CN111063796A - 一种局域应变控制的自旋阀结构单元、器件及控制方法 - Google Patents

一种局域应变控制的自旋阀结构单元、器件及控制方法 Download PDF

Info

Publication number
CN111063796A
CN111063796A CN201911155250.1A CN201911155250A CN111063796A CN 111063796 A CN111063796 A CN 111063796A CN 201911155250 A CN201911155250 A CN 201911155250A CN 111063796 A CN111063796 A CN 111063796A
Authority
CN
China
Prior art keywords
spin valve
ferromagnetic layer
local strain
layer
valve structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911155250.1A
Other languages
English (en)
Other versions
CN111063796B (zh
Inventor
邓俊楷
陈凯运
刘哲
杨森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201911155250.1A priority Critical patent/CN111063796B/zh
Publication of CN111063796A publication Critical patent/CN111063796A/zh
Application granted granted Critical
Publication of CN111063796B publication Critical patent/CN111063796B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明属于激光器技术领域,特别是涉及一种局域应变控制的自旋阀结构单元、器件及控制方法。一种局域应变控制的自旋阀结构单元,包括基底,以及,从下至上设置在基底上的第一电极层、第一铁磁层、隔离层、第二铁磁层和第二电极层。本发明一种局域应变控制的自旋阀结构单元是基于单一CrS2材料的结构单元、器件,其不同相之间的匹配难度大大降低,而且制备过程极大简化。

Description

一种局域应变控制的自旋阀结构单元、器件及控制方法
技术领域
本发明属于材料科学技术领域,特别是涉及一种局域应变控制的自旋阀结构单元、器件及控制方法。
背景技术
随着巨磁电阻效应(GMR)的发现,自旋电子学及其相关的应用研究迅速成为人们关注的热点研究领域。基于GMR效应的自旋阀是自旋电子学器件的一项重要应用。基于GMR效应的自旋阀往往由两层或更多的铁磁性导体材料构成,磁性材料层之间隔离层用非磁性的金属体构成,基本结构可以表示为:铁磁层/非磁性金属层/铁磁层(FM/M/FM)。当金属层两侧铁磁层的自旋极化方向相同时,与铁磁层自旋极化相同的电子导通;当金属层两侧铁磁层自旋极化方向相反时,所有电子均不导通。GMR效应在高密度读出磁头、磁存储元件上有着广泛的应用。随着技术的发展,当存储数据的磁区越来越小,存储数据密度越来越大,这对读写磁头提出更高的要求。巨磁阻物质中电流的增大与减小,可以定义为逻辑信号的0与1,进而实现对磁性存储装置的读取。巨磁阻物质可以将用磁性方法存储的数据,以不同大小的电流输出,并且即使磁场很小,也能输出足够的电流变化,以便识别数据,从而大幅度提高了数据存储的密度。然而,基于GMR效应的自旋阀存在反铁磁耦合效应导致饱和场很高,磁场灵敏度小等缺陷。为了改进这些缺陷,基于隧道磁电阻(TMR)的自旋阀开始引起人们的重视。TMR自旋阀与GMR自旋阀的唯一不同时用于隔离层使用半导体或绝缘体,基本结构可以表示为:铁磁层/非磁性绝缘层/铁磁层(FM/I/FM)。
目前制备自旋阀均是通过不同材料的相互复合。这种方法在实际中往往带来许多复杂的问题,如不同材料晶体结构之间的适配,较高的肖特基势垒等等。通过同一种材料不同相结构之间的复合可以很好的解决这些问题,但这要求该材料具有所有自旋阀不同层要求的性能。
发明内容
为解决上述背景技术中存在的问题,本发明提供了一种局域应变控制的自旋阀结构单元,该自旋阀结构单元结构简单、材料单一,且可以通过外加应变进行调控。
本发明解决上述问题的技术方案是:一种局域应变控制的自旋阀结构单元,其特殊之处在于:
包括基底,
以及,从下至上设置在基底上的第一电极层、第一铁磁层、隔离层、第二铁磁层和第二电极层。
优选地,上述第一铁磁层、第二铁磁层均采用二硫化铬。
优选地,上述第一铁磁层、第二铁磁层采用1T’相二硫化铬;隔离层采用2H相二硫化铬或1T相二硫化铬。
优选地,上述基底采用例如Si、GaAs、MgO基底等的半导体或绝缘体基板。
本发明还提出一种上述局域应变控制的自旋阀器件的制备方法,其特殊之处在于,包括以下步骤:
1)在基底上生长第一电极层;
2)在第一电极层生长第一铁磁层;
3)在第一铁磁层生长隔离层;
4)在隔离层生长第二铁磁层;
5)在第二铁磁层生长第二电极层。
一种局域应变控制的自旋阀器件,其特殊之处在于:
包括两个或两个以上的上述局域应变控制的自旋阀结构单元,所述两个或两个以上的上述局域应变控制的自旋阀结构单元并联。
另外,本发明还提出一种上述局域应变控制的自旋阀结构单元的控制方法,其特殊之处在于:
对第一铁磁层、第二铁磁层均施加拉力,自旋阀结构单元实现自旋向上电子导通;
对第一铁磁层、第二铁磁层均施加压力,自旋阀结构单元实现自旋向下电子导通;
对第一铁磁层施加拉力,对第二铁磁层均施加压力,自旋阀结构单元实现所有电子不导通;
对第一铁磁层施加压力,对第二铁磁层均施加拉力,自旋阀结构单元实现所有电子不导通。
本发明的优点:
1)传统的自旋阀结构单元、器件都是通过不同材料的复合形成的异质结结构。在制备此类异质结时材料之间晶体结构和电子结构的互相匹配往往是一个非常复杂的过程,因而制备过程相对复杂;而本发明的是基于单一CrS2材料的结构单元、器件,其不同相之间的匹配难度大大降低,而且制备过程极大简化;
2)传统的自旋阀结构中使用的半金属材料往往只有单一的自旋极化状态,由此构成的自旋阀工作中是通过外加磁场改变材料的磁化方向改变来控制电路的导通或断路;而本发明的自旋阀结构单元、器件则完全可以不依赖磁场,只通过应变就可以改变半金属的极化方向,相比于磁场,应变更易于实现,更易于精确控制。
附图说明
图1为本发明基本理论计算依据;
图2为本发明用于局域应变控制的自旋阀结构单元的理论依据;
图3为本发明用于局域应变控制的自旋阀结构单元的结构示意图;第一铁磁层和第二铁磁层为1T’相CrS2,隔离层为1T或2H相CrS2
图4为本发明用于局域应变控制的自旋阀结构单元、器件用于逻辑运算的示意图。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。
参见图3,一种局域应变控制的自旋阀器件,包括基底,从下至上设置在基底上的第一电极层、第一铁磁层、隔离层、第二铁磁层和第二电极层。
作为本发明的一个优选实施例,上述第一铁磁层、第二铁磁层均采用二硫化铬。
作为本发明的一个优选实施例,上述第一铁磁层、第二铁磁层采用1T’相二硫化铬;隔离层采用2H相二硫化铬或1T相二硫化铬。
作为本发明的一个优选实施例,上述基底采用例如Si、GaAs、MgO基底等的半导体或绝缘体基板。
一种上述局域应变控制的自旋阀器件的制备方法,包括以下步骤:
1)在基底上生长第一电极层;
2)在第一电极层生长第一铁磁层;
3)在第一铁磁层生长隔离层;
4)在隔离层生长第二铁磁层;
5)在第二铁磁层生长第二电极层。
一种局域应变控制的自旋阀器件,包括两个或两个以上的上述局域应变控制的自旋阀结构单元,所述两个或两个以上的上述局域应变控制的自旋阀结构单元进行并联。
另外,参见图4,本发明还提出一种上述局域应变控制的自旋阀结构单元的控制方法,具体为:
对第一铁磁层、第二铁磁层均施加拉力,自旋阀结构单元实现自旋向上电子导通;
对第一铁磁层、第二铁磁层均施加压力,自旋阀结构单元实现自旋向下电子导通;
对第一铁磁层施加拉力,对第二铁磁层均施加压力,自旋阀结构单元实现所有电子不导通;
对第一铁磁层施加压力,对第二铁磁层均施加拉力,自旋阀结构单元实现所有电子不导通。
将上述不同自旋状态的自旋阀结构单元并联,形成一个具有多个计算单元的自旋阀器件;当外电路通过非自旋极化电流时,在自旋方向均为向上的单元中只导通自旋向上的极化电流,而在自旋方向均为向下的单元中只导通自旋向下的极化电流,除此以外自旋向上或向下的电流均不导通;不同的自旋状态的自旋阀单元导通的极化电流有所不同,外电路检测到的信号也有所不同,根据该检测到的信号,将自旋向上的极化电流规定为“1”,将自旋向下的极化电流规定为“0”。通过该自旋阀,就可以实现逻辑运算和信号的读写功能。
图1为CrS2的2H,1T和1T’相原子结构。其中2H相为半导体性相,1T相为金属性相。1T’目前没有针对该相的研究;1T’可以看做由1T相畸变后形成的相,两种相的晶格常数不同;对1T’相进行拉伸或压缩可以调节其性能。
图2为CrS2的1T’相在不同应变状态下的能带结构。参见图中(a)部分,该相在不施加应变时显示半导体的特征;参见图中(b)部分,当施加拉伸应变为6%时,自旋向上的电子对应的带隙消失,呈现出金属性,自旋向下的电子带隙仍然存在,呈现出半导体性,此时,该相为自旋向上的半金属;参见图中(c)部分,当施加压应变为-6%时,自旋向下的电子对应的带隙消失,呈现出金属性,自旋向上的电子带隙仍然存在,呈现出半导体性,此时,该相为自旋向上的半金属。
以上所述仅为本发明的实施例,并非以此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的系统领域,均同理包括在本发明的专利保护范围内。

Claims (7)

1.一种局域应变控制的自旋阀结构单元,其特征在于:
包括基底,
以及,从下至上依次设置在基底上的第一电极层、第一铁磁层、隔离层、第二铁磁层和第二电极层。
2.根据权利要求1所述的局域应变控制的自旋阀器件,其特征在于:
所述第一铁磁层、第二铁磁层均采用二硫化铬。
3.根据权利要求1或2所述的局域应变控制的自旋阀器件,其特征在于:
所述第一铁磁层、第二铁磁层采用1T’相二硫化铬;隔离层采用2H相二硫化铬或1T相二硫化铬。
4.根据权利要求3所述的局域应变控制的自旋阀器件,其特征在于:
所述基底采用Si、GaAs或MgO基底。
5.一种上述局域应变控制的自旋阀器件的制备方法,其特征在于,包括以下步骤:
1)在基底上生长第一电极层;
2)在第一电极层生长第一铁磁层;
3)在第一铁磁层生长隔离层;
4)在隔离层生长第二铁磁层;
5)在第二铁磁层生长第二电极层。
6.一种局域应变控制的自旋阀器件,其特征在于:
包括两个或两个以上的上述局域应变控制的自旋阀结构单元,所述两个或两个以上的上述局域应变控制的自旋阀结构单元并联。
7.一种局域应变控制的自旋阀结构单元的控制方法,其特征在于:
对第一铁磁层、第二铁磁层均施加拉力,自旋阀结构单元实现自旋向上电子导通;
对第一铁磁层、第二铁磁层均施加压力,自旋阀结构单元实现自旋向下电子导通;
对第一铁磁层施加拉力,对第二铁磁层均施加压力,自旋阀结构单元实现所有电子不导通;
对第一铁磁层施加压力,对第二铁磁层均施加拉力,自旋阀结构单元实现所有电子不导通。
CN201911155250.1A 2019-11-22 2019-11-22 一种局域应变控制的自旋阀结构单元、器件及控制方法 Active CN111063796B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911155250.1A CN111063796B (zh) 2019-11-22 2019-11-22 一种局域应变控制的自旋阀结构单元、器件及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911155250.1A CN111063796B (zh) 2019-11-22 2019-11-22 一种局域应变控制的自旋阀结构单元、器件及控制方法

Publications (2)

Publication Number Publication Date
CN111063796A true CN111063796A (zh) 2020-04-24
CN111063796B CN111063796B (zh) 2021-10-15

Family

ID=70298053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911155250.1A Active CN111063796B (zh) 2019-11-22 2019-11-22 一种局域应变控制的自旋阀结构单元、器件及控制方法

Country Status (1)

Country Link
CN (1) CN111063796B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933792A (zh) * 2020-09-30 2020-11-13 深圳英集芯科技有限公司 磁随机存储器及其制备方法、存储芯片、电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362709A (zh) * 2000-12-26 2002-08-07 株式会社东芝 磁随机存取存储器
CN1492383A (zh) * 2002-10-26 2004-04-28 深圳市华厦磁电子技术开发有限公司 自旋阀巨磁电阻及含有该巨磁电阻的验钞机磁头传感器
CN101465153A (zh) * 2007-12-18 2009-06-24 财团法人工业技术研究院 存储器读取电路与方法
US20140207007A1 (en) * 2010-09-30 2014-07-24 Kabushiki Kaisha Toshiba Strain sensor element and blood pressure sensor
CN104124960A (zh) * 2014-06-20 2014-10-29 华中科技大学 一种非易失性布尔逻辑运算电路及其操作方法
CN105527451A (zh) * 2014-10-15 2016-04-27 英飞凌科技股份有限公司 磁阻器件
CN106128753A (zh) * 2016-07-05 2016-11-16 北京科技大学 一种制备FePt赝自旋阀材料的方法
CN106229266A (zh) * 2016-08-27 2016-12-14 许昌学院 异质结自旋过滤和负微分电阻效应的制备工艺

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362709A (zh) * 2000-12-26 2002-08-07 株式会社东芝 磁随机存取存储器
CN1492383A (zh) * 2002-10-26 2004-04-28 深圳市华厦磁电子技术开发有限公司 自旋阀巨磁电阻及含有该巨磁电阻的验钞机磁头传感器
CN101465153A (zh) * 2007-12-18 2009-06-24 财团法人工业技术研究院 存储器读取电路与方法
US20140207007A1 (en) * 2010-09-30 2014-07-24 Kabushiki Kaisha Toshiba Strain sensor element and blood pressure sensor
US10342439B2 (en) * 2010-09-30 2019-07-09 Kabushiki Kaisha Toshiba Strain sensor element and blood pressure sensor
CN104124960A (zh) * 2014-06-20 2014-10-29 华中科技大学 一种非易失性布尔逻辑运算电路及其操作方法
CN105527451A (zh) * 2014-10-15 2016-04-27 英飞凌科技股份有限公司 磁阻器件
CN106128753A (zh) * 2016-07-05 2016-11-16 北京科技大学 一种制备FePt赝自旋阀材料的方法
CN106229266A (zh) * 2016-08-27 2016-12-14 许昌学院 异质结自旋过滤和负微分电阻效应的制备工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933792A (zh) * 2020-09-30 2020-11-13 深圳英集芯科技有限公司 磁随机存储器及其制备方法、存储芯片、电子设备
CN111933792B (zh) * 2020-09-30 2021-01-05 深圳英集芯科技有限公司 磁随机存储器及其制备方法、存储芯片、电子设备

Also Published As

Publication number Publication date
CN111063796B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
US8178363B2 (en) MRAM with storage layer and super-paramagnetic sensing layer
CN100423313C (zh) 具有在被钉扎层中含半金属铁磁性哈斯勒合金的交换耦合结构的磁电阻器件
US7994555B2 (en) Spin transistor using perpendicular magnetization
US20080246023A1 (en) Transistor Based on Resonant Tunneling Effect of Double Barrier Tunneling Junctions
US20090096043A1 (en) MRAM with means of controlling magnetic anisotropy
US7554834B2 (en) Conduction control device
US20070064351A1 (en) Spin filter junction and method of fabricating the same
KR20080037098A (ko) 페리자성체를 사용하는 스핀-전달 스위칭 자성 엘리먼트 및자성 엘리먼트를 사용하는 자성 메모리들
KR20060048611A (ko) 반강자성/강자성 교환 결합 구조체에 의해 수직 자기바이어싱되는 초거대 자기저항 센서
US20150200356A1 (en) Ferromagnetic tunnel junction element and method of driving ferromagnetic tunnel junction element
US6909583B2 (en) FeTa nano-oxide layer in pinned layer for enhancement of giant magnetoresistance in bottom spin valve structures
CN111063796B (zh) 一种局域应变控制的自旋阀结构单元、器件及控制方法
US11249150B2 (en) Spin valve and spintronic device comprising the same
CN106129244B (zh) L10-MnGa或L10-MnAl基宽线性响应磁敏传感器及制备方法
CN108352446A (zh) 磁隧道二极管和磁隧道晶体管
JP4146202B2 (ja) スピントンネルトランジスタ、磁気再生ヘッド、磁気情報再生システム、及び磁気記憶装置
CN111490155B (zh) 磁性隧道结
KR100763921B1 (ko) 전류 유도 스위칭을 이용한 자기 메모리 소자
Schneider Spintronics: Surface and Interface Aspects
Huai et al. IrMn based spin-filter spin-valves
US11922986B2 (en) Magnetic heterojunction structure and method for controlling and achieving logic and multiple-state storage functions
JP2003197872A (ja) 磁気抵抗効果膜を用いたメモリ
WO2023241161A1 (zh) 反铁磁磁性存储器器件及其制造方法
KR100457158B1 (ko) 대칭적인 스위칭 특성을 위한 마그네틱 메모리 셀
KR19980080727A (ko) 자기저항 효과센서 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant