CN106289964A - 一种泥页岩古抗压强度确定方法 - Google Patents

一种泥页岩古抗压强度确定方法 Download PDF

Info

Publication number
CN106289964A
CN106289964A CN201510257416.6A CN201510257416A CN106289964A CN 106289964 A CN106289964 A CN 106289964A CN 201510257416 A CN201510257416 A CN 201510257416A CN 106289964 A CN106289964 A CN 106289964A
Authority
CN
China
Prior art keywords
comprcssive strength
ancient
mud shale
confined pressure
mathematical model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510257416.6A
Other languages
English (en)
Other versions
CN106289964B (zh
Inventor
袁玉松
周雁
李双建
孙炜
邱登峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Exploration and Production Research Institute
Original Assignee
China Petroleum and Chemical Corp
Sinopec Exploration and Production Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Exploration and Production Research Institute filed Critical China Petroleum and Chemical Corp
Priority to CN201510257416.6A priority Critical patent/CN106289964B/zh
Publication of CN106289964A publication Critical patent/CN106289964A/zh
Application granted granted Critical
Publication of CN106289964B publication Critical patent/CN106289964B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

本发明提供了一种泥页岩古抗压强度确定方法,该方法包括:恢复地层的埋藏史,在埋藏史恢复的基础上,恢复出泥页岩的古岩石密度;依据古岩石密度计算古垂直有效压力,并利用围压和垂直有效压力之间的关系计算古围压;通过对试验测试数据进行拟合,获得围压对泥页岩抗压强度影响的数学模型,并以此数学模型对抗压强度进行地层条件下泥页岩抗压强度的校正,并引入时间变量,从而获得古抗压强度。本方法定量恢复泥页岩在地质历史时期的抗压强度,为研究泥页岩裂缝动态演化提供关键数据,从而为常规油气成藏保存条件动态演化评价与非常规油气成藏条件分析以及开发研究提供技术参数。

Description

一种泥页岩古抗压强度确定方法
技术领域
本发明涉及油气勘探领域,尤其涉及一种泥页岩古抗压强度确定方法。
背景技术
泥页岩在常规油气成藏中是常见的烃源岩和盖层,在非常规油气成藏中既是烃源岩又是储层。泥页岩裂缝研究对常规油气藏的保存条件评价、对非常规油气成藏条件分析及开发研究具有重要意义。泥页岩裂缝的形成演化的控制因素非常复杂,既有自身的因素,如由岩性、物性、结构、构造等决定的力学性质;也有外部因素,如应力的大小和方向,所处的温度、压力与流体环境等。而且,在地质历史过程中,随着沉积盆地的沉降与抬升,地层所受的上覆地层压力、孔隙度、密度、垂直有效压力、围压等是变化的,泥页岩的岩性、物性、结构、构造等自身的因素随着沉积盆地的演化而动态演化,从而决定了其岩石力学性质也是动态演化的。同样,温度、压力、流体等外部因素也是动态演化的。自身因素和外部因素的动态耦合作用控制着泥页岩构造裂缝的形成演化。因此,研究泥页岩裂缝的形成演化,需要研究泥页岩岩石力学性质的动态演化过程。如何从动态演化的角度研究泥页岩裂缝,古抗压强度的确定是关键问题之一。
当前,对泥页抗压强度的研究,都是研究其现今的抗压强度。或者通过地表露头和井下岩心样品的室内力学试验获得抗压强度,或者通过测井资料,利用经验公式计算获得。无论那种方法,获得的都是现今的力学参数数据。至今尚没有关于泥页岩在地质历史时期的岩石抗压强度确定方法。
发明内容
本发明所要解决的技术问题之一是需要提供一种泥页岩古抗压强度确定方法,该方法能够定量恢复泥页岩在地质历史时期的抗压强度,为研究泥页岩裂缝动态演化提供关键数据。
为了解决上述技术问题,本申请的实施例首先提供了一种泥页岩古抗压强度确定方法,包括:步骤一,恢复地层的埋藏史,在埋藏史恢复的基础上,恢复出泥页岩的古岩石密度;步骤二,依据古岩石密度计算古垂直有效压力,并利用围压和垂直有效压力之间的关系计算古围压;步骤三,通过对试验测试数据进行拟合,获得围压对泥页岩抗压强度影响的数学模型,并以此数学模型对抗压强度进行地层条件下泥页岩抗压强度的校正,并引入时间变量,从而获得古抗压强度。
优选地,在所述步骤一中,基于盆地模拟中的埋藏史恢复技术恢复地层的埋藏史,并基于地层岩性含量、岩性压实系数和埋深来计算古孔隙度;基于古孔隙度、流体密度和岩石骨架密度来计算古岩石密度。
优选地,利用如下表达式计算古孔隙度:
其中,为在地质时间t、埋深为Z时的孔隙度;Pn为第n种岩性百分含量;cn为第n种岩性压实系数;Z(t)为t时刻的埋深;为第n种岩性的孔隙度。
优选地,利用如下表达式计算古岩石密度:
其中,ρ(Z,t)为地质时间t、埋深为Z时的地层密度,ρf为流体密度,ρr为岩石骨架密度,为在地质时间t、埋深为Z时的孔隙度。
优选地,利用如下表达式来计算古垂直有效压力:
其中,σ'v(Z,t)为地质时间t、埋深为Z时的垂直有效压力。
优选地,利用如下表达式来计算古围压:
P(Z,t)=σh(Z,t)=σ'v(Z,t)×μ/(1-μ)
其中,P(Z,t)为地质时间t、埋深为Z时的围压,μ为泊松比。
优选地,在所述步骤三中,依据实际测试的抗压强度与孔隙度数据,采用数学函数拟合方法获得泥页岩抗压强度与孔隙度之间的数学模型一;采用三轴力学试验获得围压下的抗压强度,建立所述抗压强度与对应围压之间的数学模型二;利用所述数学模型二对所述数学模型一进行校正,进而计算古抗压强度。
优选地,所述数学模型一表示如下:
UCS=2.441φ-0.83
其中,UCS为无围压时的抗压强度,φ为孔隙度。
优选地,所述数学模型二表示如下:
σcp=UCS+aP
其中,σcp为围压为P时的抗压强度,UCS为无围压时的抗压强度,a为经验系数。
优选地,利用如下表达是计算古抗压强度:
σcp(Z,t)=UCS(Z,t)+aP(Z,t)
其中,σcp(Z,t)为地质时间t、埋深为Z的围压P(Z,t)时的抗压强度,UCS(Z,t)为由孔隙度预测的地质时间t、埋深为Z时的抗压强度。
与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果。
本发明的目的是定量恢复泥页岩在地质历史时期的抗压强度,为研究泥页岩裂缝动态演化提供关键数据,从而为常规油气成藏保存条件动态演化评价与非常规油气成藏条件分析以及开发研究提供技术参数。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明的技术方案而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构和/或流程来实现和获得。
附图说明
附图用来提供对本申请的技术方案或现有技术的进一步理解,并且构成说明书的一部分。其中,表达本申请实施例的附图与本申请的实施例一起用于解释本申请的技术方案,但并不构成对本申请技术方案的限制。
图1为本发明实施例的泥页岩古抗压强度确定方法的流程示意图。
图2为泥页岩孔隙度与抗压强度的关系图。
图3(a)、(b)、(c)、(d)分别为温度是0℃、50℃、100℃、130℃下围压对泥页岩抗压强度影响关系图。
图4为鄂西渝东地区建深1井志留系底部泥页岩古抗压强度的结果图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成相应技术效果的实现过程能充分理解并据以实施。本申请实施例以及实施例中的各个特征,在不相冲突前提下可以相互结合,所形成的技术方案均在本发明的保护范围之内。
另外,附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在现有技术中,无论是岩石力学试验还是测井资料计算获得的岩石抗压强度参数,都是反映现今的岩石力学特性。但是,岩石力学性质除了与岩石本身的成分、结构、构造等因素有关之外,还受温度、压力、流体等环境因素控制,特别是压力和流体的影响尤其显著。在地质历史过程中,随着沉积盆地的沉降与抬升,地层所受的压力、孔隙度、密度、垂直有效压力、围压等是变化的,因此,岩石的抗压强度也是动态演化的。岩石抗压强度的动态演化以抗压强度变量随地质时间的变化过程来表征,即:在不同地质历史时期的抗压强度大小。
本发明实施例针对泥页岩裂缝动态演化研究中需要解决的关键问题,提出了一种泥页岩古抗压强度确定方法。本实施例涉及的“古抗压强度”是指岩石在地址历史时期的抗压强度大小。而且,本实施例的地质历史时期主要是指现代以前的即第四纪全新世以前的各个地质时期。如后面图4所示,本实施例中所涉及到的地质历史时期(地质时间)包括震旦纪(Z)、寒武纪(€)、奥陶纪(O),志留纪(S)、泥盆纪(D)、石炭纪(C)、早二叠世(P1)、晚二叠世(P2)、早三叠世(T1)、中三叠世(T2)、晚三叠世(T3)、早侏罗世(J1)、中侏罗世(J2)、晚侏罗世(J3)、早白垩世(K1)、晚白垩世(K2)、古近纪(E)、新近纪(N)和第四纪(Q)。
(实施例)
图1为本发明实施例的泥页岩古抗压强度确定方法的流程示意图,下面参照图1来说明该方法的各个步骤。
步骤S110,恢复地层的埋藏史,在埋藏史恢复的基础上,恢复出泥页岩古岩石密度。
需要说明的是,所谓“古岩石密度”是指地质历史时期的岩石密度,比如,志留系泥页岩在侏罗纪末的密度。
具体地,基于盆地模拟中的埋藏史恢复技术(例如回剥法)恢复地层的埋藏史,然后计算泥页岩孔隙度演化史(古孔隙度),最后根据古孔隙度来计算古岩石密度。所谓“古孔隙度”是指地质历史时期的孔隙度,比如,志留系泥页岩在三叠纪末的孔隙度。
回剥法是根据沉积压实原理,从已知的单井分层参数出发,按照地质年代由新到老的顺序逐层剥去,剥蚀恢复过程中考虑了沉积压实、沉积间断、地层剥蚀等地质要素,直至全部地层剥完为止。进一步,回剥法采用地层骨架厚度不变压实模型:即在地层的沉积压缩过程中,压实只是导致孔隙度减小,而骨架体积不变。使用该模型恢复地层的沉降史,实质上是恢复地层中的孔隙度演化过程,因此可以借助孔-深关系来恢复古厚度。即随着埋藏深度的增加,地层的上覆盖层也增加,导致孔隙度变小,体积减小。
在埋藏史恢复到基础上,基于地层岩性含量、与地层岩性含量对应的岩性压实系数和埋深来计算古孔隙度。进一步,通过以下表达式来计算古孔隙度:
其中,为在地质时间t、埋深为Z时的孔隙度,其为小数;Pn为第n种岩性百分含量,以%表示;cn为第n种岩性压实系数,1/m;Z(t)为t时刻的埋深,单位为m;为第n种岩性的孔隙度。
在计算古岩石密度时,具体地,基于古孔隙度、流体密度和岩石骨架密度来计算古岩石密度,可通过如下表达式来表示:
其中,ρ(Z,t)为地质时间t、埋深为Z时的地层密度,ρf为流体密度,ρr为岩石骨架密度,单位为g/cm3
步骤S120,依据古岩石密度计算古垂直有效压力,并利用围压和垂直有效压力之间的关系计算古围压。
具体地,依据古埋深和古岩石密度来计算古垂直有效压力。进一步,古垂直有效压力可通过如下表达式来计算:
其中,σ'v(Z,t)为地质时间t、埋深为Z时的垂直有效压力。
然后,依据水平有效压力(围压)与垂直有效压力之间的关系计算古围压,进一步,通过如下表达式来计算古围压:
P(Z,t)=σh(Z,t)=σ'v(Z,t)×μ/(1-μ) 式(4)
P(Z,t)为地质时间t、埋深为Z时的围压,单位为MPa;μ为泊松比;σ'v(Z,t)为地质时间t、埋深为Z时的垂直有效压力,单位为MPa;
步骤S130,通过对试验测试数据进行拟合,获得围压对泥页岩抗压强度影响的数学模型,并以此数学模型对抗压强度进行地层条件下泥页岩抗压强度的校正,并引入时间变量,从而获得古抗压强度。
首先,建立抗压强度-孔隙度模型。
具体地,依据实际测试抗压强度与孔隙度数据,采用数学函数拟合方法获得泥页岩单轴抗压强度与孔隙度之间的数学模型。在本实施例中,选用幂函数模型进行拟合获得泥页岩抗压强度与孔隙度之间的数学模型(详见图2),该数学模型可如下表达式所示:
UCS=2.441φ-0.83,R2=0.686 式(5)
UCS为无围压时的抗压强度(MPa),φ为孔隙度(%),R2为相关系数。
图2为泥页岩抗压强度与孔隙度的关系图。由图2可见,抗压强度与孔隙度之间呈指数函数关系。
然后,引入时间参数,则抗压强度-孔隙度模型变形为如下:
接下来,建立古抗压强度校正模型。
由于实验数据为无围压时的抗压强度(UCS),而围压对抗压强度具有显著影响,因此,需要对UCS进行地层条件下的校正,校正方法具体为:采用三轴力学试验获得围压下的抗压强度,建立抗压强度与对应围压之间的数学模型(详见图3),该数学模型可如下表达式所示:
σcp=UCS+aP 式(7)
其中,σcp即围压为P时的抗压强度,单位为MPa;a为经验系数,由实测的单轴抗压强度和孔隙度拟合得到,与地层岩性及成岩演化有关。举例来说,对于四川盆地志留系泥页岩,a介于1.1-1.8之间,平均为1.5。
图3(a)、(b)、(c)、(d)分别为温度是0℃、50℃、100℃、130℃下围压对泥页岩抗压强度影响关系图,其中,横坐标为围压,纵坐标为抗压强度。从图3中可以看出,抗压强度与围压之间为线性正相关关系。
接下来,校正并获得古抗压强度的计算表达式。
由于利用式(6)计算的地质历史时期的抗压强度是没有经过校正的,但是抗压强度还受围压的影响,因此,此处利用式(7)来校正式(6)的UCS(Z,t)得到下式(8)的σcp(Z,t),即古抗压强度。
σcp(Z,t)=UCS(Z,t)+aP(Z,t) 式(8)
其中,σcp(Z,t)为地质时间t、埋深为Z的围压P(Z,t)时的抗压强度,UCS(Z,t)为由孔隙度预测的地质时间t、埋深为Z时的抗压强度。
利用校正后的UCS(Z,t),计算不同地质历史时期的抗压强度,即为古抗压强度。
本发明实施例的方法解决了沉积盆地动态演化过程中泥页岩力学性质的动态演化过程恢复问题,获得了地质历史时期泥页岩的古抗压强度参数,是研究泥页岩裂缝动态演化的关键参数,将这些参数与应力的动态演化相结合,即可揭示泥页岩裂缝的动态演化过程,从而为保存条件有效性动态演化评价和页岩气成藏条件分析提供了关键参数。
(示例)
图4为鄂西渝东地区建深1井志留系底部古抗压强度确定结果。如图4所示,建深1井志留系底部泥页岩自沉积之后,随着埋深的增加,成岩演化程度增加,在早白垩世末达到最大埋藏深度。自沉积开始至早白垩世末,抗压强度逐渐增加、增大。在最大埋深时,抗压强度为215MPa。晚白垩世以来抗压强度有所降低,现今的抗压强度为165MPa。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明技术方案而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

1.一种泥页岩古抗压强度确定方法,包括:
步骤一,恢复地层的埋藏史,在埋藏史恢复的基础上,恢复出泥页岩的古岩石密度;
步骤二,依据古岩石密度计算古垂直有效压力,并利用围压和垂直有效压力之间的关系计算古围压;
步骤三,通过对试验测试数据进行拟合,获得围压对泥页岩抗压强度影响的数学模型,并以此数学模型对抗压强度进行地层条件下泥页岩抗压强度的校正,并引入时间变量,从而获得古抗压强度。
2.根据权利要求1所述的方法,其特征在于,在所述步骤一中,
基于盆地模拟中的埋藏史恢复技术恢复地层的埋藏史,并基于地层岩性含量、岩性压实系数和埋深来计算古孔隙度;
基于古孔隙度、流体密度和岩石骨架密度来计算古岩石密度。
3.根据权利要求2所述的方法,其特征在于,利用如下表达式计算古孔隙度:
其中,为在地质时间t、埋深为Z时的孔隙度;Pn为第n种岩性百分含量;cn为第n种岩性压实系数;Z(t)为t时刻的埋深;为第n种岩性的孔隙度。
4.根据权利要求2或3所述的方法,其特征在于,利用如下表达式计算古岩石密度:
其中,ρ(Z,t)为地质时间t、埋深为Z时的地层密度,ρf为流体密度,ρr为岩石骨架密度,为在地质时间t、埋深为Z时的孔隙度。
5.根据权利要求4所述的方法,其特征在于,利用如下表达式来计算古垂直有效压力:
其中,σ'v(Z,t)为地质时间t、埋深为Z时的垂直有效压力。
6.根据权利要求5所述的方法,其特征在于,利用如下表达式来计算古围压:
P(Z,t)=σh(Z,t)=σ'v(Z,t)×μ/(1-μ)
其中,P(Z,t)为地质时间t、埋深为Z时的围压,μ为泊松比。
7.根据权利要求1所述的方法,其特征在于,在所述步骤三中,
依据实际测试的抗压强度与孔隙度数据,采用数学函数拟合方法获得泥页岩抗压强度与孔隙度之间的数学模型一;
采用三轴力学试验获得围压下的抗压强度,建立所述抗压强度与对应围压之间的数学模型二;
利用所述数学模型二对所述数学模型一进行校正,进而计算古抗压强度。
8.根据权利要求7所述的方法,其特征在于,所述数学模型一表示如下:
UCS=2.441φ-0.83
其中,UCS为无围压时的抗压强度,φ为孔隙度。
9.根据权利要求7或8所述的方法,其特征在于,所述数学模型二表示如下:
σcp=UCS+aP
其中,σcp为围压为P时的抗压强度,UCS为无围压时的抗压强度,a为经验系数。
10.根据权利要求9所述的方法,其特征在于,利用如下表达是计算古抗压强度:
σcp(Z,t)=UCS(Z,t)+aP(Z,t)
其中,σcp(Z,t)为地质时间t、埋深为Z的围压P(Z,t)时的抗压强度,UCS(Z,t)为由孔隙度预测的地质时间t、埋深为Z时的抗压强度。
CN201510257416.6A 2015-05-19 2015-05-19 一种泥页岩古抗压强度确定方法 Active CN106289964B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510257416.6A CN106289964B (zh) 2015-05-19 2015-05-19 一种泥页岩古抗压强度确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510257416.6A CN106289964B (zh) 2015-05-19 2015-05-19 一种泥页岩古抗压强度确定方法

Publications (2)

Publication Number Publication Date
CN106289964A true CN106289964A (zh) 2017-01-04
CN106289964B CN106289964B (zh) 2019-03-29

Family

ID=57633707

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510257416.6A Active CN106289964B (zh) 2015-05-19 2015-05-19 一种泥页岩古抗压强度确定方法

Country Status (1)

Country Link
CN (1) CN106289964B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107247130A (zh) * 2017-06-21 2017-10-13 中国电建集团贵阳勘测设计研究院有限公司 一种随机缺陷岩体的Hock‑Brown参数S的取值方法
CN110296897A (zh) * 2018-03-22 2019-10-01 中国石油化工股份有限公司 一种泥页岩前期固结压力确定方法
CN111089951A (zh) * 2019-12-28 2020-05-01 有色金属矿产地质调查中心 一种绿泥石化热通量恢复的方法
CN112816354A (zh) * 2020-12-31 2021-05-18 西南石油大学 一种泥页岩水化强度动态变化测试方法
CN114154285A (zh) * 2020-09-08 2022-03-08 中国石油化工股份有限公司 一种富有机质泥页岩地层流体压力系数预测方法和装置
CN114935531A (zh) * 2022-05-24 2022-08-23 成都理工大学 一种断陷湖盆陡坡致密砂岩储层古孔隙结构恢复方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070219724A1 (en) * 2004-07-01 2007-09-20 Dachang Li Method for Geologic Modeling Through Hydrodynamics-Based Gridding (Hydro-Grids)
CN102243678A (zh) * 2011-07-19 2011-11-16 北京师范大学 一种基于沉积动力学反演的储集砂体分析方法
CN102748016A (zh) * 2012-07-10 2012-10-24 中国石油大学(华东) 地质历史时期砂岩储层孔隙度演化恢复方法
CN102778421A (zh) * 2012-07-10 2012-11-14 中国石油大学(华东) 地质历史时期砂岩储层渗透率演化恢复方法
US20140067351A1 (en) * 2012-08-31 2014-03-06 Gary G. Gray Method of Estimating Rock Mechanical Properties
CN103982179A (zh) * 2014-05-26 2014-08-13 中国地质大学(北京) 一种油藏储层的古压力定量反演探测方法
CN104252009A (zh) * 2013-06-27 2014-12-31 中国石油化工股份有限公司 一种恢复石油与天然气盖层脆塑性演化史的方法
CN104483703A (zh) * 2014-12-31 2015-04-01 中国石油天然气股份有限公司 一种井震联合古地层压力预测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070219724A1 (en) * 2004-07-01 2007-09-20 Dachang Li Method for Geologic Modeling Through Hydrodynamics-Based Gridding (Hydro-Grids)
CN102243678A (zh) * 2011-07-19 2011-11-16 北京师范大学 一种基于沉积动力学反演的储集砂体分析方法
CN102748016A (zh) * 2012-07-10 2012-10-24 中国石油大学(华东) 地质历史时期砂岩储层孔隙度演化恢复方法
CN102778421A (zh) * 2012-07-10 2012-11-14 中国石油大学(华东) 地质历史时期砂岩储层渗透率演化恢复方法
US20140067351A1 (en) * 2012-08-31 2014-03-06 Gary G. Gray Method of Estimating Rock Mechanical Properties
CN104252009A (zh) * 2013-06-27 2014-12-31 中国石油化工股份有限公司 一种恢复石油与天然气盖层脆塑性演化史的方法
CN103982179A (zh) * 2014-05-26 2014-08-13 中国地质大学(北京) 一种油藏储层的古压力定量反演探测方法
CN104483703A (zh) * 2014-12-31 2015-04-01 中国石油天然气股份有限公司 一种井震联合古地层压力预测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘震等: "鄂尔多斯盆地西峰地区长7段泥岩古压力恢复", 《中国石油大学学报(自然科学版)》 *
杨金侠: "海拉尔盆地乌尔逊凹陷古流体动力场数值模拟", 《长安大学学报(地球科学版)》 *
王渊等: "岩石抗压强度回归模型的建立", 《断块油气田》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107247130A (zh) * 2017-06-21 2017-10-13 中国电建集团贵阳勘测设计研究院有限公司 一种随机缺陷岩体的Hock‑Brown参数S的取值方法
CN110296897A (zh) * 2018-03-22 2019-10-01 中国石油化工股份有限公司 一种泥页岩前期固结压力确定方法
CN111089951A (zh) * 2019-12-28 2020-05-01 有色金属矿产地质调查中心 一种绿泥石化热通量恢复的方法
CN114154285A (zh) * 2020-09-08 2022-03-08 中国石油化工股份有限公司 一种富有机质泥页岩地层流体压力系数预测方法和装置
CN114154285B (zh) * 2020-09-08 2022-08-19 中国石油化工股份有限公司 一种富有机质泥页岩地层流体压力系数预测方法和装置
CN112816354A (zh) * 2020-12-31 2021-05-18 西南石油大学 一种泥页岩水化强度动态变化测试方法
CN114935531A (zh) * 2022-05-24 2022-08-23 成都理工大学 一种断陷湖盆陡坡致密砂岩储层古孔隙结构恢复方法
CN114935531B (zh) * 2022-05-24 2023-11-24 成都理工大学 一种断陷湖盆陡坡致密砂岩储层古孔隙结构恢复方法

Also Published As

Publication number Publication date
CN106289964B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
CN106289964A (zh) 一种泥页岩古抗压强度确定方法
Yue et al. Reservoir quality, natural fractures, and gas productivity of upper Triassic Xujiahe tight gas sandstones in western Sichuan Basin, China
Connell Coupled flow and geomechanical processes during gas production from coal seams
Jiu et al. Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression, Bohai Bay Basin, east China
Liang et al. Wellbore stability model for shale gas reservoir considering the coupling of multi-weakness planes and porous flow
US8898046B2 (en) Method to improve reservoir simulation and recovery from fractured reservoirs
Ju et al. Insights into the damage zones in fault-bend folds from geomechanical models and field data
Zhu et al. 4D multi-physical stress modelling during shale gas production: a case study of Sichuan Basin shale gas reservoir, China
Zhu et al. Permeability stress-sensitivity in 4D flow-geomechanical coupling of Shouyang CBM reservoir, Qinshui Basin, China
WO2014149802A1 (en) Meshless representation of a geologic environment
Wu et al. Numerical simulation of viscoelastoplastic land subsidence due to groundwater overdrafting in Shanghai, China
CN103982179A (zh) 一种油藏储层的古压力定量反演探测方法
CN113820750A (zh) 基于弹塑性力学定量预测泥岩构造裂缝的方法
Chen et al. Understanding the performance of hydraulically fractured wells in the laumontite-rich tight glutenite formation
Li et al. Hydromechanical modeling of nonplanar three‐dimensional fracture propagation using an iteratively coupled approach
Wei et al. Porosity model and its application in tight gas sandstone reservoir in the southern part of West Depression, Liaohe Basin, China
Qu et al. A fully coupled simulation model for water spontaneous imbibition into brittle shale
Li et al. Numerical simulation of brittleness effect on propagation behavior of glutenite hydraulic fractures
Tang et al. Geomechanics evolution integrated with hydraulic fractures, heterogeneity and anisotropy during shale gas depletion
Wang et al. Probabilistic-based geomechanical assessment of maximum operating pressure for an underground gas storage reservoir, NW China
CN106321082B (zh) 用于求取盐膏岩地层最大套管外载荷的方法及系统
CN114183121B (zh) 裂缝有效性定量评价方法、装置、电子设备及存储介质
Feng et al. An improved geomechanical model for the prediction of fracture generation and distribution in brittle reservoirs
Schofield et al. Optimization of well pad & completion design for hydraulic fracture stimulation in unconventional reservoirs
Zhang et al. Geomechanics simulation of stress regime change in hydraulic fracturing: a case study

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant