CN111082409A - 一种配电网单相接地故障主从式消弧系统 - Google Patents

一种配电网单相接地故障主从式消弧系统 Download PDF

Info

Publication number
CN111082409A
CN111082409A CN202010074992.8A CN202010074992A CN111082409A CN 111082409 A CN111082409 A CN 111082409A CN 202010074992 A CN202010074992 A CN 202010074992A CN 111082409 A CN111082409 A CN 111082409A
Authority
CN
China
Prior art keywords
phase
distribution network
power distribution
arc extinction
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010074992.8A
Other languages
English (en)
Other versions
CN111082409B (zh
Inventor
郭谋发
王辉
陈志欣
高伟
杨耿杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202010074992.8A priority Critical patent/CN111082409B/zh
Publication of CN111082409A publication Critical patent/CN111082409A/zh
Application granted granted Critical
Publication of CN111082409B publication Critical patent/CN111082409B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/08Limitation or suppression of earth fault currents, e.g. Petersen coil

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种配电网单相接地故障主从式消弧系统,包括与配电网相接的消弧线圈与柔性从消弧装置;所述柔性从消弧装置由级联H桥变流器串联滤波电感组成;当配电网发生单相接地故障时,消弧线圈工作于过补偿状态,补偿接地故障电流中的大部分无功分量,控制柔性从消弧装置注入补偿电流,补偿接地故障残流中的无功分量、有功分量及谐波分量。本发明采用消弧线圈与柔性从消弧装置共同实现对接地故障电流的全补偿,降低接地故障残流,并可解决工程中存在的因配电网规模扩大导致的消弧线圈补偿容量不足的问题。

Description

一种配电网单相接地故障主从式消弧系统
技术领域
本发明涉及配电网安全设计技术领域,特别是一种配电网单相接地故障主从式消弧系统。
背景技术
随着配电网的规模扩大、电力电子设备以及非线性负载的用量增加,单相接地故障电流中的有功和谐波分量增多。传统的消弧线圈只能补偿单相接地故障电流中的容性无功基波分量,经传统消弧线圈补偿后的故障残流中仍存在有功及谐波分量,足以维持电弧的燃烧,故传统消弧线圈逐渐不能满足配电网安全稳定运行的要求。故障点电弧无法有效熄灭可能会引发更大的事故,威胁设备和人员安全。
已有的主从式消弧系统虽然可以补偿单相接地故障电流中的无功、有功和谐波分量,但是其从消弧装置采用单个H桥经过升压变压器后接入配电网中性点,其输出谐波含量较高,单个H桥单元的开关元件流过的电流大,动作频率高,发热量严重,且可能出现功率倒灌现象。
综上,现有主从式消弧系统存在的几个问题:一、从消弧装置输出的谐波分量较大。二、单个H桥单元的开关元件流过的电流大,动作频率高,发热严重。三、从消弧装置的单个H桥单元经固定变比的升压变压器接入配电网,消弧过程中中性点电压将抬升,可能出现功率倒灌,造成H桥变流器损坏。
发明内容
有鉴于此,本发明的目的是提出一种配电网单相接地故障主从式消弧系统,采用消弧线圈与柔性从消弧装置共同实现对接地故障电流的全补偿,降低接地故障残流,并可解决工程中存在的因配电网规模扩大导致的消弧线圈补偿容量不足的问题。
本发明采用以下方案实现:一种配电网单相接地故障主从式消弧系统,包括与配电网相接的消弧线圈与柔性从消弧装置;
所述柔性从消弧装置由级联H桥变流器串联滤波电感组成;
当配电网发生单相接地故障时,消弧线圈工作于过补偿状态,补偿接地故障电流中的大部分无功分量,控制柔性从消弧装置注入补偿电流,补偿接地故障残流中的无功分量、有功分量及谐波分量。
进一步地,所述消弧线圈为带铁芯的电感器。
进一步地,本发明的主从式消弧系统与配电网的连接关系为:所述柔性从消弧装置与所述消弧线圈并联后经Z型变压器接入配电网中性点。当配电网发生单相接地故障时,控制柔性从消弧装置注入补偿电流
Figure BDA0002378270400000021
为:
Figure BDA0002378270400000022
式中,
Figure BDA0002378270400000023
为母线零序电压,
Figure BDA0002378270400000024
L为消弧线圈电感值,Ck为线路单相对地电容值,rk为线路单相对地电阻值,k为馈线编号,N为馈线数量,ω为基波角频率,ω=2πf0
进一步地,本发明的主从式消弧系统与配电网的连接关系还可以为:所述消弧线圈接入配电网中性点,所述柔性从消弧装置挂接于配电网母线。此时,所述柔性从消弧装置采用单相、两相或三相的方式接入配电网;当柔性从消弧装置采用级联H桥变流器时,既能够经Z型变压器挂接于配电网中性点,又能够挂接于配电网的任意相;当柔性从消弧装置采用两相级联H桥变流器时,能够挂接于配电网的任意两相;当柔性从消弧装置采用三相级联H桥变流器时,挂接于配电网的三相。
当配电网发生单相接地故障时,若柔性从消弧装置经Z型变压器挂接于配电网中性点,控制柔性从消弧装置注入补偿电流
Figure BDA0002378270400000031
为:
Figure BDA0002378270400000032
式中,
Figure BDA0002378270400000033
为母线零序电压,
Figure BDA0002378270400000034
L为消弧线圈电感值,Ck为线路单相对地电容值,rk为线路单相对地电阻值,k为馈线编号,N为馈线数量,ω为基波角频率,ω=2πf0
当配电网发生单相接地故障时,若柔性从消弧装置挂接于配电网的任意两相,控制柔性从消弧装置分别向配电网的任意两相注入补偿电流
Figure BDA0002378270400000035
Figure BDA0002378270400000036
式中,
Figure BDA0002378270400000037
为母线A相电动势,
Figure BDA0002378270400000038
L为消弧线圈电感值,Ck为线路单相对地电容值,rk为线路单相对地电阻值,k为馈线编号,N为馈线数量,ω为基波角频率,ω=2πf0
Figure BDA0002378270400000041
为B相电压,
Figure BDA0002378270400000042
为C相电压。
当配电网发生单相接地故障时,若柔性从消弧装置挂接于配电网的三相,控制柔性从消弧装置分别向三相注入补偿电流
Figure BDA0002378270400000043
Figure BDA0002378270400000044
式中,
Figure BDA0002378270400000045
为母线A相电动势,
Figure BDA0002378270400000046
L为消弧线圈电感值,Ck为线路单相对地电容值,rk为线路单相对地电阻值,k为馈线编号,N为馈线数量,ω为基波角频率,ω=2πf0
Figure BDA0002378270400000047
为B相电压,
Figure BDA0002378270400000048
为C相电压。
本发明采用消弧线圈与柔性从消弧装置共同实现对接地故障电流的全补偿,降低接地故障残流,并可解决工程中存在的因配电网规模扩大导致的消弧线圈补偿容量不足的问题。
与现有技术相比,本发明有以下有益效果:
1、本发明使用级联H桥变流器作为主从式消弧系统的有源部分。H桥单元具有模块化、耐压要求低、互为备用等优点。
2、本发明中的不同相级联H桥变流器均互为备用,柔性从消弧装置可于系统中性点注入、故障相注入,也可于非故障相注入,灵活性强。
3、本发明使用基于零序电压的电流消弧方法时,无需进行故障选相,避免了选相错误时造成的故障电流增大问题,提高了消弧的可靠性。
附图说明
图1为本发明实施例的级联H桥变流器与消弧线圈并联接入配电网中性点时的主从式消弧系统的拓扑结构。
图2为本发明实施例的级联H桥变流器的主电路拓扑图。
图3为本发明实施例的H桥单元保护原理图。
图4为本发明实施例的级联H桥变流器的主模块和子模块之间的通信方式原理图。图5为本发明实施例的级联H桥变流器与消弧线圈并联接入配电网中性点时的配电网单相接地故障等效电路图。
图6为本发明实施例的发生单相接地故障后的零序等效电路图。
图7为本发明实施例的消弧流程图。
图8为本发明实施例的消弧线圈接入配电网中性点,柔性从消弧装置挂接于配电网母线时的配电网单相接地故障等效电路图。
图9为本发明实施例的仿真实例中的10kV配电网模型。
图10为本发明实施例的仿真实例中的故障相接地电阻为10Ω的电流电压波形图。其中,(a)为R=10Ω故障电流示意图,(b)为R=10Ω故障相电压示意图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本实施例提供了一种配电网单相接地故障主从式消弧系统,包括与配电网相接的消弧线圈与柔性从消弧装置;
所述柔性从消弧装置由级联H桥变流器串联滤波电感组成;
当配电网发生单相接地故障时,消弧线圈工作于过补偿状态,补偿接地故障电流中的大部分无功分量,控制柔性从消弧装置注入补偿电流,补偿接地故障残流中的无功分量、有功分量及谐波分量。
在本实施例中,所述消弧线圈为带铁芯的电感器。
在本实施例中,主从式消弧系统与配电网的连接关系为:所述柔性从消弧装置与所述消弧线圈并联后经Z型变压器接入配电网中性点。当配电网发生单相接地故障时,控制柔性从消弧装置注入补偿电流
Figure BDA0002378270400000061
为:
Figure BDA0002378270400000062
式中,
Figure BDA0002378270400000063
为母线零序电压,
Figure BDA0002378270400000064
L为消弧线圈电感值,Ck为线路单相对地电容值,rk为线路单相对地电阻值,k为馈线编号,N为馈线数量,ω为基波角频率,ω=2πf0
较佳的,如图1所示,以单相级联H桥变流器与消弧线圈并联后经Z型变压器接入配电网中性点为例。L表示消弧线圈,LZ表示单相级联H桥变流器连接的滤波电感。S1、S2表示断路器,分别控制消弧线圈L的投切和控制单相级联H桥变流器的投切。LA表示避雷器。GS表示接地开关。柔性从消弧装置中级联H桥变流器的主电路拓扑图如图2所示。其中H桥单元直流侧储能电容由直流电源供能,该直流电源由交流电源经整流器提供。限流电阻旁路开关由主模块控制。图3所示为H桥单元保护原理图。P1~P4为单个H桥单元控制板中的四个保护。P1表示H桥单元的直流侧过压保护。P2表示H桥单元中两个半桥模块的过温保护。P3表示H桥单元的交流侧过流保护。P4表示H桥单元的交流侧过压保护。udc表示H桥单元的直流侧电压。uac表示H桥单元的交流侧电压。iac表示H桥单元的交流侧电流。T1表示H桥单元中左半桥模块的温度,T2表示H桥单元中右半桥模块的温度。若三相整流后的电压出现过压或者欠压则P1作用,通过动作三相联动接触器跳开与厂用电的连接。P2通过监测安装于H桥单元中两个半桥模块散热片上的温度传感器上的温度,一旦发现温度异常,H桥单元控制板控制跳开与电源的连接。H桥单元之间采用光纤通信方式,如图4所示。MCU-M表示主H桥单元的单片机控制单元,控制主模块收发光纤信号,MUC-S表示子H桥单元的单片机控制单元,控制子模块收发光纤信号。
对应的消弧原理如下:
如图5所示,故障发生后,柔性从消弧装置的注入电流为:
Figure BDA0002378270400000071
式(1)中,
Figure BDA0002378270400000072
为柔性从消弧装置注入电流,
Figure BDA0002378270400000073
为母线零序电压,
Figure BDA0002378270400000074
Figure BDA0002378270400000075
为母线三相电压,L为消弧线圈电感值,Ck为线路单相对地电容值,rk为线路单相对地电阻值,Rf为故障接地电阻值,k为馈线编号,N为馈线数量。其中,
Figure BDA0002378270400000081
ω=2πf0,为基波角频率。考虑三相电源电动势平衡,即
Figure BDA0002378270400000082
式(1)可整理为:
Figure BDA0002378270400000083
故障点接地电流为:
Figure BDA0002378270400000084
Figure BDA0002378270400000085
可得配电网发生单相接地后的零序等效电路为图6。
由消弧控制的目标
Figure BDA0002378270400000086
可得:
Figure BDA0002378270400000087
可见,通过控制级联H桥变流器注入电流跟踪
Figure BDA0002378270400000088
即可抑制故障点接地电流为零,实现零残流消弧。
特别的,在本实施例的实际应用中,采用如下步骤来实现消弧目的,如图7所示:
步骤S1:在配电网正常运行时,实时测量配电网母线三相电压和零序电压,监测是否发生单相接地故障。
步骤S2:若没有发生单相接地故障,定时注入电流测量配电网对地参数,实时更新对地参数并保存。
步骤S3:检测到单相接地故障发生后,控制级联H桥注入补偿电流,实现故障消弧。
步骤S4:消弧一段时间后判断故障是否消失,若消失则配电网恢复正常运行,否则通过选线装置隔离故障。
在本实施例中,主从式消弧系统与配电网的连接关系还可以为:所述消弧线圈接入配电网中性点,所述柔性从消弧装置挂接于配电网母线。此时,所述柔性从消弧装置采用单相、两相或三相的方式接入配电网;当柔性从消弧装置采用单相级联H桥变流器时,既能够经Z型变压器挂接于配电网中性点,又能够挂接于配电网的任意相;当柔性从消弧装置采用两相级联H桥变流器时,能够挂接于配电网的任意两相;当柔性从消弧装置采用三相级联H桥变流器时,挂接于配电网的三相。图8为消弧线圈接入配电网中性点,柔性从消弧装置挂接于配电网母线时的配电网单相接地故障等效电路图。通过控制开关K1、K2、K3的通断配合,可以做到令柔性从消弧装置单相、两相或三相挂接于配电网母线上。图5、图8为主从式消弧系统的两种不同的拓扑结构图,两种拓扑结构均可做到在配电网发生单相接地故障时,消弧线圈工作于过补偿状态,补偿接地故障电流中的大部分无功分量,控制柔性从消弧装置注入补偿电流,补偿接地故障残流中的无功分量、有功分量及谐波分量。消弧线圈与柔性从消弧装置共同实现对接地故障电流的全补偿,降低接地故障残流。
当配电网发生单相接地故障时,若柔性从消弧装置经Z型变压器挂接于配电网中性点,控制柔性从消弧装置注入补偿电流
Figure BDA0002378270400000091
为:
Figure BDA0002378270400000092
式中,
Figure BDA0002378270400000093
为母线零序电压,
Figure BDA0002378270400000094
L为消弧线圈电感值,Ck为线路单相对地电容值,rk为线路单相对地电阻值,k为馈线编号,N为馈线数量,ω为基波角频率,ω=2πf0
对应的消弧原理为:
如图5所示,故障发生后,柔性从消弧装置的注入电流为:
Figure BDA0002378270400000101
式中,
Figure BDA0002378270400000102
为柔性从消弧装置注入电流,
Figure BDA0002378270400000103
为母线零序电压,
Figure BDA0002378270400000104
为母线三相电压,L为消弧线圈电感值,Ck为线路单相对地电容值,rk为线路单相对地电阻值,Rf为故障接地电阻值,k为馈线编号,N为馈线数量。其中,
Figure BDA0002378270400000105
ω=2πf0,为基波角频率。考虑三相电源电动势平衡,即
Figure BDA0002378270400000106
式(6)可整理为:
Figure BDA0002378270400000107
故障点接地电流为:
Figure BDA0002378270400000108
Figure BDA0002378270400000109
可得配电网发生单相接地后的零序等效电路为图6。
由消弧控制的目标
Figure BDA00023782704000001010
可得:
Figure BDA00023782704000001011
可见,通过控制级联H桥变流器注入电流跟踪
Figure BDA00023782704000001012
即可抑制故障点接地电流为零,实现零残流消弧。
当配电网发生单相接地故障时,若柔性从消弧装置挂接于配电网的任意两相,控制柔性从消弧装置分别向配电网的任意两相注入补偿电流
Figure BDA0002378270400000111
Figure BDA0002378270400000112
对应的消弧原理为:
故障发生后,柔性从消弧装置的注入电流为:
Figure BDA0002378270400000113
由消弧目标
Figure BDA0002378270400000114
可得:
Figure BDA0002378270400000115
可得:
Figure BDA0002378270400000116
Figure BDA0002378270400000117
以非故障相注入补偿电流为例,任意两相级联H桥变流器注入电流为:
Figure BDA0002378270400000118
可见,通过控制两相级联H桥变流器注入电流跟踪
Figure BDA0002378270400000119
即可抑制故障点接地电流为零,实现零残流消弧。
当配电网发生单相接地故障时,若柔性从消弧装置挂接于配电网的三相,控制柔性从消弧装置注入补偿电流
Figure BDA00023782704000001110
为:
Figure BDA0002378270400000121
对应的消弧原理为:
故障发生后,柔性从消弧装置的注入电流为:
Figure BDA0002378270400000122
由消弧目标
Figure BDA0002378270400000123
可得:
Figure BDA0002378270400000124
可得:
Figure BDA0002378270400000125
Figure BDA0002378270400000126
三相级联H桥变流器注入电流为:
Figure BDA0002378270400000127
可见,通过控制三相级联H桥变流器注入电流跟踪
Figure BDA0002378270400000128
即可抑制故障点接地电流为零,实现零残流消弧。
较佳的,本实施例采用MATLAB/Simulink仿真软件搭建10kV仿真模型。为了分析主从运行方式下配电网发生单相接地故障时的消弧效果,采集故障电流及故障相电压等电气量。以消弧线圈和柔性从消弧装置并联后经Z型变压器接入配电网中性点为例,仿真模型如图9所示。仿真模型中包括两部分:一是辐射型10kV配电网,其6条出线包括架空线路,电缆线路以及架空-电缆混合线路;二是主从式消弧系统,包含消弧线圈及由级联H桥变流器构成的柔性从消弧装置。图9中,OL-5km表示5公里的架空线路,CL-5km表示5公里的电缆线路。其中配电网线路参数如表1所示。以架空线路总长度50km,电缆线路总长度71km为例,则流过故障点的电容电流公式如下:
IC=3UNωCΣ;(5)
式中:CΣ为系统中所有线路的单相对地零序电容之和,参照表1每公里电缆和架空线路电容值,CΣ取值为(71×0.28+50×0.008)×10-6F;UN为相电压,取值为
Figure BDA0002378270400000131
ω为基波角频率,取值为2π×50rad/s。将以上数值代入公式(5),可得IC=110.35A>20A,根据规程规定,若10kV配电网的IC>20A,应装设消弧线圈。
表1
Figure BDA0002378270400000132
取消弧线圈的过补偿度为5%,则流过故障点的电感电流为:
IL=UN/ωL=1.05×IC;(6)
由式(6)可推出
Figure BDA0002378270400000133
消弧线圈的有功损耗大约为感性损耗的2.5%~5%,取3%,则消弧线圈的电阻为:
Figure BDA0002378270400000141
级联H桥变流器参数如表2所示。
表2
Figure BDA0002378270400000142
将接地电阻设置为Rf=10Ω,其故障电流波形及电压波形如图10所示。由于接地电阻较小,接地故障电流暂态存在明显的倒相过程,这是由于在相电压过零点附近发生小电阻接地,暂态电容电流很小,暂态电流主要为电感电流。经过两个周波后,t=0.06s接地故障电流进入稳态,此时级联H桥尚未投入,电流幅值为13.8A。t=0.069s时,装置投入,但并未开始补偿电流。t=0.089s时,检测到参考电流的过零点,开始输出电流补偿接地故障电流,而后接地故障电流被补偿至零点附近,最大幅值仅为3.5A,可靠消弧。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (9)

1.一种配电网单相接地故障主从式消弧系统,其特征在于,包括与配电网相接的消弧线圈与柔性从消弧装置;
所述柔性从消弧装置由级联H桥变流器串联滤波电感组成;
当配电网发生单相接地故障时,消弧线圈工作于过补偿状态,补偿接地故障电流中的大部分无功分量,控制柔性从消弧装置注入补偿电流,补偿接地故障残流中的无功分量、有功分量及谐波分量。
2.根据权利要求1所述的一种配电网单相接地故障主从式消弧系统,其特征在于,所述消弧线圈为带铁芯的电感器。
3.根据权利要求1或2所述的一种配电网单相接地故障主从式消弧系统,其特征在于,所述柔性从消弧装置与所述消弧线圈并联后经Z型变压器接入配电网中性点。
4.根据权利要求3所述的一种配电网单相接地故障主从式消弧系统,其特征在于,当配电网发生单相接地故障时,控制柔性从消弧装置注入补偿电流
Figure FDA0002378270390000014
为:
Figure FDA0002378270390000011
式中,
Figure FDA0002378270390000012
为母线零序电压,
Figure FDA0002378270390000013
L为消弧线圈电感值,Ck为线路单相对地电容值,rk为线路单相对地电阻值,k为馈线编号,N为馈线数量,ω为基波角频率,ω=2πf0
5.根据权利要求1或2所述的一种配电网单相接地故障主从式消弧系统,其特征在于,所述消弧线圈接入配电网中性点,所述柔性从消弧装置挂接于配电网母线。
6.根据权利要求4所述的一种配电网单相接地故障主从式消弧系统,其特征在于,所述柔性从消弧装置采用单相、两相或三相的方式接入配电网;当柔性从消弧装置采用单相级联H桥变流器时,既能够经Z型变压器挂接于配电网中性点,又能够挂接于配电网的任意相;当柔性从消弧装置采用两相级联H桥变流器时,能够挂接于配电网的任意两相;当柔性从消弧装置采用三相级联H桥变流器时,挂接于配电网的三相。
7.根据权利要求6所述的一种配电网单相接地故障主从式消弧系统,其特征在于,当配电网发生单相接地故障时,若柔性从消弧装置经Z型变压器挂接于配电网中性点,控制柔性从消弧装置注入补偿电流
Figure FDA0002378270390000021
为:
Figure FDA0002378270390000022
式中,
Figure FDA0002378270390000023
为母线零序电压,
Figure FDA0002378270390000024
L为消弧线圈电感值,Ck为线路单相对地电容值,rk为线路单相对地电阻值,k为馈线编号,N为馈线数量,ω为基波角频率,ω=2πf0
8.根据权利要求6所述的一种配电网单相接地故障主从式消弧系统,其特征在于,当配电网发生单相接地故障时,若柔性从消弧装置挂接于配电网的任意两相,控制柔性从消弧装置分别向配电网的任意两相注入补偿电流
Figure FDA0002378270390000025
Figure FDA0002378270390000031
式中,
Figure FDA0002378270390000032
为母线A相电动势,
Figure FDA0002378270390000033
L为消弧线圈电感值,Ck为线路单相对地电容值,rk为线路单相对地电阻值,k为馈线编号,N为馈线数量,ω为基波角频率,ω=2πf0
Figure FDA0002378270390000034
为B相电压,
Figure FDA0002378270390000035
为C相电压。
9.根据权利要求6所述的一种配电网单相接地故障主从式消弧系统,其特征在于,当配电网发生单相接地故障时,若柔性从消弧装置挂接于配电网的三相,控制柔性从消弧装置分别向三相注入补偿电流
Figure FDA0002378270390000036
Figure FDA0002378270390000037
式中,
Figure FDA0002378270390000038
为母线A相电动势,
Figure FDA0002378270390000039
L为消弧线圈电感值,Ck为线路单相对地电容值,rk为线路单相对地电阻值,k为馈线编号,N为馈线数量,ω为基波角频率,ω=2πf0
Figure FDA00023782703900000310
为B相电压,
Figure FDA00023782703900000311
为C相电压。
CN202010074992.8A 2020-01-22 2020-01-22 一种配电网单相接地故障主从式消弧系统 Active CN111082409B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010074992.8A CN111082409B (zh) 2020-01-22 2020-01-22 一种配电网单相接地故障主从式消弧系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010074992.8A CN111082409B (zh) 2020-01-22 2020-01-22 一种配电网单相接地故障主从式消弧系统

Publications (2)

Publication Number Publication Date
CN111082409A true CN111082409A (zh) 2020-04-28
CN111082409B CN111082409B (zh) 2021-04-27

Family

ID=70324118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010074992.8A Active CN111082409B (zh) 2020-01-22 2020-01-22 一种配电网单相接地故障主从式消弧系统

Country Status (1)

Country Link
CN (1) CN111082409B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054498A (zh) * 2020-09-24 2020-12-08 云南电网有限责任公司电力科学研究院 一种接地故障全补偿系统的限流保护方法及装置
CN112769116A (zh) * 2020-12-28 2021-05-07 长沙理工大学 一种发电厂厂用电系统接地故障有源消弧方法及其装置
CN112865059A (zh) * 2020-12-30 2021-05-28 上海宏力达信息技术股份有限公司 一种适用于链式柔性消弧测量控制的方法及系统
CN113036730A (zh) * 2021-04-19 2021-06-25 福州大学 配电网单相接地故障柔性消弧装置的控制方法
CN113178854A (zh) * 2021-04-27 2021-07-27 福州大学 一种基于主从控制的配电网接地故障柔性分散消弧方法
CN114094563A (zh) * 2021-11-30 2022-02-25 国网山东省电力公司潍坊供电公司 一种主从式消弧线圈、消弧线圈柔性补偿控制方法及系统
CN114156855A (zh) * 2021-12-08 2022-03-08 国网辽宁省电力有限公司朝阳供电公司 配电网接地残流动态全补偿消弧线圈及其投入和退出方法
CN114221320A (zh) * 2021-12-21 2022-03-22 福州大学 一种互联配电网单相接地故障集成化消弧方法
CN116316514A (zh) * 2023-05-05 2023-06-23 广东信通通信有限公司 带消弧功能的智能断路器及控制方法、配电设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218563A (zh) * 2014-09-26 2014-12-17 福州大学 一种中性点经多电平变流器接地的配电网故障消弧方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218563A (zh) * 2014-09-26 2014-12-17 福州大学 一种中性点经多电平变流器接地的配电网故障消弧方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吕涛等: "配电网有源消弧深度补偿的分析与仿真研究", 《智慧电力》 *
郭谋发等: "基于三相级联H 桥变流器的配电网接地故障分相柔性消弧方法", 《电工技术学报》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054498A (zh) * 2020-09-24 2020-12-08 云南电网有限责任公司电力科学研究院 一种接地故障全补偿系统的限流保护方法及装置
CN112769116A (zh) * 2020-12-28 2021-05-07 长沙理工大学 一种发电厂厂用电系统接地故障有源消弧方法及其装置
CN112769116B (zh) * 2020-12-28 2024-03-19 长沙理工大学 一种发电厂厂用电系统接地故障有源消弧方法及其装置
CN112865059A (zh) * 2020-12-30 2021-05-28 上海宏力达信息技术股份有限公司 一种适用于链式柔性消弧测量控制的方法及系统
CN112865059B (zh) * 2020-12-30 2023-03-14 上海宏力达信息技术股份有限公司 一种适用于链式柔性消弧测量控制的方法及系统
CN113036730A (zh) * 2021-04-19 2021-06-25 福州大学 配电网单相接地故障柔性消弧装置的控制方法
CN113178854B (zh) * 2021-04-27 2023-12-29 福州大学 一种基于主从控制的配电网接地故障柔性分散消弧方法
CN113178854A (zh) * 2021-04-27 2021-07-27 福州大学 一种基于主从控制的配电网接地故障柔性分散消弧方法
CN114094563A (zh) * 2021-11-30 2022-02-25 国网山东省电力公司潍坊供电公司 一种主从式消弧线圈、消弧线圈柔性补偿控制方法及系统
CN114156855A (zh) * 2021-12-08 2022-03-08 国网辽宁省电力有限公司朝阳供电公司 配电网接地残流动态全补偿消弧线圈及其投入和退出方法
CN114221320B (zh) * 2021-12-21 2023-11-10 福州大学 一种互联配电网单相接地故障集成化消弧方法
CN114221320A (zh) * 2021-12-21 2022-03-22 福州大学 一种互联配电网单相接地故障集成化消弧方法
CN116316514B (zh) * 2023-05-05 2023-09-08 广东信通通信有限公司 带消弧功能的智能断路器及控制方法、配电设备
CN116316514A (zh) * 2023-05-05 2023-06-23 广东信通通信有限公司 带消弧功能的智能断路器及控制方法、配电设备

Also Published As

Publication number Publication date
CN111082409B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
CN111082409B (zh) 一种配电网单相接地故障主从式消弧系统
CN101304170B (zh) 高压直流输电工程的系统调试方法
CN105610147B (zh) 一种基于三相级联h桥变流器的配电网接地故障消弧方法
CN103296673B (zh) 一种±800kV特高压直流输电工程系统调试方法
Yang et al. An overview of DC cable modelling for fault analysis of VSC-HVDC transmission systems
CN105119262A (zh) 同时实现电能质量调节和小电流接地故障有源消弧的电路
CN103323692B (zh) 一种±800kV特高压直流输电工程系统试验项目的编制方法
Zarei et al. Performance improvement of AC-DC power converters under unbalanced conditions
CN107785884A (zh) 一种三相四桥臂多电平有源补偿装置及控制方法
CN107785883A (zh) 一种三相四桥臂多电平有源补偿装置及控制方法
CN114583649B (zh) 一种零序电流融冰装置及其控制策略、设备和介质
CN107785882A (zh) 一种三相四桥臂多电平有源补偿装置及控制方法
Wang et al. Suppression strategy on neutral point overvoltage in resonant grounding system considering single line-to-ground fault
CN113567808B (zh) 一种统一潮流控制器接入线路故障定位方法及系统
CN112769116B (zh) 一种发电厂厂用电系统接地故障有源消弧方法及其装置
Ma et al. Active voltage-type arc suppression device for single-line-to-ground fault in distribution networks with consideration of line impedance
Jian et al. Analysis of arc suppression performance of active transfer type arc extinguishing device
Shendge et al. Simulink model for mitigation of sag/swell by dynamic voltage restorer using SPWM technique
CN105226988A (zh) 用于upfc换流阀功能调试的电源及其控制方法
Hao et al. Active and Passive Voltage Arc-suppression Technology in Distribution Network
Han et al. Verification of HVDC controller using an advanced hybrid real time simulator
Zhu et al. Analysis And Calculation Of The Short-Circuit Current Of Xiamen VSC-HVDC Project
CN115693630B (zh) 一种基于分裂绕组的混合型熄弧系统及其工作方法
CN114069585B (zh) 配电网单相接地故障柔性融合消弧方法
Zadeh et al. Analysis of impedance relaying procedure effected by STATCOM operation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant