cell as a template, adding the component B to carry out PCR reaction on the cDNA template of each cell respectively, wherein the PCR system (10 mu L): mu.L of cDNA, 0.3 mu.L of upstream primer ABL1-FP (10 mu.M), 0.3 mu.L of downstream primer ABL1-RP (10 mu.M), 0.2 mu.L of probe ABL1-probe (10 mu.M), 5 mu.L of 2 XTaqMan universal PCR public system, and the balance of water;
the PCR conditions of the above cells were: 2min at 50 ℃ for 1 cycle; 10min at 95 ℃ for 1 cycle; 50 cycles of 95 ℃ for 15s and 60 ℃ for 1 min;
thirdly, after the PCR reaction is finished, adding the component A into each cell by using a fluorescent real-time quantitative PCR instrument to perform RQ-PCR, so as to obtain the cycle number of each sample reaching the threshold value of 0.082 by using the component A for amplification, and calculating the copy number of the SMIM3 gene fragment in each sample according to the positive control plasmid fluorescence standard curve obtained in the embodiment 3;
respectively adding the component B into each sample by using a fluorescent real-time quantitative PCR instrument to perform RQ-PCR, obtaining the cycle number of each sample reaching the threshold value of 0.082 by using the component B for amplification, and calculating according to the internal reference control plasmid fluorescence standard curve obtained in the embodiment 3 to obtain the copy number of the ABL1 gene in each sample;
the ratio of the copy number of the SMIM3 gene fragment to the copy number of the ABL1 gene in the same sample cell is the relative expression amount of the SMIM3 gene in the cell, and the result is shown in FIG. 4.
The results showed that SMIM3 gene was relatively low expressed in bone marrow samples of the normal group (22 healthy persons), the SMIM3 median value was 368.89% in the primary AML group consisting of 239 primary AML patients, and the SMIM3 median value was 408.37% in the primary ALL group consisting of 83 primary ALL patients. The statistical results show that the SMIM3 level of the primary AML group is significantly higher than that of the normal group (P < 0.0001), the SMIM3 level of the primary ALL group is significantly higher than that of the normal group (P < 0.0001), and the SMIM3 level of the primary AML group is not significantly different from that of the primary ALL group (P = 0.784), which indicates that the expression level of the SMIM3 gene can be used for auxiliary diagnosis of acute leukemia.
Sequence listing
<110> first subsidiary Hospital of Zhengzhou university
<120> primer probe set, kit and method for quantitatively detecting SMIM3 gene expression level
<160>8
<170>SIPOSequenceListing 1.0
<210>1
<211>22
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>1
tcatcatgac ctcgttgttg ct 22
<210>2
<211>22
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>2
ctcaaacagc cccactaagg at 22
<210>3
<211>29
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>3
actgcagtaa tcatctatcg catgcggac 29
<210>4
<211>31
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>4
tggagataac actctaagca taactaaagg t 31
<210>5
<211>21
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>5
gatgtagttg cttgggaccc a 21
<210>6
<211>28
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>6
ccatttttgg tttgggcttc acaccatt 28
<210>7
<211>2344
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>7
acactactgg gctccaagac tgctcaaggt ctcactgata gtcaaggctt gtgctccttt 60
ttttcagaag agtaagatta aagaaaacca ctgtgaatta aaaagtgtgg gtgccaacat 120
gggacgggag tcccccctca ctccatggat gacatagagg gggcagaaga ttacagaatt 180
ggcattgtcc tgcgtggaag ctgggccacc cacagtggcg tgggaagcct ctcagatgct 240
ggattctaat gggctcttga tcaccttgga ttgggctatt tcattgttat cacaaaataa 300
acaggatgct ccaagtcatg ttatggcaga gaaccaacca gcttcacact ggtcctctaa 360
accaatcctc acaacaggac tgggagacag gtgttacctt tcccacttta cagagaatga 420
aacagagtgg caaagcctcc gaaggaccct acacttcgga catcgcaaag caggatctga 480
gtcccggctc ctctgtccaa acctacttgctaggctttct ttcccatgtc tactctatag 540
ctggaaaggt cgtggaggac acattttagg ccaaccctct cggtttacaa tccagagagg 600
ggagaccctc agaagccaag cgacatgtcc acggctacgc ggcgagtgtg tggcaacgtg 660
gaaggggagc ccgagacgcc ctggtctctc ccttctctcg caggttcctt tctccccgaa 720
cgcagcccgc aggggacgct ggaggaggag ctgagctgga gttgccgggg ccccgggacc 780
gggcgttccg ggggcggtcc ccagcagccg cgcattccag agccagcagc gcgtcctggc 840
cgctcctgcg ctctcccgcc tcccggggct cggaggagcc ggggcacgtt ccaggagctg 900
cctagggctg aggttccagg cctgggggtc gcttccagct gccagatccc gtgcagtcct 960
ggggaccctg agaagcaccg agccatccct gacccaggaa ctttccgcag actcgccgcc 1020
atctgggagt gaagcaacat ggatgcagtc agccaagtcc ccatggaagt cgtgcttccc 1080
aagcacatcc tggatatctg ggttattgtc ctcatcatcc tggccaccat tgtcatcatg 1140
acctcgttgt tgctgtgccc agccactgca gtaatcatct atcgcatgcg gactcatccg 1200
atccttagtg gggctgtttg agagcctccc aagagggccg ggtgagggat gaggacaggc 1260
atcctatccc cagcctcttc ctgtcttcag aaaagcagca ggagggactt tggggcatgg 1320
acctgagttc tggttttgat tctgccacga gccagctgtg tgaatttggt caagggacct 1380
aactctctga gttccaggtt ccttatcttt caaatgggga tggtgatccc tgccctttct 1440
acctcatagg gatgtgagaa ccacctgact tagtggatgt gaaagctgtt tgtgatcagt 1500
aaagctacca cagatataag ggtgttatgc tgaatcctga gaagctttca agaaccagag 1560
aacctgattg ctgatgatgg ccttaaaggt ggtgagggag atactgggggcagagcagac 1620
tttgccagtg cccctcaggt caaaccaagc caagagcacc ctgtccccat tccaaggggc 1680
cagcagcact ttggcccaaa gtattttctt taaggtgcca ttccttcatg ttttctcagt 1740
ttggagggtg atgggtagag ctttccagaa ccttctccat tccagaatct ctgcccctgt 1800
gtaatctgaa ggaaggctgt gccatctttg ggcactgcca agggagttgg ggtgatgggc 1860
ttctttctgc actggagtct cacatctgtt agctttgaca ctcaagcaat gttggaaaat 1920
gcagggtgac tgagttccct gcccagcttt cgggatctct ggcccccatc cccttgtgtg 1980
tgtccctctg cccagctcct gctgtaatta gctccacgtg tacccccttc actccctccc 2040
accagctctg cagccagcct atggcaatta tattttaaga ggtgttccca ggacttttgg 2100
gacctactaa aacaatgatg gttattttag atgtgatgat ttatatttat gtagagatat 2160
ttctggacca ctcaagctct tcgataccaa aatcaggagc atcttgggat ttattaaatt 2220
atgtaagaag atagcacaga tatcgggata ttattgtgtg aaaatgctgc ttttactttg 2280
atgtgatctc attgatgtac acaaccaagt tccaataaag tgctagaatg tgcaaaaaaa 2340
aaaa 2344
<210>8
<211>5578
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>8
gttaacaggc gcgtcccggc caggcggaga cgcggccgcg gccatgggcg ggcgcgggcg 60
cgcggggcgg cggtgagggc ggctggcggg gccgggggcg ccgggggggc gcgcgggccg 120
agccgggcct gagccgggcc cgcggaccga gctgggagag gggttccggc ccccgacgtg 180
ctggcgcggg aaaatgttgg agatctgcct gaagctggtg ggctgcaaat ccaagaaggg 240
gctgtcctcg tcctccagct gttatctgga agaagccctt cagcggccag tagcatctga 300
ctttgagcct cagggtctga gtgaagccgc tcgttggaac tccaaggaaa accttctcgc 360
tggacccagt gaaaatgacc ccaacctttt cgttgcactg tatgattttg tggccagtgg 420
agataacact ctaagcataa ctaaaggtga aaagctccgg gtcttaggct ataatcacaa 480
tggggaatgg tgtgaagccc aaaccaaaaa tggccaaggc tgggtcccaa gcaactacat 540
cacgccagtc aacagtctgg agaaacactc ctggtaccat gggcctgtgt cccgcaatgc 600
cgctgagtat ctgctgagca gcgggatcaa tggcagcttc ttggtgcgtg agagtgagag 660
cagtcctggc cagaggtcca tctcgctgag atacgaaggg agggtgtacc attacaggat 720
caacactgct tctgatggca agctctacgt ctcctccgag agccgcttca acaccctggc 780
cgagttggtt catcatcatt caacggtggc cgacgggctc atcaccacgc tccattatcc 840
agccccaaag cgcaacaagc ccactgtcta tggtgtgtcc cccaactacg acaagtggga 900
gatggaacgc acggacatca ccatgaagca caagctgggc gggggccagt acggggaggt 960
gtacgagggc gtgtggaaga aatacagcct gacggtggcc gtgaagacct tgaaggagga 1020
caccatggag gtggaagagt tcttgaaaga agctgcagtc atgaaagaga tcaaacaccc 1080
taacctggtg cagctccttg gggtctgcac ccgggagccc ccgttctata tcatcactga 1140
gttcatgacc tacgggaacc tcctggacta cctgagggag tgcaaccggc aggaggtgaa 1200
cgccgtggtg ctgctgtaca tggccactca gatctcgtca gccatggagt acctggagaa 1260
gaaaaacttc atccacagag atcttgctgc ccgaaactgc ctggtagggg agaaccactt 1320
ggtgaaggta gctgattttg gcctgagcag gttgatgaca ggggacacct acacagccca 1380
tgctggagcc aagttcccca tcaaatggac tgcacccgag agcctggcct acaacaagtt 1440
ctccatcaag tccgacgtct gggcatttgg agtattgctt tgggaaattg ctacctatgg 1500
catgtcccct tacccgggaa ttgacctgtc ccaggtgtat gagctgctag agaaggacta 1560
ccgcatggag cgcccagaag gctgcccaga gaaggtctat gaactcatgc gagcatgttg 1620
gcagtggaat ccctctgacc ggccctcctt tgctgaaatc caccaagcct ttgaaacaat 1680
gttccaggaa tccagtatct cagacgaagt ggaaaaggag ctggggaaac aaggcgtccg 1740
tggggctgtg agtaccttgc tgcaggcccc agagctgccc accaagacga ggacctccag 1800
gagagctgca gagcacagag acaccactga cgtgcctgag atgcctcact ccaagggcca 1860
gggagagagc gatcctctgg accatgagcc tgccgtgtct ccattgctcc ctcgaaaaga 1920
gcgaggtccc ccggagggcg gcctgaatga agatgagcgc cttctcccca aagacaaaaa 1980
gaccaacttg ttcagcgcct tgatcaagaa gaagaagaag acagccccaa cccctcccaa 2040
acgcagcagc tccttccggg agatggacgg ccagccggag cgcagagggg ccggcgagga 2100
agagggccga gacatcagca acggggcact ggctttcacc cccttggaca cagctgaccc 2160
agccaagtcc ccaaagccca gcaatggggc tggggtcccc aatggagccc tccgggagtc 2220
cgggggctca ggcttccggt ctccccacct gtggaagaag tccagcacgc tgaccagcag 2280
ccgcctagcc accggcgagg aggagggcgg tggcagctcc agcaagcgct tcctgcgctc 2340
ttgctccgcc tcctgcgttc cccatggggc caaggacacg gagtggaggt cagtcacgct 2400
gcctcgggac ttgcagtcca cgggaagaca gtttgactcg tccacatttg gagggcacaa 2460
aagtgagaag ccggctctgc ctcggaagag ggcaggggag aacaggtctg accaggtgac 2520
ccgaggcaca gtaacgcctc cccccaggct ggtgaaaaag aatgaggaag ctgctgatga 2580
ggtcttcaaa gacatcatgg agtccagccc gggctccagc ccgcccaacc tgactccaaa 2640
acccctccgg cggcaggtca ccgtggcccc tgcctcgggc ctcccccaca aggaagaagc 2700
tggaaagggc agtgccttag ggacccctgc tgcagctgag ccagtgaccc ccaccagcaa 2760
agcaggctca ggtgcaccag ggggcaccag caagggcccc gccgaggagt ccagagtgag 2820
gaggcacaag cactcctctg agtcgccagg gagggacaag gggaaattgt ccaggctcaa 2880
acctgccccg ccgcccccac cagcagcctc tgcagggaag gctggaggaa agccctcgca 2940
gagcccgagc caggaggcgg ccggggaggc agtcctgggc gcaaagacaa aagccacgag 3000
tctggttgat gctgtgaaca gtgacgctgc caagcccagc cagccgggag agggcctcaa 3060
aaagcccgtg ctcccggcca ctccaaagcc acagtccgcc aagccgtcgg ggacccccat 3120
cagcccagcc cccgttccct ccacgttgcc atcagcatcc tcggccctgg caggggacca 3180
gccgtcttcc accgccttca tccctctcat atcaacccga gtgtctcttc ggaaaacccg 3240
ccagcctcca gagcggatcg ccagcggcgc catcaccaag ggcgtggtcc tggacagcac 3300
cgaggcgctg tgcctcgcca tctctaggaa ctccgagcag atggccagcc acagcgcagt 3360
gctggaggcc ggcaaaaacc tctacacgtt ctgcgtgagc tatgtggatt ccatccagca 3420
aatgaggaac aagtttgcct tccgagaggc catcaacaaa ctggagaata atctccggga 3480
gcttcagatc tgcccggcga cagcaggcag tggtccagcg gccactcagg acttcagcaa 3540
gctcctcagt tcggtgaagg aaatcagtga catagtgcag aggtagcagc agtcaggggt 3600
caggtgtcag gcccgtcgga gctgcctgca gcacatgcgg gctcgcccat acccgtgaca 3660
gtggctgaca agggactagt gagtcagcac cttggcccag gagctctgcg ccaggcagag 3720
ctgagggccc tgtggagtcc agctctacta cctacgtttg caccgcctgc cctcccgcac 3780
cttcctcctc cccgctccgt ctctgtcctc gaattttatc tgtggagttc ctgctccgtg 3840
gactgcagtc ggcatgccag gacccgccag ccccgctccc acctagtgcc ccagactgag 3900
ctctccaggc caggtgggaa cggctgatgt ggactgtctt tttcattttt ttctctctgg 3960
agcccctcct cccccggctg ggcctccttc ttccacttct ccaagaatgg aagcctgaac 4020
tgaggccttg tgtgtcaggc cctctgcctg cactccctgg ccttgcccgt cgtgtgctga 4080
agacatgttt caagaaccgc atttcgggaa gggcatgcac gggcatgcac acggctggtc 4140
actctgccct ctgctgctgc ccggggtggg gtgcactcgc catttcctca cgtgcaggac 4200
agctcttgat ttgggtggaa aacagggtgc taaagccaac cagcctttgg gtcctgggca 4260
ggtgggagct gaaaaggatc gaggcatggg gcatgtcctt tccatctgtc cacatcccca 4320
gagcccagct cttgctctct tgtgacgtgc actgtgaatc ctggcaagaa agcttgagtc 4380
tcaagggtgg caggtcactg tcactgccga catccctccc ccagcagaat ggaggcaggg 4440
gacaagggag gcagtggcta gtggggtgaa cagctggtgc caaatagccc cagactgggc 4500
ccaggcaggt ctgcaagggc ccagagtgaa ccgtcctttc acacatctgg gtgccctgaa 4560
agggcccttc ccctccccca ctcctctaag acaaagtaga ttcttacaag gccctttcct 4620
ttggaacaag acagccttca cttttctgag ttcttgaagc atttcaaagc cctgcctctg 4680
tgtagccgcc ctgagagaga atagagctgc cactgggcac ctgcgcacag gtgggaggaa 4740
agggcctggc cagtcctggt cctggctgca ctcttgaact gggcgaatgt cttatttaat 4800
taccgtgagt gacatagcct catgttctgt gggggtcatc agggagggtt aggaaaacca 4860
caaacggagc ccctgaaagc ctcacgtatt tcacagagca cgcctgccat cttctccccg 4920
aggctgcccc aggccggagc ccagatacgg gggctgtgac tctgggcagg gacccggggt 4980
ctcctggacc ttgacagagc agctaactcc gagagcagtg ggcaggtggc cgcccctgag 5040
gcttcacgcc gggagaagcc accttcccac cccttcatac cgcctcgtgc cagcagcctc 5100
gcacaggccc tagctttacg ctcatcacct aaacttgtac tttatttttc tgatagaaat 5160
ggtttcctct ggatcgtttt atgcggttct tacagcacat cacctctttg cccccgacgg 5220
ctgtgacgca gccggaggga ggcactagtc accgacagcg gccttgaaga cagagcaaag 5280
cgcccaccca ggtcccccga ctgcctgtct ccatgaggta ctggtccctt ccttttgtta 5340
acgtgatgtg ccactatatt ttacacgtat ctcttggtat gcatctttta tagacgctct 5400
tttctaagtg gcgtgtgcat agcgtcctgc cctgccccct cgggggcctg tggtggctcc 5460
ccctctgctt ctcggggtcc agtgcatttt gtttctgtat atgattctct gtggtttttt 5520
ttgaatccaa atctgtcctc tgtagtattt tttaaataaa tcagtgttta cattagaa 5578
Claims (5)
1. A primer probe group for quantitatively detecting the expression level of SMIM3 gene, which is characterized in that: the paint comprises a component A and a component B, wherein the component A comprises:
upstream primer SMIM3-FP of nucleotide sequence shown in SEQ ID NO.1
A downstream primer SMIM3-RP of the nucleotide sequence shown in SEQ ID NO.2,
and a probe SMIM3-probe containing a nucleotide sequence shown in SEQ ID NO.3, wherein the 5 'end of the probe SMIM3-probe is marked with a FAM luminous group, and the 3' end is marked with a fluorescence quenching group BHQ;
the component B comprises:
an upstream primer ABL1-FP of the nucleotide sequence shown in SEQ ID NO.4,
a downstream primer ABL1-RP of the nucleotide sequence shown in SEQ ID NO.5,
and a probe ABL1-probe containing a nucleotide sequence shown in SEQ ID NO.6, wherein the 5 'end of the probe ABL1-probe is marked with FAM luminous group, and the 3' end is marked with fluorescence quenching group TAMRA.
2. A kit for quantitatively detecting the expression level of SMIM3 gene, which is characterized in that: comprising the primer probe set of claim 1, a positive control plasmid comprising the SMIM3 gene fragment set forth in SEQ ID No.7, and an internal control plasmid comprising the ABL1 gene fragment set forth in SEQ ID No. 8.
3. The kit for quantitatively detecting the expression level of SMIM3 gene according to claim 2, wherein: the molar ratio of the upstream primer SMIM3-FP, the downstream primer SMIM3-RP and the probe SMIM3-probe in the component A is 3:3:2, and the molar ratio of the upstream primer ABL1-FP, the downstream primer ABL1-RP, the probe ABL1-probe in the component B is 3:3: 2.
4. The kit for quantitatively detecting the expression level of SMIM3 gene according to claim 2, wherein: the positive control plasmid is a positive plasmid in which a SMIM3 gene fragment shown in SEQ ID No.7 is inserted into the XhoI/KpnI enzyme cutting site of the GV219 plasmid, and the internal reference plasmid is an ABL1 gene fragment shown in SEQ ID No.8 is inserted into the XhoI/KpnI enzyme cutting site of the GV219 plasmid.
5. A method for quantitatively detecting the expression level of SMIM3 gene, which is characterized by comprising the following steps: the method comprises the following steps:
firstly, extracting RNA in a sample to be detected, and performing reverse transcription to obtain cDNA;
secondly, drawing a fluorescence standard curve of the positive control plasmid and a fluorescence standard curve of the internal reference control plasmid;
and thirdly, taking the cDNA obtained in the first step as a template, respectively adding the component A and the component B for amplification reaction, respectively carrying out RQ-PCR detection, obtaining the cycle number of the SMIM3 gene segment and the cycle number of the ABL1 gene segment in the sample, respectively calculating by using the fluorescence standard curve of the positive control plasmid and the fluorescence standard curve of the internal reference control plasmid in the second step to obtain the copy number of the SMIM3 gene segment and the copy number of the ABL1 gene in the sample, and obtaining the ratio of the copy number of the SMIM3 gene segment to the copy number of the ABL1 gene in the sample, namely the SMIM3 gene expression quantity in the sample.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911212698.2A CN111100931A (en) | 2019-12-02 | 2019-12-02 | Primer probe set, kit and method for quantitatively detecting SMIM3 gene expression quantity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911212698.2A CN111100931A (en) | 2019-12-02 | 2019-12-02 | Primer probe set, kit and method for quantitatively detecting SMIM3 gene expression quantity |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111100931A true CN111100931A (en) | 2020-05-05 |
Family
ID=70420785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911212698.2A Pending CN111100931A (en) | 2019-12-02 | 2019-12-02 | Primer probe set, kit and method for quantitatively detecting SMIM3 gene expression quantity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111100931A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112626222A (en) * | 2021-02-03 | 2021-04-09 | 郑州大学第一附属医院 | Primer probe set, kit and detection method for detecting expression quantity of LPCAT1 gene |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107794296A (en) * | 2017-09-26 | 2018-03-13 | 北京旌准医疗科技有限公司 | Quantitatively detect the horizontal RT PCR kits of BCR ABL1P210 types track fusion |
CN109280704A (en) * | 2018-10-12 | 2019-01-29 | 郑州大学第附属医院 | RASD1 is preparing the application in B-ALL diagnosis and prognosis evaluation reagent kit as marker |
-
2019
- 2019-12-02 CN CN201911212698.2A patent/CN111100931A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107794296A (en) * | 2017-09-26 | 2018-03-13 | 北京旌准医疗科技有限公司 | Quantitatively detect the horizontal RT PCR kits of BCR ABL1P210 types track fusion |
CN109280704A (en) * | 2018-10-12 | 2019-01-29 | 郑州大学第附属医院 | RASD1 is preparing the application in B-ALL diagnosis and prognosis evaluation reagent kit as marker |
Non-Patent Citations (4)
Title |
---|
WANG SJ等: "Cysteine and glycine-rich protein 2 (CSRP2) transcript levels correlate with leukemia relapse and leukemia-free survival in adults with B-cell acute lymphoblastic leukemia and normal cytogenetics", 《ONCOTARGET》 * |
何香兰等: "甲基莲心碱通过影响微小RNA抑制鼻咽癌细胞侵袭转移的机制研究", 《药学学报》 * |
佚名: "Homo sapiens small integral membrane protein 3 (SMIM3), mRNA,NM_032947.4", 《GENBANK》 * |
李自刚,李鸣晓主编, 中国轻工业出版社 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112626222A (en) * | 2021-02-03 | 2021-04-09 | 郑州大学第一附属医院 | Primer probe set, kit and detection method for detecting expression quantity of LPCAT1 gene |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Von Euler et al. | Excretion of noradrenaline in urine in hypertension | |
Tonkonogi et al. | Endurance training increases stimulation of uncoupling of skeletal muscle mitochondria in humans by non-esterified fatty acids: an uncoupling-protein-mediated effect? | |
Lu et al. | Regulation of norepinephrine transport system by angiotensin II in neuronal cultures of normotensive and spontaneously hypertensive rat brains | |
JP2011188853A (en) | NOVEL SELECTIVE SPLICING VARIANT OF OATP1B3 mRNA | |
Yanagawa et al. | Detection of ESR1 mutations in plasma and tumors from metastatic breast cancer patients using next-generation sequencing | |
Upadhyay et al. | Free light chains injure proximal tubule cells through the STAT1/HMGB1/TLR axis | |
CN101363054B (en) | Method for detecting hereditary hearing loss relative connexin 26 gene GJB2 mutation and kit for detection | |
CN103290123B (en) | Detecting method and kit of cattle IGF2 (Insulin-like Growth Factor 2) gene mononucleotide polymorphism | |
CN111100931A (en) | Primer probe set, kit and method for quantitatively detecting SMIM3 gene expression quantity | |
Branch et al. | Interference between coinoculated viroids | |
CN107937526A (en) | A kind of relevant tumor markers of neuroblastoma and its application | |
CN109666746B (en) | Primer, probe and kit for detecting human ROS1 gene fusion mutation and detection method thereof | |
Maclean et al. | On the testing of renal efficiency, with observations on the “urea coefficient” | |
Liu et al. | The zinc transporter SLC39A8 is a negative feedback regulator of NF-κB through zinc-mediated inhibition of IKK | |
McCabe et al. | Brattleboro Rat Hypothalamic Neurons Transcribe Vasopressin Gene: Evidence from in situ Hybridization: (With 1 color plate) | |
Najimi et al. | Neurotensin induces tyrosine hydroxylase gene activation through nitric oxide and protein kinase C signaling pathways | |
Sévigny et al. | Discrimination among and variation within species of Pseudocalanus based on the GPI locus | |
CN111100907A (en) | Primer probe set, kit and method for quantitatively detecting GNA15 gene expression quantity | |
Liu et al. | Transient receptor potential vanilloid 4 modulates ion balance through the isotocin pathway in zebrafish (Danio rerio) | |
Collins et al. | Decreased transcription of the sodium-phosphate transporter gene in the hypophosphatemic mouse | |
Koller et al. | Characterization of two novel human retropseudogenes related to the calmodulin-encoding gene, CaMII | |
CN108624687B (en) | Primer, primer combination, kit and its application | |
CN102031304B (en) | Single nucleotide polymorphism (SNP) of ADD1 gene of cattle and detection method thereof | |
Seki et al. | Inhibition of replicative DNA synthesis and induction of unscheduled DNA synthesis in permeable sarcoma cells by bleomycin | |
CN116287254B (en) | Application of SCRN1 in preparation of hepatocellular carcinoma parting diagnosis or sorafenib curative effect prediction kit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200505 |