CN111095844A - 移动通信系统中用于支持重复的csi-rs资源传输的方法和设备 - Google Patents

移动通信系统中用于支持重复的csi-rs资源传输的方法和设备 Download PDF

Info

Publication number
CN111095844A
CN111095844A CN201880056392.XA CN201880056392A CN111095844A CN 111095844 A CN111095844 A CN 111095844A CN 201880056392 A CN201880056392 A CN 201880056392A CN 111095844 A CN111095844 A CN 111095844A
Authority
CN
China
Prior art keywords
csi
information
terminal
base station
rss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880056392.XA
Other languages
English (en)
Other versions
CN111095844B (zh
Inventor
郭莹宇
卢勋东
申哲圭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to CN202311175295.1A priority Critical patent/CN117220846A/zh
Publication of CN111095844A publication Critical patent/CN111095844A/zh
Application granted granted Critical
Publication of CN111095844B publication Critical patent/CN111095844B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Abstract

本公开涉及一种用于融合支持超4G系统的更高数据传输速率的5G通信系统与IoT技术的通信技术。基于5G通信技术和IoT相关技术,本公开可应用于智能服务(例如,智能家居、智能建筑、智能城市、智能汽车或联网汽车、医疗保健、数字教育、零售业务、安全和安保相关服务等)。提供了一种无线通信系统中的方法。该方法包括:向终端发送信道状态信息参考信号(CSI‑RS)配置信息,该CSI‑RS配置信息用于包括多个CSI‑RS资源和关于CSI‑RS重复的信息的CSI‑RS资源集;向终端发送基于CSI‑RS配置信息的多个CSI‑RS;以及从终端接收反馈信息,其中,关于CSI‑RS重复的信息指示多个CSI‑RS是否基于相同的发送波束被重复发送。

Description

移动通信系统中用于支持重复的CSI-RS资源传输的方法和 设备
技术领域
本公开总体上涉及无线通信系统,并且更具体地,涉及用于由基站传输用于终端的信道状态测量的信道状态信息参考信号(channel state information referencesignal,CSI-RS)的方法和设备。
背景技术
为了满足自4G通信系统商业化以来日益增加的无线数据业务量需求,已经努力开发改进的5G通信系统或预5G通信系统,5G通信系统或预5G通信系统有时被称为超4G网络通信系统或后LTE(long term evolution,LTE)系统。为了实现高数据传输速率,正考虑在毫米波频段(例如,60GHz频段)中实施5G通信系统。在5G通信系统中,诸如波束形成、大规模多输入多输出(multiple-input multiple-output,MIMO)、全维MIMO(full-dimensionalMIMO,FD-MIMO)、阵列天线、模拟波束形成和大规模天线技术的技术已经被认为是减轻毫米波频段中的传播路径损耗和增加传播传输距离的方法。此外,在5G通信系统中,诸如演进的小小区、高级小小区、云无线电接入网络(cloud radio access network,RAN)、超密集网络、设备到设备(device-to-device,D2D)通信、无线回程、移动网络、协作通信、协调多点(coordinated multi-point,CoMP)和接收干扰消除的技术已经被用于改进系统网络。此外,在5G系统中,还开发了高级编码调制(advanced coding modulation,ACM)方案,诸如混合频移键控(hybrid frequency-shift keying,FSK)和正交幅度调制(quadratureamplitude modulation,QAM)(FQAM)以及滑动窗口叠加编码(sliding windowsuperposition coding,SWSC),还开发了高级接入技术,诸如滤波器组多载波(filterbank multi carrier,FBMC)、非正交多址(non-orthogonal multiple access,NOMA)和稀疏码多址(sparse code multiple access SCMA)。
互联网已经从人类在其中生成和消费信息的面向人的连接网络发展成诸如物体的分布式组件在其中交换和处理信息的物联网(IoT)网络。万物互联(IoE)技术也已经出现,在其中,基于与云服务器等连接的大数据处理技术与IoT技术相结合。为了实施IoT,需要诸如传感技术、有线/无线通信和网络基础设施、服务接口技术和安全技术的技术因素,因此,目前正在对传感器网络、机器对机器(machine-to-machine,M2M)通信、机器类型通信(machine-type communication,MTC)等进行研究以用于物体之间的连接。在IoT环境中,通过收集和分析由连接的物体产生的数据,可以提供在人们的生活中创造新价值的智能互联网技术(internet technology,IT)服务。通过传统信息技术(IT)和各种行业的融合或结合,IoT可应用于诸如智能家居、智能建筑、智能城市、智能汽车、联网汽车、智能电网、医疗保健、智能家用电器或高科技医疗服务等领域。
因此,已经做出了将5G通信应用于IoT的各种尝试。例如,诸如传感器网络、M2M通信和MTC的5G通信技术使用诸如波束形成、MIMO和阵列天线的技术来实施。云RAN的应用作为大数据处理技术是5G技术和IoT技术融合的一个示例。
在新的5G通信中,即,在新无线电(new radio,NR)中,不同于现有LTE,通信是基于波束执行的;这是因为NR支持高于6GHz的频带,其高于传统的LTE频段。此外,由于在这种频带中没有太多常规使用的系统,所以可以确保更多的频带。然而,为了支持高于6GHz的频带,除了影响现有LTE中频带的使用的那些因素之外,还需要考虑由于频带的增加而导致的路径损耗。例如,随着用于无线通信的频带增加,对应的频带中出现的路径损耗也增加。此外,由于路径损耗,对于相同的传输功率,对应的基站支持的覆盖范围减小。因此,为了克服路径损耗,有必要在基站所要求的方向上支持用于集中和传输传输功率的波束,并且因为根据对应波束的支持,可以由一个波束支持的方向减少了,所以也有必要有效地选择和管理波束。
发明内容
技术问题
本公开至少解决了上述缺点,并且至少提供了下述优点。因此,本公开提供了一种用于有效选择和管理波束的方法和设备。
技术方案
根据本公开的一方面,提供了一种无线通信系统中的基站的方法。该方法包括:向终端发送信道状态信息参考信号CSI-RS)配置信息,该CSI-RS配置信息用于包括多个CSI-RS资源和关于CSI-RS重复的信息的CSI-RS资源集;向终端发送基于CSI-RS配置信息的多个CSI-RS;以及从终端接收反馈信息,其中关于CSI-RS重复的信息指示多个CSI-RS是否基于相同的发送波束被重复是否。
根据本公开的一方面,提供了一种无线通信系统中的终端的方法。该方法包括:从基站接收信道状态信息参考信号(CSI-RS)配置信息,该CSI-RS配置信息用于包括多个CSI-RS资源和关于CSI-RS重复的信息的CSI-RS资源集;从基站接收基于CSI-RS配置信息的多个CSI-RS;基于接收到的多个CSI-RS生成反馈信息;以及向基站发送反馈信息,其中关于CSI-RS重复的信息指示多个CSI-RS是否基于相同的发送波束被重复发送。
根据本公开的一方面,提供了一种无线通信系统中的基站。该基站包括收发器和控制器,控制器可操作地耦合到收发器,并且被配置成:向终端发送信道状态信息参考信号(CSI-RS)配置信息,该CSI-RS配置信息用于包括多个CSI-RS资源和关于CSI-RS重复的信息的CSI-RS资源集,向终端发送基于CSI-RS配置信息的多个CSI-RS,以及从终端接收反馈信息,其中,关于CSI-RS重复的信息指示多个CSI-RS是否基于相同的发送波束被重复发送。
根据本公开的一方面,提供了一种无线通信系统中的终端。该终端包括收发器和控制器,控制器可操作地耦合到收发器,并且被配置成:从基站接收信道状态信息参考信号(CSI-RS)配置信息,该CSI-RS配置信息用于包括多个CSI-RS资源和关于CSI-RS重复的信息的CSI-RS资源集,从基站接收基于CSI-RS配置信息的多个CSI-RS,基于接收到的多个CSI-RS生成反馈信息,以及将反馈信息发送到基站,其中,关于CSI-RS重复的信息指示多个CSI-RS是否基于相同的发送波束被重复发送。
有益技术效果
根据本公开,基站和终端能够有效地选择和管理用于发送和接收信号的波束。
附图说明
从以下结合附图的详细描述中,本公开的某些实施例的上述和其他方面、特征和优点将更加清楚,在附图中:
图1是根据实施例的无线电资源设置的图;
图2是根据实施例的当Npd=2,MRI=2,NOFFSET,CQI=1以及NOFFSET,RI=-1时,秩指示符(rank indicator,RI)和宽带信道质量指示符(wideband channel quality indicator,wCQI)的反馈定时的图;
图3是根据实施例的当Npd=2,MRI=2,J=3(10MHz),K=1,NOFFSET,CQI=1以及NOFFSET,R1=-1时的R1、子带CQI(sCQI)和wCQI的反馈定时的图;
图4是根据实施例的当预编码类型指示符(precoding type indicator,PTI)=0且Npd=2,MRI=2,J=3(10MHz),K=1,H'=3,NOFFSET,CQI=1以及NOFFSET,RI=-1时的反馈定时的图;
图5是根据实施例的当PTI=1且Npd=2,MRI=2,J=3(10MHz),K=1,H'=3,NOFFSET,CQI=1以及NOFFSET,R1=-1时的反馈定时的图;
图6是根据实施例的由终端支持的周期性信道状态报告的图,对于该终端,在长期演进(LTE)版本13(Rel-13)和LTE版本14(Rel-14)中配置了12个或更多个端口的CSI-RS;
图7是根据实施例的数据的无线电资源设置(诸如NR系统中的增强型移动宽带(enhanced mobile broadband,eMBB)、超可靠和低延迟通信(ultra-reliable and low-latency communication,URLLC)以及大规模MTC(massive MTC,mMTC))的图;
图8是根据实施例的在5G通信系统中传输的同步信号的图;
图9是根据实施例的在5G通信系统中传输的物理广播信道(physical broadcastchannel,PBCH)的图;
图10是根据实施例的在NR系统中的各个时间和频率资源中复用的服务的图;
图11是根据实施例的允许通过NR中的资源设置、CSI报告设置和信道状态测量设置进行灵活配置的基站和终端的图,并且其中基于灵活配置来执行信道状态报告;
图12是根据实施例的根据非周期性信道状态报告触发方法1在触发测量设置内触发链路的方法的图;
图13是根据实施例的用于非周期性信道状态报告触发方法1的位图的指示序列的图;
图14是根据实施例的根据非周期性信道状态报告触发方法2在触发测量设置内触发CSI报告设置的方法的图。
图15是根据实施例的用于非周期性信道状态报告触发方法2的位图的指示序列的图;
图16是根据实施例的通过使用非周期性信道状态报告指示字段的非周期性CSI-RS的间接指示的图;
图17是根据实施例的在NR中支持的混合波束形成系统的图;
图18是根据实施例的终端和基站在时间资源中的波束扫描操作的图;
图19是根据实施例的终端的方法的流程图;
图20是根据实施例的基站的方法的流程图;
图21是根据实施例的终端的图;以及
图22是根据实施例的基站的图。
具体实施方式
下面将参考附图描述本公开的实施例。然而,本公开的实施例不限于特定实施例,并且应当被解释为包括本公开的所有修改、改变、等效装置和方法和/或替代实施例。在附图的描述中,相似的附图标记用于相似的元件。
本文使用的术语“具有”、“可以具有”、“包括”和“可以包括”指示对应的特征(例如,诸如数值、功能、操作或部件的元件)的存在,并且不排除附加特征的存在。
本文使用的术语“A或B”、“A或/和B中的至少一个”或“A或/和B中的一个或多个”包括与它们一起枚举的项目的所有可能的组合。例如,“A或B”、“A和B中的至少一个”或“A或B中的至少一个”意味着(1)包括至少一个A,(2)包括至少一个B,或(3)包括至少一个A和至少一个B
本文使用的诸如“第一”和“第二”的术语可以使用对应的组件,而不管其重要性或顺序,并且用于将一个组件与另一组件区分开来,而不限制组件。这些术语可以用于区分一个元件和另一个元件。例如,第一用户设备和第二用户设备可以指示不同的用户设备,而不管顺序或重要性。例如,在不脱离本公开的范围的情况下,第一元件可以被称为第二元件,并且类似地,第二元件可以被称为第一元件。
应当理解,当一个元件(例如,第一元件)与另一元件(例如,第二元件)(可操作地或可通信地)耦合或“连接到”另一元件时,该元件可以直接与另一元件相耦合或连接到另一元件,并且在该元件和另一元件之间可以有中间元件(例如,第三元件)。相反,应当理解,当一个元件(例如,第一元件)与另一元件(例如,第二元件)“直接耦合/耦合到”或“直接连接到”另一元件时,在该元件和另一元件之间没有中间元件(例如,第三元件)。
根据上下文,本文使用的表达“被配置成(或被设置成)”可以与“适合于”、“具有能力”、“被设计成”、“被适配成”、“被制造成”或“能够”互换使用。术语“被配置成(被设置成)”不一定意味着硬件级别的“被专门设计为”。取而代之的是,“被配置成……的装置”可能意味着该装置与特定上下文中的其他设备或部件一起“能够……”。例如,“被配置成(被设置成)执行A、B和C的处理器”可能意味着用于执行对应的操作的专用处理器(例如,嵌入式处理器),或者能够通过执行存储在存储设备中的一个或多个软件程序来执行对应的操作的通用处理器(例如,中央处理单元(central processing unit,CPU)或应用处理器(application processor,AP))。
用于描述本公开的各种实施例的术语是为了描述特定实施例,而不是为了限制本公开。如本文所使用的,除非上下文另有明确指示,否则单数形式也旨在包括复数形式。本文使用的所有术语,包括技术或科学术语,具有与相关领域普通技术人员通常理解的含义相同的含义,除非另有定义。在通用词典中定义的术语应该被解释为具有与相关技术的上下文含义相同或相似的含义,并且不应该被解释为具有理想的或夸大的含义,除非它们在本文中被清楚地定义。根据情况,即使在本公开中定义的术语也不应被解释为排除本公开的实施例。
本文使用的术语“模块”可以例如意味着包括硬件、软件和固件中的一个或者它们中的两个或多个的组合的单元。“模块”可以与例如术语“单元”、“逻辑”、“逻辑块”、“组件”或“电路”互换使用。“模块”可以是集成组件元件或其一部分的最小单元。“模块”可以是用于执行一个或多个功能或其一部分的最小单元。“模块”可以机械地或电子地实施。例如,根据本公开的“模块”可以包括用于执行已知的或将在以后开发的操作的专用集成电路(application-specific integrated circuit,ASIC)芯片、现场可编程门阵列(field-programmable gate array,FPGA)和可编程逻辑器件中的至少一个。
根据本公开的电子设备可以包括例如智能电话、平板个人计算机(personalcomputer,PC)、移动电话、视频电话、电子书阅读器(电子书阅读器)、桌上型PC、膝上型PC、上网本计算机、工作站、服务器、个人数字助理(personal digital assistant,PDA)、便携式多媒体播放器(portable multimedia player,PMP)、MPEG-1音频层3(MP3)播放器、移动医疗设备、相机和可穿戴设备中的至少一个。可穿戴设备可以包括附件类型(例如,手表、戒指、手镯、脚链、项链、眼镜、隐形眼镜或头戴式设备(head-mounted device,HMD))、织物或服装集成类型(例如,电子服装)、身体安装类型(例如,皮肤垫或纹身)以及生物可植入类型(例如,可植入电路)中的至少一种。
电子设备可以是家用电器。家用电器可以包括例如电视、数字视频盘(digitalvideo disk,DVD)播放器、音频、冰箱、空调、真空吸尘器、烤箱、微波炉、洗衣机、空气净化器、机顶盒、家庭自动化控制面板、安全控制面板、TV盒(例如,三星HomeSyncTM、苹果TVTM或谷歌TVTM)、游戏控制台(例如,XboxTM和PlayStationTM)、电子词典、电子钥匙、便携式摄像机和电子相框中的至少一个。
电子设备可以包括各种医疗设备(例如,各种便携式医疗测量设备(血糖监测设备、心率监测设备、血压测量设备、体温测量设备等))、磁共振血管造影术(magneticresonance angiography,MRA)、磁共振成像(magnetic resonance imaging,MRI)、计算机断层扫描(computed tomography,CT)机和超声波机)、导航设备、全球定位系统(globalpositioning system,GPS)接收器、事件数据记录器(event data recorder,EDR)、飞行数据记录器(flight data recorder,FDR)、车辆信息娱乐设备、船舶电子设备(例如,船舶导航设备和陀螺罗盘)、航空电子设备、安全设备、汽车头部单元、家用或工业用机器人、银行自动柜员机(automatic teller machine,ATM),商店中的销售点(point of sales,POS)设备、或IoT设备(例如,灯泡、各种传感器、电表或煤气表、洒水装置、火灾报警器、恒温器、街灯、烤面包机、体育用品、热水箱、加热器、锅炉等)中的至少一个。
电子设备可以包括家具或建筑物/结构的一部分、电子板、电子签名接收设备、投影仪和各种测量仪器(例如,水表、电表、煤气表和无线电波表)中的至少一个。电子设备可以是一个或多个前述各种设备的组合。电子设备也可以是柔性设备。此外,电子设备不限于前述设备,并且可以包括根据新技术发展的电子设备。
尽管本公开提供了对NR系统、LTE系统和高级LTE(LTE-A)系统的描述,但是本公开可以应用于具有类似于上述系统的结构的通信系统以及使用许可频段和免许可频段的其他通信系统,而无需对其进行任何修改。本公开涉及通用无线移动通信系统,并且更具体地,涉及在采用使用多载波的多址方案(例如正交频分多址(orthogonal frequency-division multiple access,OFDMA))的无线移动通信系统中映射参考信号的方法。
移动通信系统已经演进成提供数据和多媒体服务的高速、高质量无线分组数据通信系统。为此,诸如3GPP、3GPP2、IEEE等各种标准化组织一直致力于可以应用使用多载波的多址方案的第三代演进移动通信系统的标准化。最近,已经开发了各种移动通信标准来支持基于使用多载波的多址方案的高速和高质量无线分组数据通信系统,诸如3GPP的LTE、3GPP2的超移动宽带(ultra mobile broadband,UMB)、IEEE的802.16m等。
现有的第三代移动通信系统,诸如LTE、UMB和802.16m,都是基于多载波多址方案。为了提高传输效率,这种系统采用MIMO、多天线,并使用各种技术,诸如波束形成方法、AMC方法和信道-敏感调度方法。各种技术可以通过基于信道质量等集中从多个天线发送的传输功率或调整所发送数据的量,并且选择性地向用户发送具有良好信道质量的数据等的方法来增强传输效率并且改进系统容量性能。这些方案中的大多数是基于基站(basestation,BS)或g节点B(g Node B,gNB)和终端(用户设备(user equipment,UE)或移动台(mobile station,MS))之间的信道的信道状态信息来操作的,因此gNB或UE可能需要测量基站和终端之间的信道状态。可以使用信道状态参考信号(CSI-RS)。上述gNB涉及位于预定位置的下行链路发送/上行链路接收设备,并且一个gNB对多个小区执行发送和接收。在一个移动通信系统中,多个gNB可以在地理上分散,并且每个gNB可以对多个小区执行发送和接收。
现有的第三代和第四代移动通信系统(诸如,LTE、LTE-A等)利用MIMO技术,该技术使用多个传输和接收天线来执行传输,以提高数据传输速率和系统容量。MIMO技术使用多个收发天线,并且可以通过空间划分多个信息流来执行传输。通过空间划分多个信息流的传输被称为空间复用。通常,要对其应用空间复用的信息流的数量可以基于发送器和接收器中包括的天线的数量而变化。要对其应用空间复用的信息流的数量通常被称为对应传输的秩。当LTE-A版本11标准支持MIMO技术时,空间复用被支持用于16个传输天线或8个接收天线,并且被支持的秩多达8。
在NR接入技术的情况下,即,当前正在讨论的第五代移动通信系统,系统设计的目的是支持各种服务,诸如eMBB、mMTC和URLLC。在NR系统中,通过使常规上不断传输的参考信号的传输最小化且非周期地执行,时间和频率资源被配置成灵活地传输。
在下文中,将参考附图描述电子设备。在本公开中,术语“用户”可以表示使用电子设备的人或者使用电子设备的设备(例如,人工智能电子设备)。
图1示出了根据实施例的一个子帧和一个资源块(resource block,RB)的无线电资源,其是在LTE系统中用于下行链路调度的最小单位。
图1所示的无线电资源由时间轴上的单个子帧和频率轴上的单个RB形成。无线电资源由频域中的12个子载波和时域中的14个OFDM符号构成,因此总共可以具有168个独特的频率和时间位置。在LTE中,图1的每个独特的频率和时间位置被称为资源元素(resourceelement,RE)。
通过图1所示的无线电资源,可以传输如下多种不同类型的信号。
1.小区特定RS(CRS)100:CRS是为属于一个小区的所有终端周期性发送的参考信号,并且可以被多个终端共同使用。
2.解调参考信号110(DMRS):DMRS是为特定终端发送的参考信号,并且仅当数据被发送到对应的终端时才被发送。DMRS由总共8个DMRS端口组成。在LTE/LTE-A中,从端口7到端口14的端口是DMRS端口,并且端口保持它们之间的正交性,以便使用码分复用(codedivision multiplexing,CDM)或频分复用(frequency division multiplexing,FDM)来防止它们之间产生干扰。
3.物理下行链路共享信道120(PDSCH):PDSCH是用于下行链路传输的数据信道,并且用于基站向终端发送业务。使用RE来传输PDSCH,其中参考信号不在图1的数据区域160中传输。
4.CSI-RS140:CSI-RS用于测量为属于一个小区的终端发送的参考信号的信道状态。多个CSI-RS可以在单个小区中发送。
5.其他控制信道130(物理混合ARQ指示信道(PHICH)、物理控制格式指示信道(PCFICH)和物理下行链路控制信道(PDCCH)):控制信道用于提供终端接收物理下行链路共享信道(PDSCH)所必需的控制信息,或者用于发送针对上行链路数据传输的混合自动重复请求(HARQ)的操作的确认/否认(ACK/NACK)。在控制区域150中执行传输。
除了信号之外,在LTE系统中,可以设置静音,使得对应的小区中的终端可以无干扰地接收从另一个基站发送的CSI-RS。静音可以应用于其中可以传输CSI-RS的位置,并且通常,终端可以跳过对应的无线电资源并接收业务信号。在LTE-A系统中,静音也被称为零功率CSI-RS,由于静音的特性,静音被应用于CSI-RS的位置,并且传输功率不被发送。
在图1中,基于发送CSI-RS的天线的数量,可以使用被表达为A、B、C、D、E、F、G、H、I和J的位置中的一些来传输CSI-RS。此外,静音可以应用于被表达为A、B、C、D、E、F、G、H、I和J的位置中的一些。特别地,基于执行传输的天线端口的数量,可以使用2、4和8个RE来传输CSI-RS。例如,当天线端口的数量为2时,通过图1中预定图案的一半来传输CSI-RS。当天线端口的数量为4时,通过预定图案的全部来传输CSI-RS。当天线端口的数量为8时,使用两个图案来传输CSI-RS。相反,静音总是基于单个图案执行。也就是说,静音可以应用于多个图案,但是当位置不与CSI-RS重叠时,不能应用于单个图案的一部分。然而,当静音的位置和CSI-RS的位置重叠时,静音可以应用于单个图案的一部分。
当针对两个天线端口传输CSI-RS时,CSI-RS可以通过在时间轴上连续的两个RE来传输各个天线端口的信号,并且每个天线端口的信号由正交码区分。当针对四个天线端口传输CSI-RS时,除了针对两个天线端口的CSI-RS之外,还使用另外两个RE,并且针对两个天线端口的信号以相同的方式被额外传输。同样,可以执行与8个天线端口相关联的CSI-RS的传输。当CSI-RS支持12个天线端口和16个天线端口时,属于四个现有天线端口的三个CSI-RS传输位置被组合,或者属于八个天线端口的两个CSI-RS传输位置可以被组合。
终端可以接收CSI-IM(或干扰测量资源(interference measurement resource,IMR))与CSI-RS一起的分配,其中CSI-IM资源具有与支持4个端口的CSI-RS相同的资源结构和位置。CSI-IM是用于由从一个或多个基站接收数据的终端精确测量来自相邻基站的干扰的资源。例如,当终端想要测量当相邻基站发送数据时的干扰量和当相邻基站不发送数据时的干扰量时,基站可以包括CSI-RS和两个CSI-IM资源。相邻基站被配置成总是在一个CSI-IM中发送信号,同时防止相邻基站总是在另一个CSI-IM中发送信号,从而可以有效地测量相邻基站的干扰量。
下面描述的表1示出了用于配置CSI-RS配置的无线电资源控制(radio resourcecontrol,RRC)字段。特别地,表1示出了用于在CSI过程中支持周期性CSI-RS的RRC配置。
[表1]
Figure BDA0002395023650000111
如表1所示,在CSI过程中基于周期性CSI-RS配置信道状态报告可分为四种类型。CSI-RS config用于配置CSI-RS RE的频率和时间位置。通过配置天线的数量来配置对应的CSI-RS具有的端口的数量。Resource config配置RB内的RE位置,Subframe config配置子帧的周期和偏移。表2是用于配置当前被LTE支持的Resource config和Subframe config的表。
[表2]
Figure BDA0002395023650000112
Figure BDA0002395023650000121
[表3]
Figure BDA0002395023650000122
终端能够通过表2和表3检查频率和时间位置、周期和偏移。Quasi-colocated(Qcl)-CRS-info配置用于协作多点(CoMP)的准共址信息。CSI-IM config是用于配置用于干扰测量的CSI-IM的频率和时间位置。由于CSI-IM始终基于4个端口进行配置,因此无需配置天线端口的数量,并且Resource config和Subframe config以与CSI-RS相同的方式进行配置。CQI report config用于配置如何通过使用对应的CSI过程来报告信道状态。还包括周期性CSI报告设置、非周期性CSI报告设置、PMI/RI报告设置、RI参考CSI过程配置、子帧图案配置等。
对于干扰测量和终端接收的信道,子帧图案是用于配置用于支持干扰测量的测量子帧子集和具有不同时间特性的信道。测量子帧子集首先被引入用于增强的小区间干扰协调(enhanced inter-cell interference coordination,eICIC),以采用几乎空白子帧(almost-blank subframe,ABS)和非ABS一般子帧的其他干扰特性来执行估计。测量子帧子集被开发成能够通过配置两个IMR来进行测量的形式,以便测量在可从下行链路到上行链路动态切换的子帧和在增强的干扰减轻和业务适配(enhanced interference mitigationand traffic adaptation,eIMTA)中总是作为下行链路工作的子帧之间的不同信道特性。表4和表5示出了支持eICIC和eIMTA的测量子帧子集。
[表4]
Figure BDA0002395023650000131
[表5]
Figure BDA0002395023650000132
使用csi-MeasSubframeSet1-r10和csi-MeasSubframeSet2-r10来配置由LTE支持的eICIC测量子帧子集。由对应字段引用的MeasSubframePattern-r10在下表6中示出。
[表6]
Figure BDA0002395023650000133
字段左侧的最高有效位(Most significant bit,MSB)指示子帧#0,并且当位值为1时,指示对应子帧被包括在测量子帧子集中。不同于通过各个字段配置子帧集的eICIC测量子帧子集,在使用单个字段的eIMTA测量子帧集中,位值0指示对应子帧被包括在第一子帧集中,位值1指示对应子帧被包括在第二子帧集中。因此,区别在于,在eICIC中,对应子帧不会被包括在两个子帧集中,但是在eIMTA子帧集中,对应子帧应该总是被包括在两个子帧集中的一个子帧集中。
此外,在终端生成信道状态报告所需的PDSCH和CSI-RS RE之间存在功率比(被称为Pc),并且存在用于配置要使用哪个码本的码本子集限制。Pc和码本子集限制由表8中以列表形式示出的包括两个P-C-AndCBSR字段的p-C-AndCBSRList字段来配置,并且每个字段指的是每个子帧子集的配置。
[表7]
Figure BDA0002395023650000141
[表8]
Figure BDA0002395023650000142
可以通过下面的数学等式(1)定义PC,并且可以指定介于-8和15dB之间的值。
[等式1]
Figure BDA0002395023650000143
基站可以可变地调整CSI-RS传输功率以用于各种目的,诸如改进信道估计准确度等,并且终端可以使用所提供的PC,得出用于数据传输的传输功率与用于信道估计的传输功率相比有多低或多高。即使基站改变CSI-RS传输功率,终端也能够计算出准确的CQI,并将计算出的CQI报告给基站。
在蜂窝系统中,基站应该向终端发送参考信号以便测量下行链路信道状态。在3GPP的LTE系统中,终端通过使用基站发送的CSI-RS或CRS来测量基站和终端之间的信道状态。与信道状态相关联,需要从根本上考虑几个因素,并且下行链路中的干扰量可以包括在其中。下行链路中的干扰量可以包括由属于相邻基站的热噪声的天线产生的干扰信号等,这在终端确定下行链路的信道状态时是重要的。
当具有一个发送天线的基站向具有一个接收天线的终端发送信号时,终端可能必须确定每符号的能量和干扰量,以便确定干扰-符号能量比(Es/Io),其中每符号的能量通过使用从基站接收的参考信号在下行链路中接收,并且干扰量将在接收对应符号的间隔中同时接收。所确定的Es/Io被转换成数据传输速率或与其对应的值,并以CQI的形式提供给基站,使得基站可以确定向终端执行发送的数据传输速率。
在LTE系统的情况下,终端向基站反馈与下行链路的信道状态相关联的信息,使得基站利用该信息进行下行链路调度。也就是说,终端测量基站在下行链路中发送的参考信号,并以由LTE标准定义的形式向基站反馈从中提取的信息。在LTE中终端反馈的信息主要有三种类型。
-RI:终端在当前信道状态下可以接收的空间层的数量。
-预编码矩阵指示符(Precoder matrix indicator,PMI):终端在当前信道状态下优选的预编码矩阵的指示符。
-CQI:终端在当前信道状态下可以接收的最大数据速率。CQI可以用信号干扰加噪声比(signal-to-interference plus noise ratio,SINR)来代替,其可以类似于最大数据速率、最大纠错编码速率、调制方案、每频率数据效率等来利用。
RI、PMI和CQI是相互关联的。例如,在LTE/LTE-A中支持的预编码矩阵可以被定义为对于每个秩是不同的。因此,当R1具有值1时的PMI值和当R1具有值2时的PMI值被不同地解析,即使它们的值是相同的。此外,当终端确定CQI时,假设终端本身已经提供给基站的PMI值和秩值被应用到基站。也就是说,当终端向基站提供R1_X、PMI_Y和CQI_Z时,当秩为R1_X并且预编码为PMI_Y时,终端可以以对应于CQI_Z的数据传输速率接收数据。当终端计算CQI时,终端假设传输方案将针对基站被执行,使得当终端实际使用对应的传输方案执行发送时,终端可以获得最佳性能。
在LTE中,基于所包括的信息,终端的周期性反馈可以被配置成以下四种反馈模式(或报告模式)之一。
-报告模式1-0(不带PMI的宽带CQI):RI、宽带(宽带)CQI(wCQI)
-报告模式1-1(带单个PMI的宽带CQI):RI、wCQI、PMI
-报告模式2-0(不带PMI的子带CQI):RI、wCQI、窄带(子带)CQI(sCQI)
-报告模式2-1(带单个PMI的子带CQI):RI、wCQI、sCQI、PMI
四种反馈模式的每条信息的反馈定时由通过更高层信号发送的值确定,诸如Npd、NOFFSET,CQI、MRI和NOFFSET,RI。在反馈模式1-0中,wCQI的传输周期是Npd,并且可以基于NOFFSET,CQI的子帧偏移值来确定反馈定时。此外,R1的传输周期是Npd·NRI,偏移是NOFFSET,CQI+NOFFSET,RI
图2是根据实施例的当Npd=2,MRI=2,NOFFSET,CQI=1以及NOFFSET,RI=-1时,RI和wCQI的反馈定时200的图。在图2中,每个定时指示子帧索引。
尽管反馈模式1-1具有与模式1-0相同的反馈定时,但是不同之处在于,在wCQI传输定时,wCQI与PMI一起传输。
在反馈模式2-0中,sCQI的反馈周期为Npd,偏移值为NOFFSET,CQI。此外,wCQI的反馈周期是H·Npd,偏移值是NOFFSET,CQI,与sCQI的相同。这里,H=J·K+1,其中K通过更高层的信号传输,J是由系统带宽确定的值。
针对10MHz系统的J值被定义为3。因此,每H个sCQI的传输,wCQI代替sCQI被传输一次。RI的周期对应于MRI·H·Npd个子帧,并且其偏移是NOFFSET,CQI+NOFFSET,RI
图3是根据实施例的当Npd=2,MRI=2,J=3(10MHz),K=1,NOFFSET,CQI=1和NOFFSET,R1=-1时的R1、sCQI和wCQI的反馈定时300的图。
尽管反馈模式2-1具有与模式2-0相同的反馈定时,但是不同之处在于,在wCQI传输定时,wCQI与PMI一起传输。
上述反馈定时对应于当CSI-RS天线端口的数量小于或等于4的时候。当终端被分配了与8个天线端口相关联的CSI-RS时,与反馈定时不同,需要反馈两种类型的PMI信息。针对8个CSI-RS天线端口的反馈模式1-1被分成两个子模式。在第一子模式中,R1与第一PMI信息一起传输,并且第二PMI信息与wCQI一起传输。相对于wCQI和第二PMI的反馈周期和偏移被定义为Npd、NOFFSET,CQI,并且RI和第一PMI信息的反馈周期和偏移值被分别定义为MRI·Npd,NOFFSET,CQI+NOFFSET,RI。这里,当对应于第一PMI的预编码矩阵为W1并且对应于第二PMI的预编码矩阵为W2时,终端和基站共享指示终端优选的预编码矩阵被确定为W1W2的信息。
当反馈模式2-1用于八个CSI-RS天线端口时,添加预编码类型指示符(PTI)信息的反馈。PTI与R1一起被反馈,并且其周期对应于MRI·H·Npd,并且其偏移被定义为NOFFSET,CQI+NOFFSET,RI。当PTI为0时,第一个PMI、第二个PMIE和wCQI都被反馈。wCQI和第二个PMI以相同的定时被一起传输,周期为Npd,偏移为NOFFSET,CQI。此外,第一PMI的周期对应于H'·Npd,并且偏移是NOFFSET,CQI。这里,H'通过更高层信号传输。相反地,当PTI为1时,PTI与RI一起被传输,并且wCQI和第二PTI一起被传输,并且sCQI在另一个定时被额外反馈。第一PMI不被传输。PTI和RI的周期和偏移量与PTI为0的情况相同,并且sCQI被定义为周期为Npd且偏移为NOFFSET,CQI。此外,wCQI和第二PMI以周期H·Npd和偏移NOFFSET,CQI反馈。当CSI-RS天线端口的数量为4时,H是相同的。
图4是根据实施例的当PTI=0且Npd=2,MRI=2,J=3(10MHz),K=1,H'=3,NOFFSET,CQI=1以及NOFFSET,RI=-1时的反馈定时400的图;
图5是根据实施例的当PTI=1且Npd=2,MRI=2,J=3(10MHz),K=1,H'=3,NOFFSET,CQI=1以及NOFFSET,R1=-1时的反馈定时500的图。
图6是根据实施例的由LTE Rel-13和Rel-14支持的2-D阵列天线的12个或更多个端口的CSI-RS端口的周期性信道状态报告时间点的图。
LTE Rel-13和Rel-14支持非预编码(non-precoded,NP)的CSI-RS,以支持用于2-D阵列天线的12个或更多个CSI-RS端口。通过在一个子帧中使用用于现有CSI-RS的位置,NPCSI-RS支持8个、12个、16个或更多个CSI-RS端口。对应的字段被配置成CSI-RS-ConfigNZP-EMIMO。终端可以通过使用CSI-RS-ConfigNZP-EMIMO来识别CSI-RS资源的位置,并且可以接收CSI-RS。此外,在波束形成(beamformed,BF)的CSI-RS中,通过使用csi-RS-ConfigNZPIdListExt-r13和csi-IM-ConfigIdListExt-r13,单独的CSI-RS资源被组合并且被用作BF CSI-RS,其中CSI-RS端口的数量、子帧和码本子集限制在每个单独的CSI-RS资源中都可以是不同的。
为了在NP CSI-RS中支持2D天线,需要新的2D码本,该码本可以根据过采样因子、码本配置和维度特定的天线而变化。根据对2D码本的PMI位的分析,在用于i2(W2)报告的位的情况下,可使用现有的信道状态报告方法,其中所有位是4位或更少。然而,在i1,1和i1,2的情况下,如表9和表10所示,PMI位针对支持N1、N2、O1、O2和codebookConfig而增加,如下所示。
[表9]
(N<sub>1</sub>,N<sub>2</sub>) (O<sub>1</sub>,O<sub>2</sub>)组合
(8,1) (4,-)(8,-)
(2,2) (4,4)(8,8)
(2,3) {(8,4)(8,8)}
(3,2) {(8,4)(4,4)}
(2,4) {(8,4)(8,8)}
(4,2) {(8,4)(4,4)}
[表10]
Figure BDA0002395023650000171
Figure BDA0002395023650000181
根据上表,当(N1,N2,O1,O2)=(2,4,8,8)且Config为1时,需要i1才能传输最多10位。当PUCCH格式2时,用于现有的周期性信道状态报告,可以传输用于信道编码的多达13位的里德-穆勒(Reed-Muller)码。然而,当扩展循环前缀(cyclic prefix,CP)时,由于应该支持两位的HARQ ACK/NACK,所以在正常CP情况下可传输的实际有效载荷大小是11位。为了支持有效载荷大小,在宽带CQI模式和子带CQI模式下,使用三个单独的CSI报告时间点来报告信道状态,如图6所示。
除了终端的周期性反馈之外,LTE还可以支持非周期性反馈。当基站希望获得预定终端的非周期性反馈信息时,基站可以将非周期性反馈指示符配置成被包括在用于对应终端的上行链路数据调度的下行链路控制信息(downlink control information,DCI)中,以执行预定的非周期性反馈,并且执行对应终端的上行链路数据调度。当终端在第n个子帧接收到被配置成执行非周期性反馈的指示符时,终端通过在第n+k个子帧的数据传输中包括非周期性反馈信息来执行上行链路发送。这里,k是在LTE版本11标准中定义的参数,在频分双工(frequency-division duplexing,FDD)的情况下为4,并且在时分双工(time-division duplexing,TDD)的情况下可以如表11所示定义。
[表11]
Figure BDA0002395023650000182
当配置了非周期性反馈时,反馈信息可以以与周期性反馈相同的方式包括RI、PMI和CQI,并且基于反馈配置可以不反馈RI和PMI。CQI可以包括wCQI和sCQI,或者可以只包括wCQI。
LTE可以为周期性信道状态报告提供码本子采样功能。在LTE中,终端的周期性反馈可以通过物理上行链路控制信道(PUCCH)传输到基站。一次可以通过PUCCH传输的信息量是有限的,因此,诸如R1、wCQI、sCQI、PMI1、wPMI2、sPMI2等的各种反馈对象可以在子采样之后通过PUCCH传输,或者两条或更多条反馈信息可以被联合编码并通过PUCCH传输。当由基站配置的CSI-RS端口的数量为8时,在PUCCH模式1-1的子模式1中报告的R1和PMI1可以被联合编码,如下表12所示。
参考表12,由3个位形成的RI和由4个位形成的PMI1被联合编码成总共具有5个位。在PUCCH模式1-1的子模式2中,如下表13所示,由4个位形成的PMI1和由另外4个位形成的PMI2被联合编码以形成总共4个位的信息。因为子采样尺度大于子模型1(子模型1中的子采样为7位至5位,子模型2中的子采样为8位至4位),所以可能不会报告更多的预编码因子。当由基站配置的CSI-RS端口的数量为8时,在PUCCH模式2-1下报告的PMI2可以进行子采样,如表11所示。例如,参考表11,当相关联的R1为1时,PMI2被报告为具有4个位。然而,当相关联的R1是大于或等于2的值时,需要额外报告第二码字的差分CQI,并因此PMI2被子采样为2位信息并且被报告。
[表12]
Figure BDA0002395023650000191
[表13]
Figure BDA0002395023650000192
Figure BDA0002395023650000201
[表14]
Figure BDA0002395023650000202
图7是根据实施例的在频率-时间资源与前向兼容资源(forward-compatibleresource,FCR)中一起分配对应于NR系统中考虑的服务(诸如eMBB、URLLC和mMTC)的数据的图。
当eMBB 700和mMTC 710被分配到特定频带并被传输时,如果生成了URLLC数据720并要求传输,则eMBB和mMTC清空预先分配的部分,并且传输URLLC数据。在这些服务中,因为短延迟时间对于URLLC特别重要,所以可以将URLLC数据分配给已经被分配了eMBB的资源的部分,并且可以传输URLLC数据,并且可以预先将关于eMBB资源的信息提供给终端。为此,eMBB数据可能不在eMBB数据和URLLC数据重叠的频率-时间资源中传输,因此eMBB数据的传输性能可能降低。也就是说,可能会发生由于URLLC分配而导致的eMBB数据传输失败。用于URLLC传输的传输时间间隔(transmission time interval,TTI)的长度可能比用于eMBB或mMTC传输的TTI长度短。
在终端接入无线通信系统的过程中,使用同步信号来获取与网络中的小区的同步。更具体地,同步信号是指基站在终端的初始接入时为时间和频率同步以及小区搜索而发送的参考信号,并且在LTE中可以发送诸如主同步信号(primary synchronizationsignal,PSS)或辅同步信号(secondary synchronization signal,SSS)的信号以用于同步。
图8是根据实施例的在本公开中考虑的5G通信系统中传输同步信号的图。
在图8中,同步信号801可以在时间轴802上以预定间隔804在每个周期传输。同步信号801也可以在频率轴803上的恒定同步信号传输带宽805内传输。为了通过使用同步信号来指示小区号(小区ID),可以将特殊序列映射到传输带宽805内的子载波。可以使用一个或多个序列的组合来映射小区号,因此终端可以通过检测用于同步信号的序列来检测终端希望接入的小区号。用于同步信号的序列可以是具有恒定幅度零自相关(constantamplitude zero auto correlation,CAZAC)特性的序列,诸如zadoff-chu序列或golay序列,或者可以是伪随机噪声序列,诸如m序列或gold序列。假设上述同步信号用于同步信号,但是本公开不限于任何特定信号。
同步信号801可以使用一个或多个OFDM符号来配置。当使用多个OFDM符号来配置同步信号801时,用于多个不同同步信号的序列可以被映射到每个OFDM符号。例如,如在LTE中,三个zadoff-chu序列可用于生成PSS,gold序列可用于生成SSS。根据小区的物理层小区ID,一个小区的PSS可以具有三个不同的值,并且一个小区ID组中的三个小区ID对应于不同的PSS。因此,终端可以检测小区的PSS,以在LTE支持的三个小区ID组中识别一个小区ID组。终端还经由通过PSS识别的小区ID组,在从504个小区ID减少到的168个小区ID中检测SSS,以确定对应小区所属的小区ID。
终端获取与网络内的小区同步的小区号,并找到小区帧定时。一旦成功找到小区帧定时,终端就应该接收重要的小区系统信息。重要的小区系统信息是由网络重复广播的信息,并且对应于终端为了接入小区并在小区内适当操作而通常应该知道的信息。在LTE中,系统信息在两个不同的传输信道上传输,其中有限量的系统信息,被称为主信息块(master information block,MIB),使用物理广播信道(PBCH)来传输,并且系统信息的主要部分,对应于系统信息块(system information block,SIB),使用PDSCH来传输。更具体地,在LTE系统中,被包括在MIB中的系统信息包括下行链路传输带宽、PHICH配置信息和系统帧号(system frame number,SFN)。
图9是根据实施例的在5G通信系统中传输PBCH的图。在图9中,PBCH901可以在时间轴902上以预定间隔904周期性地传输。PBCH 901也可以在频率轴903上的预定PBCH传输带宽905内传输。为了改善覆盖,PBCH可以以预定间隔904传输相同的信号,并且终端可以组合传输的信号并接收该信号。此外,多个天线端口用于传输技术(诸如传输分集(transmitdiversity,TxD)和一个基于DMRS端口的预编码器循环)的应用,并且因此可以获得分集增益,而不需要关于接收端使用的传输技术的额外信息。假设上述PBCH用于PBCH,但是本公开不限于任何特定结构。
类似于当前LTE系统,PBCH 901可以在时频域中的资源处使用多个OFDM符号来配置,或者可以分散在时频域中的资源上。为了接收系统信息,终端应该接收并解码PBCH,并且在LTE系统中终端通过使用CRS执行对PBCH的信道估计。
图10是根据实施例的在NR系统中的各个时间和频率资源中复用的服务的图。基站可以将CSI-RS分配给所有(或多个)频带,以便确保终端的初始信道状态信息。全频带或多频带CSI-RS 1000需要大量的参考信号开销,因此对于优化系统性能可能是不利的。然而,当没有先前确保的信息时,全频带或多频带的CSI-RS可能是必要的。
在全频带或多频带CSI-RS的传输之后,可以为每个服务提供不同的要求,并且必要的信道状态信息的准确度及其更新也可以改变。因此,在确保了初始信道状态信息之后,基站可以根据每个服务的必要性,为对应频带中的每个服务触发子带CSI-RS 1010。尽管图10示出了在一个时间点针对每个服务的CSI-RS的传输,但是也可以根据需要传输针对多个服务的CSI-RS。
与LTE的上述CSI-RS传输和CSI报告设置相比,由NR支持的CSI-RS传输和CSI报告设置可以具有不同的形式。NR与LTE的不同之处在于它通过资源设置、CSI测量设置和CSI报告设置来支持比LTE更灵活的CSI报告设置,其中资源设置、CSI测量设置和CSI报告设置是支持信道状态报告所必需的。
图11是根据实施例的支持NR中的信道状态报告所必需的资源设置、CSI测量设置和CSI报告设置的图。
资源设置、CSI测量设置和CSI报告设置可以包括如下所述的配置信息。
-CSI报告设置1100:配置信道状态报告所需的报告参数(例如,RI、PMI、CQI等)的开/关。此外,可以配置信道状态报告类型(例如,可以根据类型I(具有低分辨率和隐式报告类型的信道状态报告)或类型II(具有高分辨率和通过使用线性组合类型信道状态报告来显式报告特征向量、协方差矩阵等的类型的信道状态报告)执行配置)。具体地,可以支持用于信道状态报告的CSI报告设置(是否报告RI、PMI、CQI、BI、CRI等(单独配置或组合配置))、报告方法(周期性、非周期性和半永久性报告是可用的,其中非周期性和半永久性报告可以被配置成一个参数)、码本配置信息、PMI类型(全频带或部分频带)、信道状态报告类型(隐式/显式或类型I/类型II)、信道质量报告类型(CQI/RSRP)以及资源设置。
-资源设置1110:资源设置对应于包括与信道状态测量所需的参考信号相关的配置信息的配置。可以经由资源设置来配置用于信道测量的CSI-RS资源和用于干扰测量的干扰测量资源(CSI-IM),并且为此可以存在多个资源设置。此外,可以配置对应参考信号的传输类型(周期性、非周期性和半永久性传输)、参考信号的传输周期和偏移等。
-CSI测量设置1120:CSI测量设置对应于CSI报告设置和资源设置之间的映射或连接的配置。当有N个CSI报告设置和M个资源设置时,在这些多个CSI报告设置和资源设置之间建立映射的L个链路可以被包括在CSI测量设置中。参考信号配置和报告时间点之间的关联配置(例如,当参考信号要被传输到n个子帧或时隙时,报告时间点可以使用诸如D0-0、D1-0、D2-1、D3-2和D3-3的参数来配置,并且报告时间点可以相应地被定义为n+D0-0)也可以经由CSI测量设置来配置。
除了LTE支持的周期性和非周期性信道状态报告之外,NR还支持半永久性参考信号传输和信道状态信息。在上述报告模式中,NR的周期性和半永久性信道状态信息可能不支持子带报告。在周期性和半永久性信道状态报告中使用的PUCCH具有有限量的可以传输的报告。因此,如上所述,在LTE中,可以允许终端选择带宽中的一些子带,并报告与这些子带相关的信道状态信息。然而,由于关于这种选择性子带的报告包含非常有限的信息,所以该信息的有用性可能是最小的。因此,缺乏对这种报告的支持可能会导致终端复杂性降低和报告效率提高。此外,由于子带报告不被支持,所以可能不报告PMI,或者在NR中的周期性信道状态信息报告中可能仅传输对应于宽带或部分频带的一个PMI。
NR的非周期性信道状态信息报告可以支持以下报告模式。
-报告模式1-2(带有PMI的宽带CQI):RI、宽带(宽带)、CQI(wCQI)、多个宽带和窄带PMI
-报告模式2-0(不带PMI的子带CQI):RI、wCQI和由终端选择的频带的窄带(子带)CQI(sCQI)
-报告模式2-2(带有多个PMI的子带CQI):R1、wCQI、sCQI、多个宽带和窄带PMI
-报告模式3-0(不带PMI的子带CQI):RI、wCQI和全频带段的窄带(子带)CQI(sCQI)
-报告模式3-2(带有多个PMI的子带CQI):R1、wCQI、全频带的窄带(子带)CQI(sCQI)以及多个宽频和窄带PMI
类似于循环信道状态报告,报告模式2-0和2-2与终端的带宽的部分的子带的选择和报告类型相对应,并且由于报告的低效率,可能在NR中不被支持。在LTE中的周期性信道状态报告中,可以使用对应信道的信道状态报告模式设置的CQI设置和PMI/RI报告设置来确定报告模式,并且当使用非周期性信道状态报告时,可以直接配置信道状态报告模式。在NR中,可分别在上述CSI报告设置中提供PMI/RI报告设置和CQI报告设置。
如上所述,NR支持具有低空间分辨率和高空间分辨率的两种类型的信道状态报告。下表15和16以及表17和18显示了两种类型的信道状态报告以及每种报告类型所需的报告开销。特别地,表15指示类型1信道状态报告,表16指示类型2信道状态报告,表17指示类型1信道状态报告所需的开销,表18指示类型2信道状态报告所需的开销。
[表15]
在两个天线端口的情况下,NR支持下面描述的类型1码本。
对于秩-1,
Figure BDA0002395023650000241
并且对于秩-2,
Figure BDA0002395023650000242
在四个或更多个天线端口的情况下,根据下面的描述,NR支持秩1到秩8的信道状态报告。
(1)PMI码本假设预编码器结构为W=W1W2,其中W1由下式配置
Figure BDA0002395023650000243
B包括L个过采样的2D DFT波束。在秩1和秩2的情况下,L的值可以被设置为1或4,W2选择波束(这仅在L=4时适用)并且指示针对两个偏振的QPSK同相。
(2)支持以下1D/2D天线端口布局(N1和N2)和过采样因子(O1、O2)。
Figure BDA0002395023650000251
(3)当L=4时,根据N2值支持以下波束组(B)图案。
2D天线端口布局(N2>1):
Figure BDA0002395023650000252
2D天线端口布局(N2=1):
Figure BDA0002395023650000253
[表16]
NR支持针对秩1和秩2的类型2信道状态报告。
(1)PMI用于空间信道信息反馈。
(2)在秩1和秩2的情况下,PMI码本采取以下预编码器结构。
对于秩1:
Figure BDA0002395023650000254
W被归一化为1
对于秩2:
Figure BDA0002395023650000255
w的列被归一化为
Figure BDA0002395023650000256
(3)
Figure BDA0002395023650000257
(L个波束的加权组合)
L的值可以从2、3和4中选择,
Figure BDA00023950236500002510
是过采样的2D DFT波束,r为0或1并且指的是偏振,l为0或1并且指的是层。
Figure BDA0002395023650000258
是波束i、偏振r和层l的宽带(WB)波束幅度缩放因子
Figure BDA0002395023650000259
是波束i、偏振r和层l的子带(SB)波束幅度缩放因子
cr,l,i是波束i、偏振r和层l的波束组合系数(相位),在QPSK的情况下可被配置为2位,在8PSK的情况下可被配置为3位。
幅度缩放模式可通过WB和SB的组合(具有不相等的位分配)来配置,或者仅通过WB来配置。
[表17]
Figure BDA0002395023650000261
[表18]
Figure BDA0002395023650000262
如以上表18中所述的,类型I信道状态报告可以基于码本经由R1、PMI、CQI和CSI-RS资源指示符(CSI-RS resource indicator,CRI)向基站报告信道状态,如在现有LTE中那样。相比之下,除了类似于类型I报告的隐式CSI之外,类型II报告还可以经由更大的PMI报告开销提供更高形式的分辨率,并且可以经由用于类型I报告的预编码器、波束、同相等的线性组合来创建PMI报告。此外,为了直接报告信道状态,可以以不同于现有类型的显式CSI类型来报告CSI,并且其代表性示例可以是报告信道的协方差矩阵的方法;隐式和显式CSI相结合的类型也是可能的。例如,可以使用PMI来报告信道的协方差矩阵,但是此外,可以一起报告CQI或RI。
如上所述,类型II要求高的报告开销。因此,该报告可能不适用于可报告位数不多的周期信道状态报告。另一方面,当使用非周期性信道状态报告时,由于经由能够支持具有大量报告的开销的PUSCH来支持对应的信道状态报告,所以仅支持需要具有大量报告的开销的类型II报告用于非周期性信道状态报告。
此外,半永久性信道状态报告可以支持类型2。在NR中,与周期性信道状态报告相比,半永久性信道状态报告支持动态活动和不活动,因此需要相对高的终端复杂性。
在LTE的信道状态报告中,如上表1所述,基站基于CSI过程,经由更高层配置来执行终端的参考信号配置和报告相关配置。因此,在周期性信道状态报告的情况下,在先前配置的报告时间点和资源处进行报告,并且在非周期性信道状态报告的情况下,报告先前经由DCI中的触发器配置的配置信息,该DCI是基站经由下行链路控制信号传送的。
在NR中,如图11所示,CSI报告设置、资源设置和用于连接它们的链接存在于CSI测量设置中。当使用周期性和半永久性信道状态报告时,根据基站的DCI和RRC设置或基于媒体访问控制(media access control,MAC)CE的激活或去激活信号,可以基于CSI报告设置周期性或半永久性地报告信道状态。当使用非周期性信道状态报告时,可以使用下面的方法触发信道状态报告。
-非周期性信道状态报告触发方法1:基于CSI测量设置内的链路触发;和
-非周期性信道状态报告触发方法2:基于CSI测量设置内的CSI报告设置进行触发。
非周期性信道状态报告触发方法1是基于CSI测量设置内的链路触发CSI报告的方法。
图12是根据实施例的根据非周期性信道状态报告触发方法1触发CSI测量设置内的链路的方法的图。
在图12中,基站可以为非周期性信道状态报告1200预先配置针对每个触发字段触发的到RRC的链路。基站可以在触发配置中直接配置链路ID,以便配置要被触发的链路。基站可以配置使用指示为终端配置的所有小区的链路的位图来触发的链路。位图的指令顺序可以基于单元ID和链接ID以升序或降序排序。
图13是根据实施例的位图的指示顺序的图。
位图1300的指示顺序可以首先基于小区ID排列,并且可以基于相同小区ID内的链路ID以从MSB到LSB的升序排列。在图13中,优先排列小区ID;然而,可以首先排列链路ID,或者可以以降序排序。
非周期性信道状态报告触发方法2是用于基于CSI测量设置内的CSI报告设置来触发CSI报告的方法。
图14是根据实施例的根据非周期性信道状态报告触发方法2在触发测量设置内触发CSI报告设置的方法的图。在图14中,对于非周期性信道状态报告1400,基站可以经由RRC预先配置为每个触发字段触发的CSI报告设置。基站可以在触发配置中直接配置CSI报告设置ID,以便配置触发的CSI报告设置。基站可以通过使用指示为终端配置的所有小区的CSI报告设置的位图来配置触发的CSI报告设置。位图的指令顺序可以基于小区ID、CSI报告设置ID等以升序或降序排列。
图15是根据实施例的位图的指示顺序的图。
如图15所示,位图1500的指示顺序可以首先基于小区ID排列,并且可以基于相同小区ID内的信道状态报告ID以从MSB到LSB的升序排列。在图15中,优先排列小区ID;然而,信道状态报告ID可以首先排列,或者可以以降序排序。
为了使基站基于链路触发CSI报告,基站可以通过使用表19、20和21中所示的触发字段经由DCI使终端执行向基站的非周期性信道状态报告。
[表19]
Figure BDA0002395023650000281
[表20]
Figure BDA0002395023650000282
Figure BDA0002395023650000291
[表21]
Figure BDA0002395023650000292
在表19中,基站可以通过使用指示字段来为终端执行触发,使得不触发非周期性信道状态报告,或者使得可以触发对应小区的所有链路,并且从“001”之后的位“010”,可以如以上针对触发方法1所描述的那样触发经由预RRC设置为信道状态报告触发的链路。表20中使用的触发字段排除了关于根据字段不触发的情况。在这种情况下,在可以为其配置“001”等的触发字段的预配置中,可以有涉及不触发信道状态报告的选项。根据表21,通过增加除了与报告在使用中的一个小区的所有链路相对应的非周期性CSI报告设置之外的自由度,可以在基站的配置中提供灵活性。如上表20所述,在可以为其配置“000”等的触发字段的预配置中,还可以有不触发信道状态报告的选项。
如上所述,为了基于CSI报告设置触发信道状态报告,基站可以通过使用表22、23和24中所示的触发字段,经由DCI使终端向基站执行非周期性信道状态报告。
[表22]
Figure BDA0002395023650000293
[表23]
Figure BDA0002395023650000301
[表24]
Figure BDA0002395023650000302
在表22中,基站可以通过使用指示字段来为终端执行触发,使得可以不触发非周期性信道状态报告,或者使得可以触发对应小区的所有CSI报告设置,并且从“001”之后的位“010”,可以如以上针对触发方法2所描述的那样触发经由预RRC设置为信道状态报告触发的CSI报告设置。表23中使用的触发字段排除了不触发信道状态报告的情况。在这种情况下,在可以为其配置了“001”等的触发字段的预配置中,可以有关于不触发信道状态报告的选项。根据表24,通过增加除了与报告一个正在使用的小区的所有CSI报告设置相对应的非周期性CSI报告设置之外的自由度,可以在基站的配置中提供灵活性。如上表23所述,在可以为其配置“000”等的触发字段的预配置中,还可以有关于不触发信道状态报告的选项。
指示字段可用于间接指示用于信道测量和干扰测量的非周期性CSI-RS。
图16是根据实施例的通过使用非周期性信道状态报告指示字段来间接指示非周期性CSI-RS的图。
在图16中,基站通过使用链路触发信道状态报告。当连接到对应链路的资源设置中支持信道测量的资源对应于周期性CSI-RS 1600时,可以基于在现有的周期性CSI-RS资源处测量的信道来执行对应的非周期性信道状态报告。当在连接到对应链路的资源设置中支持信道测量的资源对应于非周期性CSI-RS 1610时,可以基于在非周期性配置的CSI-RS资源处测量的信道来执行对应的非周期性信道状态报告。非周期性信道状态报告触发和非周期性CSI-RS可以总是在同一时隙或子帧中传输。如上所述,信道状态报告和非周期性CSI-RS也有可能是通过CSI报告设置而不是链路触发的。
为了支持信道状态报告,可以经由图11所示的资源设置为终端配置用于期望信号和干扰测量的资源。对于资源设置可考虑以下RRC参数,如表25所示。
[表25]
Figure BDA0002395023650000311
基于资源设置,在NR中可以支持波束测量、报告和管理。在NR MIMO系统中支持大量天线(诸如1024根天线),以及高频带(诸如30GHz)。由于对应频带的特性,使用毫米波的无线通信表现出高线性度和高路径损耗。为了克服这个问题,需要混合波束形成,该混合波束形成中可以组合基于RF和天线的模拟波束形成和基于数字预编码的数字波束形成。
图17是根据实施例的混合波束形成系统1700的图。
在图17中,基站和终端包括用于数字波束形成和模拟波束形成的RF链和移相器。发送侧的模拟波束形成方案对应于经由移相器改变从每个天线发送的信号的相位的方法,从而将对应的信号集中在特定方向上,其中通过使用多个天线从每个天线发送信号。为此,可以使用其中聚合了多个天线元件的阵列天线。当使用发送波束成形时,有可能增加信号波的到达距离,并且由于信号很难在除了对应方向之外的方向上发送,所以对其他用户的干扰可以显著地减少。类似地,接收侧可以通过使用接收阵列天线来执行接收波束形成,从而阻挡干扰信号,其中通过将无线电波的接收集中在特定方向上并且从接收信号中排除在除了对应方向的方向上进入的信号来增加在对应方向上进入的接收信号的灵敏度。
相反,随着传输频率的增加,无线电波的波长变短。例如,当天线以半波间隔形成时,阵列天线可以在相同大小的区域内包括更多的元件天线。因此,在高频带操作的通信系统能够很好地应用波束形成技术,因为与在低频带使用波束形成技术相比,该通信系统可以获得相对更高的天线增益。
在该波束形成技术中,为了获得更高的天线增益,使用混合波束形成,其中混合波束形成组合用于在现有多天线系统中实现高数据传输速率效果的数字预编码和模拟波束形成技术。当经由模拟波束形成形成波束时,并且形成一个或多个模拟波束时,通过采用类似于在基带中的现有多天线中应用的数字预编码来发送信号,使得可以接收更可靠的信号或者可以期望更高的系统容量。本公开提出了一种方法,用于当基站和终端支持模拟、数字或混合波束形成时,根据基站和终端的波束切换能力来测量波束质量,并报告和使用对应的信息。
关于波束形成,为对应的基站和终端选择优化的方向是重要的。为了选择优化的波束方向,基站和终端可以通过使用多个时间和频率资源来支持波束扫描。
图18是根据实施例的终端和基站在时间资源中的波束扫描操作的图。
在图18中,终端或基站通过针对时间资源使用不同的波束来发送参考信号,以便为终端或基站选择波束。已经接收到参考信号的基站或终端可以基于参考信号的CSI、参考信号接收功率(reference signal received power,RSRP)、参考信号接收质量(referencesignal received quality,RSRQ)等来测量对应参考信号的质量,并且可以根据对应的结果选择一个或多个发送或接收波束。在图17中,参考信号基于不同的波束经由不同的时间资源来发送。然而,相同的传输方案可以应用于频率、循环移位、代码资源等。如图18所示,可以发送多个发送波束1800以用于发送波束扫描,并且还可以重复应用一个发送波束并执行发送1810以用于接收波束扫描。
诸如波束扫描的波束管理操作也可以基于周期性、半永久性或非周期性的CSI-RS传输和信道状态报告/波束报告以及信道状态报告框架(资源设置、CSI报告设置、CSI测量设置、链路等)来执行,如图11至图16所示。
在支持信道状态报告或波束报告时,对于在NR中的资源设置,多个CSI-RS资源被配置成CSI-RS资源集,以便传输用于发送波束扫描的多个波束和重复发送用于接收波束扫描的单个发送波束,并且可以配置是CSI-RS资源中的每一个对应于单独的CSI-RS资源还是重复相同的CSI-RS资源,并且为此,可以提供下面描述的表26中的RRC设置参数。
[表26]
Figure BDA0002395023650000331
在表26中,ResourceSetConfigList使能多个CSI-RS资源集的配置。可以配置多个CSI-RS资源集,并且经由ResourceSetConfig单独配置单独的CSI-RS资源集。ResourceSetConfig具有ResourceSetConfigId、CSI-RS-ResourceConfigList和CSI-RSResourceRepetitionConfig配置。ResourceSetConfigId可以允许CSI-RS资源集配置的ID的配置,并且CSI-RS-ResourceConfigList可以允许基于表25中描述的CSI-RS资源的ID,将CSI-RS资源的ID配置到对应的CSI-RS资源集中,以便指示被配置到CSI-RS资源集中的CSI-RS资源。对于被配置到对应的CSI-RS资源集中的CSI-RS资源,CSI-RSResourceRepetitionConfig可以允许配置是基于不同的波束传输单独的CSI-RS资源以用于发送波束扫描还是单独的CSI-RS资源支持相同CSI-RS资源的重复。为了指示对应的CSI-RS资源集是否支持相同的波束,CSI-RS ResourceRepetitionConfig可以表达为BeamRepetitionConfig等。
在对应的CSI-RS资源集配置中的CSI-RS资源重复的配置中,只有1-端口的CSI-RS资源或1-或2-端口的CSI-RS资源可以被配置成每个CSI-RS资源。在图18中提到的发送波束扫描和接收波束扫描中,对应的发送波束的数量可以很大,诸如1024个发送波束,并且当考虑接收波束扫描时,该数量可以变得更大。因此,对应的天线端口的数量可以被限制为1个端口或2个端口,以便配置对应扫描所需的CSI-RS资源,从而可以减少参考信号传输所需的开销,并且可以执行有效的波束管理。
此外,当在CSI-RS资源集内配置CSI-RS资源重复时,当根据CSI-RS资源中的每一个的CSI-RS-ResourceMapping配置,传输对应CSI-RS资源的OFDM符号相同时,CSI-RS资源可能不被允许用于重复配置,或者终端可能被配置成忽略对应的配置;这是因为在扫描终端的多个接收波束时,终端难以在相同的OFDM符号中使用CSI-RS测量不同接收波束的质量。
此外,当CSI-RS资源被重复时,除了CSI-RS-ResourceMapping配置之外的配置,即ResourceConfigType、CSI-RS-timeConfig、NrofPorts、CDMType、CSI-RS-Density、CSI-RS-FreqBand、PC和ScramblingID配置,可能不被允许用于特定于CSI-RS资源的不同配置,或者终端可以被配置成忽略对应的配置。其原因是,当终端扫描终端的多个接收波束时,当CSI-RS的密度不同时,对对应波束测量进行CQI或RSRP的相对比较可能是困难的。当由于每个被配置的CSI-RS资源周期的差异而造成在不同的CSI-RS资源处相对不频繁地发生传输的同时在一个CSI-RS资源处频繁发生传输时,难以完全执行终端所需的接收波束扫描。此外,当对于相同的波束传输,不同地配置对应的CSI-RS功率PC或作为传输频带的CSI-RS-FreqBand的提升时,特定于接收波束的RSRP可能变化,并且即使终端校正RSRP,准确度也可能降低。
因此,在用于对应的接收波束扫描的CSI-RS资源重复时,为了降低CSI-RS重复配置中终端的硬件实施复杂度并且为了有效执行终端接收波束扫描操作,可以限制被包括在对应的CSI-RS资源集中的CSI-RS资源的配置。当配置CSI-RS资源重复时,用于限制被包括在资源集中的CSI-RS资源的配置的方法可以如下。
-资源设置限制方法1:除了CSI-RS-ResourceMapping之外,重复使用特定的CSI-RS资源设置。
-资源设置限制方法2:当配置了多个相同的CSI-RS资源ID时,重复执行识别。
-可以额外配置CSI-RS-ResourceMapping所需的相对符号偏移。
-资源设置限制方法3:当配置了重复时,当CSI-RS设置不同时,忽略对应的CSI-RS设置。
资源设置限制方法1是重复使用除了可变参数(例如CSI-RS-ResourceMapping)之外的第一CSI-RS资源的配置的方法。当配置了对应的重复时,除了对于每个资源需要不同配置的一些参数之外,可以重复使用特定的CSI-RS资源的配置。特定的CSI-RS资源可以被预定义为标准中的特定的资源(例如,第一CSI-RS资源等)中,或者具有用于重复的配置的CSI-RS资源可以额外经由RRC或MAC CE来指示。
资源设置限制方法2是当配置了多个相同的CSI-RS资源ID时,使配置被识别为重复的方法。为了使用相同的参数,可以配置相同的CSI-RS资源,以便提供重复相同资源的通知。由于终端能够经由对应的ID识别是否执行了重复,所以可以经由配置给CSI-RS资源集的相同CSI-RS资源ID来识别CSI-RS资源重复传输,而不需要额外的配置(CSI-RSResourceRepetitionConfig)字段。在这种情况下,CSI-RS资源重复传输可以应用于资源集的全部或部分。此外,由于用于重复的CSI-RS资源不应该在如上所述的相同的OFDM符号上传输,所以CSI-RS-ResourceMapping可允许用于例外使用,或者可以额外配置重复所需的相关符号。
资源设置限制方法3是用于当已经配置了重复时,当CSI-RS设置不相同时,不允许或忽略对应的CSI-RS设置的方法。由于当配置重复时应该使用相同的参数,所以当重复已经被配置到除了允许不同配置的一些参数之外的参数中不使用相同参数的CSI-RS资源时,终端可以确定对应的配置是错误的,并且可以忽略对应的CSI-RS设置。
在本公开中,已经对基站支持发送波束而终端支持接收波束的示例进行了描述。然而,也有可能基站支持接收波束,而终端支持发送波束,或者多个终端中的全部终端都支持发送和接收波束两者。此外,在本公开中,已经基于CSI-RS进行了描述,但是本公开的实施例也可以适用于探测参考信号(sounding reference signal,SRS)。
图19是根据实施例的终端的方法的流程图。
参考图9,在步骤1910,终端接收测量设置和资源设置信息。该信息可以包括关于用于信道测量的参考信号的信息。例如,可以包括参考信号类型、参考信号的端口数量、码本类型、N1和N2(即每个维度的天线数量)、O1和O2(即每个维度的过采样因子)、用于多个CSI-RS的传输的一个子帧配置和用于位置配置的多个资源配置、码本子集限制相关信息、CSI报告相关信息、CSI过程索引、用于非周期性信道状态报告触发和非周期性信道状态报告之间的定时指示的候选号、和/或传输功率信息(PC),并且终端可以识别它们中的至少一个。
在步骤1920,终端可以经由在对应的测量设置中使用的CSI报告设置来配置一条反馈配置信息。该信息可以包括关于是否报告PMI/CQI、周期和偏移、RI周期和偏移、CRI周期和偏移、宽带/子带的状态、子模式、用于非周期性信道状态报告触发和非周期性信道状态报告之间的定时指示的候选号等的信息。
在步骤1930中,当基于对应的信息接收到参考信号时,终端基于接收到的参考信号来估计基站的天线和终端的接收天线之间的信道。
在步骤1940中,基于估计的信道,终端可以通过使用接收到的反馈配置来生成反馈信息,诸如秩、PMI和CQI,并且可以基于此选择最佳CRI。随后,在步骤1950中,终端在根据基站的反馈配置或非周期性信道状态报告触发以及非周期性信道状态报告触发和非周期性信道状态报告之间的定时指示确定的反馈定时向基站发送反馈信息,并完成生成和报告信道反馈的过程。
图20是根据实施例的基站的方法的流程图。
参考图20,在步骤2010,基站向终端发送用于信道测量的参考信号和用于CSI报告设置的配置信息。配置信息可以包括每个参考信号的类型、时间和频率资源位置、服务类型、支持反馈类型和测量子集。配置信息可以包括用于参考信号的传输的参考信号的端口数量N1和N2(即每个维度的天线数量)、O1和O2(即每个维度的过采样因子)、用于传输多个参考信号的一个子帧配置和用于位置配置的多个资源配置、码本子集限制相关信息、CSI报告相关信息、CSI过程索引、和/或PC
随后,在步骤2020中,基站基于至少一个CSI-RS向终端发送反馈配置信息。对应的信息可以包括PMI/CQI周期和偏移、RI周期和偏移、CRI周期和偏移、宽带/子带的状态、子模式、用于非周期性信道状态报告触发和非周期性信道状态报告之间的定时指示的候选号等。随后,基站向终端发送配置的CSI-RS。终端估计每个天线端口的信道,并基于估计的信道估计针对虚拟资源的额外的信道。终端可以确定反馈,生成与其对应的CRI、PMI、RI和CQI,并将其发送给基站。在步骤2030中,基站在确定的定时从终端接收反馈信息,并使用该信息来确定终端和基站之间的信道状态。
图21是根据实施例的终端的示意图。
参考图21,终端包括收发器2110和控制器2120。收发器2110可以向外部(例如,基站)发送数据或从外部接收数据。收发器2110可以在控制器2120的控制下向基站发送反馈信息。控制器2120控制形成终端的所有元件的状态和操作。具体地,控制器2120基于从基站分配的信息生成反馈信息。此外,控制器2120控制收发器2110根据从基站分配的定时信息向基站发送生成的信道信息。控制器2120可以包括信道估计单元2130。信道估计单元2130经由从基站接收的服务和反馈信息来确定时间和频率资源中的对应资源的位置,并且经由CSI-RS和与其相关的反馈分配信息来识别必要的反馈信息。基于该反馈信息,使用接收到的CSI-RS来估计信道。
尽管图21已经描述了终端由收发器2110和控制器2120形成的示例,但是本公开不限于此,并且可以基于在终端中执行的功能的进一步包括各种元件。例如,终端可以包括显示终端的当前状态的显示器、通过其从用户输入用于执行功能的信号的输入单元、存储终端中生成的数据的存储单元等。此外,尽管示出信道估计单元2130被包括在控制器2120中,但是信道估计单元2130可以是与控制器2120分离的组件。控制器2120可以控制收发器2110从基站接收与参考信号资源相关联的配置信息。控制器2120可以测量参考信号,并且可以控制收发器2110从基站接收反馈配置信息,以用于基于测量结果生成反馈信息。
控制器2120可以测量通过收发器2110接收的一个或多个参考信号,并且可以基于反馈配置信息生成反馈信息。控制器2120可以控制收发器2110在基于反馈配置信息的反馈定时向基站发送生成的反馈信息。控制器2120可以从基站接收CSI-RS,可以基于接收到的CSI-RS生成反馈信息,并且可以将生成的反馈信息发送到基站。
控制器2120可以从基站接收CSI-RS,可以基于接收到的CSI-RS生成反馈信息,并且可以将生成的反馈信息发送到基站。控制器2120可以针对基站的所有天线端口组选择一个预编码矩阵。控制器2120可以从基站接收反馈配置信息,可以从基站接收CSI-RS,可以基于接收到的反馈配置信息和接收到的CSI-RS生成反馈信息,并且可以将生成的反馈信息发送到基站。
图22是根据实施例的基站的示意图。
参考图22,基站包括控制器2210和收发器2220。控制器2210控制形成基站的所有元件的状态和操作。控制器2210分配用于终端获取资源信息的相关配置,向终端分配用于信道估计的CSI-RS资源,并且向终端分配反馈资源和反馈定时。为此,控制器2210还可以包括资源分配单元2230。控制器2210可以分配反馈配置和反馈定时以防止来自多个终端的反馈之间的冲突,可以在对应的定时接收配置的反馈信息,并且可以解析该信息。收发器2220可以与终端一起执行数据、参考信号和反馈信息的发送和接收。在控制器2210的控制下通过分配的资源,收发器2220可以向终端发送CSI-RS,以及可以从终端接收与信道信息相关联的反馈。参考信号基于从终端发送的信道状态信息中获得的CRI、秩、PMI信息的一部分、CQI来发送。
虽然示出了资源分配单元2230被包括在控制器2210中,但是资源分配单元2230可以是与控制器2210分离的组件。控制器2210可以控制收发器2230向终端发送与参考信号相关联的配置信息,或者可以生成参考信号。控制器2210可以控制收发器2220向终端发送反馈配置信息以用于根据测量的结果生成反馈信息。控制器2210可以向终端发送至少一个参考信号,并且可以根据反馈配置信息控制收发器2220在反馈定时接收从终端发送的反馈信息。控制器2210可以向终端发送反馈配置信息,可以向终端发送CSI-RS,并且可以从终端接收基于反馈配置信息和CSI-RS生成的反馈信息。控制器2210可发送与基站的每个天线端口组对应的反馈配置信息,以及基于天线端口组之间的关系的额外的反馈配置信息。控制器2210可向终端发送基于反馈信息形成的CSI-RS波束,并且可以从终端接收基于CSI-RS生成的反馈信息。
尽管已经参照本公开的某些实施例示出和描述了本公开,但是本领域技术人员将理解,在不脱离本公开的范围的情况下,可以在形式和细节上进行各种改变。因此,本公开的范围不应被限定为限于实施例,而是应该由所附权利要求及其等同物来限定。

Claims (15)

1.一种无线通信系统中的基站的方法,所述方法包括:
向终端发送信道状态信息参考信号(CSI-RS)配置信息,所述CSI-RS配置信息用于包括多个CSI-RS资源和关于CSI-RS重复的信息的CSI-RS资源集;
基于所述CSI-RS配置信息向终端发送多个CSI-RS;以及
从终端接收反馈信息,
其中,所述关于CSI-RS重复的信息指示所述多个CSI-RS是否基于相同的发送波束被重复发送。
2.根据权利要求1所述的方法,其中,当所述关于CSI-RS重复的信息指示所述多个CSI-RS基于相同的发送波束被重复发送时,所述反馈信息包括与所选择的接收波束相关的质量。
3.根据权利要求1所述的方法,其中,当所述关于CSI-RS重复的信息指示所述多个CSI-RS基于相同的发送波束被重复发送时,对于所述多个CSI-RS资源中的所有CSI-RS资源,周期是相同的。
4.根据权利要求1所述的方法,其中,当所述关于CSI-RS重复的信息指示所述多个CSI-RS基于相同的发送波束被重复发送时,对于所述多个CSI-RS资源中的所有CSI-RS资源,天线端口的数量是相同的。
5.一种无线通信系统中的终端的方法,所述方法包括:
从基站接收信道状态信息参考信号(CSI-RS)配置信息,所述CSI-RS配置信息用于包括多个CSI-RS资源和关于CSI-RS重复的信息的CSI-RS资源集;
从基站接收基于所述CSI-RS配置信息的多个CSI-RS;
基于接收到的所述多个CSI-RS生成反馈信息;以及
向基站发送所述反馈信息,
其中,所述关于CSI-RS重复的信息指示所述多个CSI-RS是否基于相同的发送波束被重复发送。
6.根据权利要求5所述的方法,还包括:
当所述关于CSI-RS重复的信息指示所述多个CSI-RS基于相同的发送波束被重复发送时,基于多个接收波束测量所述多个CSI-RS的接收功率,以及
其中,所述反馈信息包括与所选择的接收波束相关的质量。
7.根据权利要求5所述的方法,其中,当所述关于CSI-RS重复的信息指示所述多个CSI-RS基于相同的发送波束被重复发送时,对于所述多个CSI-RS资源中的所有CSI-RS资源,周期是相同的。
8.根据权利要求5所述的方法,其中,当所述关于CSI-RS重复的信息指示所述多个CSI-RS基于相同的发送波束被重复发送时,对于所述多个CSI-RS资源中的所有CSI-RS资源,天线端口的数量是相同的。
9.一种无线通信系统中的基站,所述基站包括:
收发器;和
控制器,可操作地耦合到所述收发器,并且被配置成:
向终端发送信道状态信息参考信号(CSI-RS)配置信息,所述CSI-RS配置信息用于包括多个CSI-RS资源和关于CSI-RS重复的信息的CSI-RS资源集,
基于所述CSI-RS配置信息向终端发送多个CSI-RS,以及
从终端接收反馈信息,其中,所述关于CSI-RS重复的信息指示所述多个CSI-RS是否基于相同的发送波束被重复发送。
10.根据权利要求9所述的基站,其中,如果所述关于CSI-RS重复的信息指示所述多个CSI-RS基于相同的发送波束被重复发送,则所述反馈信息包括与所选择的接收波束相关的质量。
11.根据权利要求9所述的基站,其中,如果所述关于CSI-RS重复的信息指示所述多个CSI-RS基于相同的发送波束被重复发送,则对于所述多个CSI-RS资源中的所有CSI-RS资源,周期是相同的。
12.根据权利要求9所述的基站,其中,如果所述关于CSI-RS重复的信息指示所述多个CSI-RS基于相同的发送波束被重复发送,则对于所述多个CSI-RS资源中的所有CSI-RS资源,天线端口的数量是相同的。
13.一种无线通信系统中的终端,所述终端包括:
收发器;和
控制器,可操作地耦合到所述收发器,并且被配置成:
从基站接收信道状态信息参考信号(CSI-RS)配置信息,所述CSI-RS配置信息用于包括多个CSI-RS资源和关于CSI-RS重复的信息的CSI-RS资源集,
从基站接收基于所述CSI-RS配置信息的多个CSI-RS,
基于接收到的所述多个CSI-RS生成反馈信息,以及
向基站发送反馈信息,
其中,所述关于CSI-RS重复的信息指示所述多个CSI-RS是否基于相同的发送波束被重复发送。
14.根据权利要求13所述的终端,其中,所述控制器还被配置成,如果所述关于CSI-RS重复的信息指示所述多个CSI-RS基于相同的发送波束被重复发送,则基于多个接收波束测量所述多个CSI-RS的接收功率,并且
其中,所述反馈信息包括与所选择的接收波束相关的质量。
15.根据权利要求13所述的终端,其中,如果所述关于CSI-RS重复的信息指示所述多个CSI-RS基于相同的发送波束被重复发送,则对于所述多个CSI-RS资源中的所有CSI-RS资源,周期是相同的,并且对于所述多个CSI-RS资源中的所有CSI-RS资源,天线端口的数量是相同的。
CN201880056392.XA 2017-08-31 2018-08-30 移动通信系统中用于支持重复的csi-rs资源传输的方法和设备 Active CN111095844B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311175295.1A CN117220846A (zh) 2017-08-31 2018-08-30 支持重复的csi-rs资源传输的方法和设备

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020170111275A KR102506475B1 (ko) 2017-08-31 2017-08-31 이동 통신 시스템에서의 csi-rs 자원 반복 전송 지원 방법 및 장치
KR10-2017-0111275 2017-08-31
PCT/KR2018/010032 WO2019045469A1 (en) 2017-08-31 2018-08-30 METHOD AND APPARATUS FOR SUPPORTING RESPONSIVE CSI-RS RESOURCE TRANSMISSION IN A MOBILE COMMUNICATION SYSTEM

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202311175295.1A Division CN117220846A (zh) 2017-08-31 2018-08-30 支持重复的csi-rs资源传输的方法和设备

Publications (2)

Publication Number Publication Date
CN111095844A true CN111095844A (zh) 2020-05-01
CN111095844B CN111095844B (zh) 2023-07-25

Family

ID=65437966

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201880056392.XA Active CN111095844B (zh) 2017-08-31 2018-08-30 移动通信系统中用于支持重复的csi-rs资源传输的方法和设备
CN202311175295.1A Pending CN117220846A (zh) 2017-08-31 2018-08-30 支持重复的csi-rs资源传输的方法和设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202311175295.1A Pending CN117220846A (zh) 2017-08-31 2018-08-30 支持重复的csi-rs资源传输的方法和设备

Country Status (5)

Country Link
US (5) US11196521B2 (zh)
EP (1) EP3659289A4 (zh)
KR (2) KR102506475B1 (zh)
CN (2) CN111095844B (zh)
WO (1) WO2019045469A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180097302A (ko) * 2017-02-23 2018-08-31 삼성전자주식회사 스케줄링을 위한 전자 장치 및 방법
US10873938B2 (en) * 2017-10-09 2020-12-22 Qualcomm Incorporated Rate matching for broadcast channels
CN111466143A (zh) * 2017-12-25 2020-07-28 中兴通讯股份有限公司 时域传输调度
US11284409B2 (en) * 2018-04-30 2022-03-22 Qualcomm Incorporated Supporting multiple beams in wireless transmissions
CN110474667B (zh) * 2018-05-11 2022-11-08 维沃移动通信有限公司 一种信息处理方法、装置、终端及通信设备
US10904785B2 (en) * 2018-06-08 2021-01-26 Qualcomm Incorporated Using channel state information (CSI) report framework to support positioning measurements
CN112910522B (zh) * 2018-06-12 2024-03-01 华为技术有限公司 预编码矩阵的配置方法和装置
EP3697014A1 (en) * 2019-02-16 2020-08-19 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Srs configuration and indication for codebook and non-codebook based ul transmissions in a network
CN113785612A (zh) * 2019-05-02 2021-12-10 三星电子株式会社 用于在侧链路通信中测量和报告信道状态的方法和装置
CN112242887B (zh) * 2019-07-16 2022-04-12 中国移动通信有限公司研究院 处理方法及设备
KR20210022461A (ko) * 2019-08-20 2021-03-03 삼성전자주식회사 무선 통신 시스템에서 단말의 빔 실패 회복 동작을 지시하는 방법 및 장치
KR20210057576A (ko) * 2019-11-12 2021-05-21 삼성전자주식회사 밀리미터파 대역의 다중 모드 장치를 위한 송수신 방법 및 장치
CN114651458B (zh) * 2019-11-15 2024-03-29 株式会社Ntt都科摩 终端和通信方法
US20230170963A1 (en) * 2020-09-09 2023-06-01 Qualcomm Incorporated Port selection codebook enhancements for spatial and frequency domain density reciprocity
US20220311572A1 (en) * 2021-03-25 2022-09-29 Qualcomm Incorporated Reference signal resource sets for subband measurements
CN116866819A (zh) * 2022-03-28 2023-10-10 华为技术有限公司 测量方法及测量装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104780030A (zh) * 2010-03-17 2015-07-15 Lg电子株式会社 在支持多个天线的无线通信系统中发送信道状态信息-参考信号的方法、基站和移动站
CN106301505A (zh) * 2015-05-14 2017-01-04 株式会社Ntt都科摩 信息发送方法、波束测量方法、移动台和基站

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101790505B1 (ko) 2010-06-01 2017-11-21 주식회사 골드피크이노베이션즈 서브프레임 구성에 따른 채널상태정보-기준신호 할당 장치 및 방법
US9077415B2 (en) 2011-12-19 2015-07-07 Samsung Electronics Co., Ltd. Apparatus and method for reference symbol transmission in an OFDM system
CN103391576B (zh) * 2012-05-11 2017-01-25 华为技术有限公司 参考信号接收功率的上报方法和设备
US9439096B2 (en) * 2012-08-13 2016-09-06 Samsung Electronics Co., Ltd. Method and apparatus to support channel refinement and multi-stream transmission in millimeter wave systems
CN105075319B (zh) 2013-04-09 2018-12-14 松下电器(美国)知识产权公司 将信道状态信息参考信号端口映射到资源块的方法、基站和用户装备
EP3041154B1 (en) 2013-08-29 2021-05-05 LG Electronics Inc. Method and device for transmitting channel state information in wireless access system supporting machine type communication
US20160353440A1 (en) 2014-01-29 2016-12-01 Interdigital Patent Holdings, Inc. Method of access and link adaptation for coverage enhanced wireless transmissions
US9763210B2 (en) * 2014-01-30 2017-09-12 Intel Corporation Evolved node-B and user equipment and methods for operation in a coverage enhancement mode
PL3780749T3 (pl) * 2014-01-30 2023-03-20 Telefonaktiebolaget Lm Ericsson (Publ) Sygnały wykrywania i procedury
US10476563B2 (en) * 2014-11-06 2019-11-12 Futurewei Technologies, Inc. System and method for beam-formed channel state reference signals
US20160218788A1 (en) 2015-01-28 2016-07-28 Lg Electronics Inc. Method and apparatus for transmitting channel state information
WO2016126099A1 (ko) * 2015-02-05 2016-08-11 엘지전자(주) 무선 통신 시스템에서 csi를 피드백하기 위한 방법 및 이를 위한 장치
CN107534540B (zh) * 2015-04-10 2020-10-23 Lg 电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备
WO2016175576A1 (ko) 2015-04-29 2016-11-03 엘지전자 주식회사 기계타입통신을 지원하는 무선 접속 시스템에서 채널상태정보를 피드백하는 방법 및 장치
US10575200B2 (en) 2015-09-03 2020-02-25 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system and device therefor
BR112018009122A8 (pt) 2015-11-06 2019-02-26 Ericsson Telefon Ab L M ?métodos para determinar e para receber uma realimentação de canal, equipamento de usuário, nó de rede, programa de computador, e, portadora?
US10812163B2 (en) 2016-04-01 2020-10-20 Apple Inc. CSI (channel state information) enhancements for FD (full dimension)-MIMO (multiple input multiple output)
US10097254B2 (en) 2016-04-18 2018-10-09 Qualcomm Incorporated Channel state information estimation and channel information reporting
US10680855B2 (en) * 2016-05-13 2020-06-09 Huawei Technologies Co., Ltd. Measurement in non-cellular wireless networks
CN109690965B (zh) * 2016-08-05 2021-12-21 Lg 电子株式会社 在无线通信系统中报告信道状态的方法及其设备
US10405353B2 (en) 2016-09-23 2019-09-03 Samsung Electronics Co., Ltd. Method and apparatus for random access in wireless systems
CN109565400A (zh) 2016-12-28 2019-04-02 Lg 电子株式会社 无线通信系统中接收参考信号资源的方法和用于该方法的装置
US11160029B2 (en) 2017-01-04 2021-10-26 Lg Electronics Inc. Controlling uplink power based on downlink path loss and configuration indicated by base station
US10999745B2 (en) 2017-01-06 2021-05-04 Lg Electronics Inc. Method and device for transmitting or receiving wireless signal in wireless communication system
WO2018143721A1 (ko) * 2017-02-02 2018-08-09 엘지전자(주) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
JP7001697B2 (ja) 2017-02-10 2022-02-10 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるチャネル状態情報を測定及び報告する方法、並びにこのための装置
US10498477B2 (en) * 2017-02-15 2019-12-03 Qualcomm Incorporated Tracking reference signal configuration design
US11159217B2 (en) 2017-03-31 2021-10-26 Apple Inc. System and method for beam management procedure configuration
EP3469732B1 (en) * 2017-06-05 2021-10-13 Telefonaktiebolaget LM Ericsson (PUBL) Beam mangement systems and methods
US11218207B2 (en) 2017-06-15 2022-01-04 Lg Electronics Inc. Method for transmitting or receiving reference signal in wireless communication system and apparatus therefor
EP3639597B1 (en) 2017-06-15 2024-04-17 Telefonaktiebolaget LM Ericsson (publ) Apparatuses and methods for scheduling object configuration
EP3471328A4 (en) 2017-06-28 2020-02-19 LG Electronics Inc. -1- CHANNEL STATE INFORMATION REFERENCE SIGNAL TRANSMISSION AND RECEIVING METHOD IN WIRELESS COMMUNICATION SYSTEM AND APPARATUS THEREOF
CN110959268B (zh) * 2017-07-21 2022-05-03 Lg 电子株式会社 发送和接收信道状态信息-参考信号(csi-rs)的方法和装置
US11108440B2 (en) 2017-08-03 2021-08-31 Lg Electronics Inc. Method and apparatus for transmitting or receiving reference signal in wireless communication system
US10992420B2 (en) 2017-08-11 2021-04-27 Telefonaktiebolaget Lm Ericsson (Publ) Selective symbol repetition for SFBC on sPDCCH
WO2019032020A1 (en) 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) APPARATUSES, METHODS, COMPUTER PROGRAMS, AND COMPUTER PROGRAM PRODUCTS FOR BEAM INDICATION
US11575554B2 (en) * 2017-08-11 2023-02-07 Apple Inc. Scrambling sequence initial seed configuration for reference signals, data, and control channel for new radio
US10686574B2 (en) 2017-08-17 2020-06-16 Industrial Technology Research Institute Methods and apparatus for indicating a radio resource to a receiver in a wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104780030A (zh) * 2010-03-17 2015-07-15 Lg电子株式会社 在支持多个天线的无线通信系统中发送信道状态信息-参考信号的方法、基站和移动站
CN106301505A (zh) * 2015-05-14 2017-01-04 株式会社Ntt都科摩 信息发送方法、波束测量方法、移动台和基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: ""R1-1712226"", 《3GPP TSG_RAN\WG1_RL1》 *
INTEL CORPORATION: ""R1-1712554 Discussion on Control Signaling for DL Beam Management"", 《3GPP TSG_RAN\WG1_RL1》 *
ZTE: "R1-1710194 "On CSI-RS for beam management"", 《3GPP TSG_RAN\WG1_RL1》 *

Also Published As

Publication number Publication date
US11411700B2 (en) 2022-08-09
KR20190024356A (ko) 2019-03-08
US11343041B2 (en) 2022-05-24
KR102506475B1 (ko) 2023-03-06
US20200287683A1 (en) 2020-09-10
WO2019045469A1 (en) 2019-03-07
EP3659289A4 (en) 2020-07-29
US20220399980A1 (en) 2022-12-15
US20200358572A1 (en) 2020-11-12
US20190068343A1 (en) 2019-02-28
CN117220846A (zh) 2023-12-12
US11349617B2 (en) 2022-05-31
US20200358573A1 (en) 2020-11-12
US11196521B2 (en) 2021-12-07
CN111095844B (zh) 2023-07-25
WO2019045469A9 (en) 2020-02-06
KR20230035550A (ko) 2023-03-14
EP3659289A1 (en) 2020-06-03
KR102549318B1 (ko) 2023-06-30

Similar Documents

Publication Publication Date Title
CN111095844B (zh) 移动通信系统中用于支持重复的csi-rs资源传输的方法和设备
US11637642B2 (en) Method and apparatus for CSI reporting in wireless communication system
US10454555B2 (en) Channel state information feedback method and apparatus for 2-dimensional massive MIMO communication system
US11612008B2 (en) Method and apparatus for performing radio link monitoring in a wireless communication system
CN112956145B (zh) 信道和干扰测量和报告的方法和装置
US9806780B2 (en) Method and apparatus for generating and transmitting channel feedback in mobile communication system employing two dimensional antenna array
US20200245166A1 (en) Method and device for supporting beam-based cooperative communication in wireless communication system
US11418240B2 (en) Variable coherence adaptive antenna array
US10454554B2 (en) Interference measurement method and apparatus for use in mobile communication system
US10263681B2 (en) Method and apparatus for reporting periodic channel state information in mobile communication system using massive array antennas
JP7012845B2 (ja) 非プリコーダ行列インジケータ(pmi)チャネル状態情(csi)フィードバックのためのポートインデクスをシグナリングする方法及び装置
US11456782B2 (en) Method for transmitting and receiving control information in wireless communication system
CN109716703B (zh) 用于在移动通信系统中发送参考信号、控制信号和数据的方法和装置
CN110999120B (zh) 用于信道质量指示符和信道状态信息报告的方法和装置
KR102425065B1 (ko) 이동 통신 시스템에서 채널 상태 정보 측정 및 보고 방법 및 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant