CN111089951A - 一种绿泥石化热通量恢复的方法 - Google Patents

一种绿泥石化热通量恢复的方法 Download PDF

Info

Publication number
CN111089951A
CN111089951A CN201911382501.XA CN201911382501A CN111089951A CN 111089951 A CN111089951 A CN 111089951A CN 201911382501 A CN201911382501 A CN 201911382501A CN 111089951 A CN111089951 A CN 111089951A
Authority
CN
China
Prior art keywords
chlorite
petrochemical
green mud
calculating
heat flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911382501.XA
Other languages
English (en)
Inventor
方维萱
鲁佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Non Ferrous Metal Mineral Geological Survey Center
Original Assignee
Non Ferrous Metal Mineral Geological Survey Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Non Ferrous Metal Mineral Geological Survey Center filed Critical Non Ferrous Metal Mineral Geological Survey Center
Priority to CN201911382501.XA priority Critical patent/CN111089951A/zh
Publication of CN111089951A publication Critical patent/CN111089951A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • G01N23/2252Measuring emitted X-rays, e.g. electron probe microanalysis [EPMA]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/079Investigating materials by wave or particle radiation secondary emission incident electron beam and measuring excited X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/102Different kinds of radiation or particles beta or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/616Specific applications or type of materials earth materials

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明涉及一种绿泥石化热通量恢复的方法,包括以下步骤:(1)绿泥石样品采集;(2)对光薄片进行分析;(3)计算绿泥石化强度;(4)对绿泥石进行电子探针分析;(5)计算绿泥石化温度;(6)计算绿泥石化热流密度;(7)构造‑岩浆‑热时间的恢复(8)成岩成矿机理的得出从而根据热流体活动叠加和构造‑岩浆‑热时间得出成岩成矿机理。通过使用本发明提供的方法,能够在得出绿泥石化热通量的同时指示岩浆期后热液流体或盆地流体成岩成矿作用,且通过发明中的参数分析,得出古地温的演化历史,为成岩成矿机理及构造与流体的耦合机制提供了基础数据支撑,可广泛应用在地质矿产技术领域。

Description

一种绿泥石化热通量恢复的方法
技术领域
本发明涉及地质工程技术领域,具体是指一种绿泥石化热通量恢复的方法。
背景技术
绿泥石化形成过程由地球化学反应动力学控制的水-岩反应过程,它受温度、压力、水-岩比、氧化-还原条件、流体成分、寄主岩石化学成分、岩石物性(如裂隙密度、渗透率、孔隙度)等多重因素制约。因此,绿泥石矿物地球化学参数能够揭示盆地流体活动和叠加历史。对比镜质体反射率、矿物包裹体测温、磷灰石裂变径迹、生物标志物立体异构化、成岩自生黏土矿物温度计等地质温度计来说,绿泥石温度计不仅能恢复古地热事件和围岩蚀变温度,而且绿泥石化热通量的计算可有效揭示盆地流体流通和水岩耦合过程,结合裂隙岩相学和裂隙流体动力学研究恢复盆地流体通量,对沉积盆地后期改造-叠加变形历史和其所经历的构造-岩浆-热事件的改造与叠加作用具有显著意义。
但是,现有技术中并没有行之有效的关于绿泥石化的热通量恢复方法。
发明内容
为解决上述技术问题,本发明提供的技术方案为:
一种绿泥石化热通量恢复的方法,包括以下步骤:
(1)绿泥石样品采集:
采集不同岩相的样品并制作成光薄片;
(2)对光薄片进行分析:
对步骤(1)中制作而成的光薄片进行岩相学的和矿相学分析,划分绿泥石的地质产状及其矿物组合关系;并对步骤(1)中制作而成的光薄片进行裂隙分析;
(3)计算绿泥石化强度:
通过测量绿泥石化面积以及光薄片的面积,计算出绿泥石化强度,计算公式为:Q=s/S,其中,Q代表绿泥石化强度,s代表绿泥石化面积,单位为μm2,S代表光薄片的面积;
(4)对绿泥石进行电子探针分析;
利用JXA-823V型电子探针分析仪并根据绿泥石的地质产状对绿泥石的元素含量进行分析,并计算各阳离子数,筛选Na2O+K2O+CaO的总含量小于0.5%的样品进行综合分析,得出矿物地球化学参数;
(5)计算绿泥石化温度:
通过步骤(4)得到的绿泥石的化学成分计算面网间距d001,进而采用Rausell公式估算绿泥石的形成温度T/℃,恢复古地温环境T/℃,其中,Rausell公式如下:
d001=14.339-0.1155×AlIV-0.0201×Fe2+
T=(14.379-d001/0.1nm)/0.001;
(6)计算绿泥石化热流密度:
通过绿泥石化强度和绿泥石化温度计算绿泥石化热流密度进而探索与古地热事件有关绿泥石化过程的热通量;
(7)构造-岩浆-热时间的恢复:
根据步骤(4)形成的地球化学参数得出绿泥石化温度、绿泥石种属以及形成机制,通过绿泥石种属以及形成机制恢复构造-岩浆-热时间;
(8)成岩成矿机理的得出:
通过矿物地球化学参数并根据流体性质得出热流体活动叠加,从而根据热流体活动叠加和构造-岩浆-热时间得出成岩成矿机理。
进一步地,所述光薄片的标准面积为2368000μm2
进一步地,所述绿泥石化热流密度为单位时间内通过物体单位横截面积上的热量,计算公式为K=Q×T×4.2/10,K的单位为Jm-2s-1,其中,K为绿泥石化热流密度,Q为绿泥石化强度,T为古地温环境温度。
进一步地,在步骤(4)中,对绿泥石化元素含量分析时,包括MnO、MgO、Al2O3、SiO2、CaO、Na2O、K2O、FeO、TiO2、Cr2O3、NiO、F、Cl;并以14个氧原子为基础计算绿泥石的阳离子数,包括Si4+、AlIV、AlVI、Ti4+、Fe3+、Fe2+、Mn2+、Mg2+、Ca2+、Na+、K+、Cr3+、Ni2+
采用以上方法后,本发明具有如下优点:
1)以构造-岩浆-热事件为主导思路,对于地质热事件所驱动的岩浆热液流体或盆地热液流体所携带的热能量进行估算,研究埋藏地热增温成岩成矿作用与构造-岩浆-热事件叠加历史,指示岩浆期后热液流体或盆地流体成岩成矿作用;
2)绿泥石化热通量的恢复是包含了矿物热力学、物质学、动力学、构造学的系统描述与研究,通过裂隙岩相学、绿泥石蚀变相的蚀变强度、绿泥石化蚀变相的形成温度、绿泥石化蚀变相形成环境研究,计算单位时间内通过物体单位横截面积上的热能量,得出了与古地热事件有关绿泥石化过程的热通量;对于岩浆期后热液流体和盆地流体的性质、源区和运移进行了定量的描述,不但恢复了古地温的演化历史,也为成岩成矿机理及构造与流体的耦合机制提供了基础数据支撑。
附图说明
图1是一种绿泥石化热通量恢复的方法的流程示意图;
图2是一种绿泥石化热通量恢复的方法中绿泥石产状、温度以及热通量的对比图;
具体实施方式
下面结合附图对本发明做进一步的详细说明。
本发明以构造-岩浆-热事件为主导思路,结合构造岩相学和地球化学岩相学原理,划分绿泥石蚀变相形成的期次、地质产状及其蚀变相态特征,恢复岩石裂隙渗透率,通过绿泥石电子探针显微分析结果,计算绿泥石的结构和形成温度,确定其种属和形成机制,分析岩石裂隙渗透率和绿泥石化形成温度的耦合关系,恢复绿泥石化形成时热流体在单位时间内通过单位面积的热量,可有效指示埋藏压实古地热增温作用、构造-热流体作用和岩浆-热流体作用形成构造-岩浆-热事件成因机制和热事件的热通量,确定热流体的成岩成矿作用强度,进行埋藏地热增温成岩成矿作用与构造-岩浆-热事件叠加历史研究。
结合附图1可知,遵循构造岩相学和地球化学岩相学原理,本发明方法通过野外地质调查和室内岩矿鉴定,进行电子探针显微分析实验数据,估算绿泥石化蚀变相形成的温度,结合裂隙密度与岩石裂隙渗透率关系,计算绿泥石化热通量的,其具体步骤如下:
(1)绿泥石样品采集:
采集不同岩相的样品并制作成光薄片,光薄片的标准面积为2368000μm2
(2)对光薄片进行分析:
对步骤(1)中制作而成的光薄片进行岩相学的和矿相学分析,划分绿泥石的地质产状及其矿物组合关系;并对步骤(1)中制作而成的光薄片进行裂隙分析;
(3)计算绿泥石化强度:
通过测量绿泥石化面积以及光薄片的面积,计算出绿泥石化强度,计算公式为:Q=s/S,其中,Q代表绿泥石化强度,s代表绿泥石化面积,单位为μm2,S代表光薄片的面积;
(4)对绿泥石进行电子探针分析;
利用JXA-823V型电子探针分析仪并根据绿泥石的地质产状对绿泥石的元素含量进行分析,包括MnO、MgO、Al2O3、SiO2、CaO、Na2O、K2O、FeO、TiO2、Cr2O3、NiO、F、Cl;并以14个氧原子为基础计算绿泥石的阳离子数,包括Si4+、AlIV、AlVI、Ti4+、Fe3+、Fe2+、Mn2+、Mg2+、Ca2+、Na+、K+、Cr3+、Ni2+,得出矿物地球化学参数,筛选Na2O+K2O+CaO<0.5%的绿泥石作为未被混染的样品进行综合分析;
(5)计算绿泥石化温度:
通过步骤(4)得到的绿泥石的化学成分计算面网间距d001,进而采用Rausell公式估算绿泥石的形成温度T/℃,恢复古地温环境T/℃,其中,Rausell公式如下:
d001=14.339-0.1155×AlIV-0.0201×Fe2+
T=(14.379-d001/0.1nm)/0.001;
(6)计算绿泥石化热流密度:
通过绿泥石化强度和绿泥石化温度计算绿泥石化热流密度进而探索与古地热事件有关绿泥石化过程的热通量;
(7)构造-岩浆-热时间的恢复:
根据步骤(4)形成的地球化学参数得出绿泥石化温度、绿泥石种属以及形成机制,通过绿泥石种属以及形成机制恢复构造-岩浆-热时间;
(8)成岩成矿机理的得出:
通过矿物地球化学参数并根据流体性质得出热流体活动叠加,从而根据热流体活动叠加和构造-岩浆-热时间得出成岩成矿机理。
在对绿泥石化热通量进行计算的过程中,对绿泥样品分别做出若干测点,得出结果如下表1所示:
Figure BDA0002342638690000041

Claims (4)

1.一种绿泥石化热通量恢复的方法,其特征在于,包括以下步骤:
(1)绿泥石样品采集:
采集不同岩相的样品并制作成光薄片;
(2)对光薄片进行分析:
对步骤(1)中制作而成的光薄片进行岩相学的和矿相学分析,划分绿泥石的地质产状及其矿物组合关系;并对步骤(1)中制作而成的光薄片进行裂隙分析;
(3)计算绿泥石化强度:
通过测量绿泥石化面积以及光薄片的面积,计算出绿泥石化强度,计算公式为:Q=s/S,其中,Q代表绿泥石化强度,s代表绿泥石化面积,单位为μm2,S代表光薄片的面积;
(4)对绿泥石进行电子探针分析;
利用JXA-823V型电子探针分析仪并根据绿泥石的地质产状对绿泥石的元素含量进行分析,并计算各阳离子数,筛选Na2O+K2O+CaO的总含量小于0.5%的样品进行综合分析,得出矿物地球化学参数;
(5)计算绿泥石化温度:
通过步骤(4)得到的绿泥石的化学成分计算面网间距d001,进而采用Rausell公式估算绿泥石的形成温度T/℃,恢复古地温环境,其中,Rausell公式如下:
d001=14.339-0.1155×AlIV-0.0201×Fe2+
T=(14.379-d001/0.1nm)/0.001;
(6)计算绿泥石化热流密度:
通过绿泥石化强度和绿泥石化温度计算绿泥石化热流密度进而探索与古地热事件有关绿泥石化过程的热通量;
(7)构造-岩浆-热时间的恢复:
根据步骤(4)形成的地球化学参数得出绿泥石化温度、绿泥石种属以及形成机制,通过绿泥石种属以及形成机制恢复构造-岩浆-热时间;
(8)成岩成矿机理的得出:
通过矿物地球化学参数并根据流体性质得出热流体活动叠加,从而根据热流体活动叠加和构造-岩浆-热时间得出成岩成矿机理。
2.根据权利要求1所述的一种绿泥石化热通量恢复的方法,其特征在于,所述光薄片的标准面积为2368000μm2
3.根据权利要求1所述的一种绿泥石化热通量恢复的方法,其特征在于,所述绿泥石化热流密度为单位时间内通过物体单位横截面积上的热量,计算公式为K=Q×T×4.2/10,K的单位为Jm-2s-1,其中,K为绿泥石化热流密度,Q为绿泥石化强度,T为古地温环境温度。
4.根据权利要求1所述的一种绿泥石化热通量恢复的方法,其特征在于,在步骤(4)中,对绿泥石化元素含量分析时,包括MnO、MgO、Al2O3、SiO2、CaO、Na2O、K2O、FeO、TiO2、Cr2O3、NiO、F、Cl;并以14个氧原子为基础计算绿泥石的阳离子数,包括Si4+、AlIV、AlVI、Ti4+、Fe3+、Fe2+、Mn2+、Mg2+、Ca2+、Na+、K+、Cr3+、Ni2+
CN201911382501.XA 2019-12-28 2019-12-28 一种绿泥石化热通量恢复的方法 Pending CN111089951A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911382501.XA CN111089951A (zh) 2019-12-28 2019-12-28 一种绿泥石化热通量恢复的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911382501.XA CN111089951A (zh) 2019-12-28 2019-12-28 一种绿泥石化热通量恢复的方法

Publications (1)

Publication Number Publication Date
CN111089951A true CN111089951A (zh) 2020-05-01

Family

ID=70396856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911382501.XA Pending CN111089951A (zh) 2019-12-28 2019-12-28 一种绿泥石化热通量恢复的方法

Country Status (1)

Country Link
CN (1) CN111089951A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089439A (zh) * 2021-11-04 2022-02-25 核工业北京地质研究院 一种适用于砂岩型铀矿床热改造温度综合判断的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289964A (zh) * 2015-05-19 2017-01-04 中国石油化工股份有限公司 一种泥页岩古抗压强度确定方法
CN109001422A (zh) * 2018-06-20 2018-12-14 华北水利水电大学 一种花岗岩绿泥石化蚀变程度的地球化学判别方法
CN109752509A (zh) * 2019-03-15 2019-05-14 有色金属矿产地质调查中心 一种碎裂岩化相确定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289964A (zh) * 2015-05-19 2017-01-04 中国石油化工股份有限公司 一种泥页岩古抗压强度确定方法
CN109001422A (zh) * 2018-06-20 2018-12-14 华北水利水电大学 一种花岗岩绿泥石化蚀变程度的地球化学判别方法
CN109752509A (zh) * 2019-03-15 2019-05-14 有色金属矿产地质调查中心 一种碎裂岩化相确定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
方维萱等: "新疆萨热克铜矿床绿泥石化蚀变相与构造-岩浆-古地热事件的热通量恢复", 《矿物学报》 *
鲁佳 等: "云南因民铁铜矿区次火山杂岩中黑云母和绿泥石矿物化学特征与成矿指示", 《 矿物学报 》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089439A (zh) * 2021-11-04 2022-02-25 核工业北京地质研究院 一种适用于砂岩型铀矿床热改造温度综合判断的方法

Similar Documents

Publication Publication Date Title
Yuan et al. Reactive transport modeling of coupled feldspar dissolution and secondary mineral precipitation and its implication for diagenetic interaction in sandstones
Tagami Thermochronological investigation of fault zones
Denis et al. Evidence of dehydration in peridotites from Eifel Volcanic Field and estimates of the rate of magma ascent
Harrison et al. Fundamentals of noble gas thermochronometry
Huang et al. Magnesium isotopic variations in loess: Origins and implications
Villa et al. Age discordance and mineralogy
Che et al. Evaluating the degree of weathering in landslide-prone soils in the humid tropics: the case of Limbe, SW Cameroon
Stubbs et al. Newly recognized hosts for uranium in the Hanford Site vadose zone
Jiang et al. Insights into the origin of coexisting A1-and A2-type granites: Implications from zircon Hf-O isotopes of the Huayuangong intrusion in the Lower Yangtze River Belt, eastern China
Thigpen et al. Thermal structure and tectonic evolution of the Scandian orogenic wedge, S cottish Caledonides: integrating geothermometry, deformation temperatures and conceptual kinematic‐thermal models
Monsef et al. Peridotites from the Khoy Ophiolitic Complex, NW Iran: Evidence of mantle dynamics in a supra-subduction-zone context
Tsai et al. Lithium distribution and isotopic fractionation during chemical weathering and soil formation in a loess profile
Uysal et al. Clay mineralogical and isotopic (K–Ar, δ18O, δD) constraints on the evolution of the North Anatolian Fault Zone, Turkey
Zhang et al. Calculation of oxygen self-diffusion coefficients in Mg2SiO4 polymorphs and MgSiO3 perovskite based on the compensation law
Pang et al. Late Carboniferous N-MORB-type basalts in central Inner Mongolia, China: Products of hydrous melting in an intraplate setting?
Buck et al. Corrosion of depleted uranium in an arid environment: Soil-geomorphology, SEM/EDS, XRD, and electron microprobe analyses
Freitas et al. Electrical conductivity of hydrous silicate melts: Implications for the bottom-up hydration of Earth's upper mantle
Yang et al. Terrestrial deposition processes of Quaternary gibbsite nodules in the Yongjiang Basin, southeastern margin of Tibet, and implication for the genesis of ancient karst bauxite
Yin et al. Mixed-layer illite-vermiculite as a paleoclimatic indicator in the Pleistocene red soil sediments in Jiujiang, southern China
Mateus et al. Relative abundance and compositional variation of silicates, oxides and phosphates in the W-Sn-rich lodes of the Panasqueira mine (Portugal): Implications for the ore-forming process
CN111089951A (zh) 一种绿泥石化热通量恢复的方法
Yuan et al. In situ monitoring of elemental losses and gains during weathering using the spatial element patterns obtained by portable XRF
Li et al. Geochemical characteristics, palaeoenvironment and provenance of uranium-bearing sandstone in the Sifangtai Formation, Northern Songliao Basin, Northeast China
Wang et al. Diffusion-driven Zn and Mg isotope fractionation in magmatic Fe-Ti-Cr oxides and implications for timescales of magmatic processes
Yang et al. Stable hydrogen and oxygen isotopes in mineral-bound water and the indication for chemical weathering intensity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200501