CN111048607A - 一种利用连续光谱增强输出效率的光电探测器 - Google Patents

一种利用连续光谱增强输出效率的光电探测器 Download PDF

Info

Publication number
CN111048607A
CN111048607A CN201911373776.7A CN201911373776A CN111048607A CN 111048607 A CN111048607 A CN 111048607A CN 201911373776 A CN201911373776 A CN 201911373776A CN 111048607 A CN111048607 A CN 111048607A
Authority
CN
China
Prior art keywords
layer
continuous spectrum
metal
output efficiency
metal nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201911373776.7A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinhua Fuan Photoelectric Technology Co Ltd
Original Assignee
Jinhua Fuan Photoelectric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinhua Fuan Photoelectric Technology Co Ltd filed Critical Jinhua Fuan Photoelectric Technology Co Ltd
Priority to CN201911373776.7A priority Critical patent/CN111048607A/zh
Publication of CN111048607A publication Critical patent/CN111048607A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种利用连续光谱增强输出效率的光电探测器,利用连续光谱增强输出效率的光电探测器,包括基底层,基底层的上方设置有第一半导体层,第一半导体层的上方设置有第二半导体层,第二半导体层设置有多层金属纳米颗粒层;该利用连续光谱增强输出效率的光电探测器,在使用连续光谱的光作为入射光的时候,能够将低于金属纳米颗粒敏感度的入射光吸收,而且所设置的金属纳米颗粒,还可以产生表面等离激元共振,在金属纳米颗粒层奋进产生增强的局域电场,从而增强半导体层中的电子空穴对的符合效率,而高于金属纳米颗粒敏感度的入射光的能量却未被损耗,可以完全用于激发电子跃迁,进行光电转换,从而提高了连续光谱的入射光的输出效率。

Description

一种利用连续光谱增强输出效率的光电探测器
技术领域
本发明属于光电探测技术领域,具体涉及一种利用连续光谱增强输出效率的光电探测器。
背景技术
光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电探测器能把光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。
通常,凡禁带宽度或杂质离化能合适的半导体材料都具有光电效应。但是制造实用性器件还要考虑性能、工艺、价格等因素。常用的光电导探测器材料在射线和可见光波段有:CdS、CdSe、CdTe、Si、Ge等;在近红外波段有:PbS、InGaAs、PbSe、InSb、Hg0.75Cd0.25Te等;在长于8微米波段有:Hg1-xCdxTe、PbxSn1-x、Te、Si掺杂、Ge掺杂等;CdS、CdSe、PbS等材料可以由多晶薄膜形式制成光电导探测器。可见光波段的光电导探测器CdS、CdSe、CdTe的响应波段都在可见光或近红外区域,通常称为光敏电阻。它们具有很宽的禁带宽度(远大于1电子伏),可以在室温下工作,因此器件结构比较简单,一般采用半密封式的胶木外壳,前面加一透光窗口,后面引出两根管脚作为电极。高温、高湿环境应用的光电导探测器可采用金属全密封型结构,玻璃窗口与可伐金属外壳熔封。
每一种可以用作光电探测的材料都只对一定的入射波长敏感(如图1所示),这取决于其禁带的宽度,只有当入射光的能量大于或等于一个材料的禁带宽度时,电子吸收光能并跃迁到导带,如果利用连续光谱,过高光子能量又不能被跃迁的电子完全吸收,他会将多余的能量转化为热能,这一热能对于半导体材料来说是有害的。现提出一种方案可提高入射光的利用率,并减少电子吸收过多能量所发散的热能。
发明内容
本发明的目的是提供一种利用连续光谱增强输出效率的光电探测器,利用连续光谱增强输出效率的光电探测器,包括基底层,所述基底层的上方设置有第一半导体层,所述第一半导体层的上方设置有第二半导体层,所述第二半导体层设置有多层金属纳米颗粒层。
所述金属纳米颗粒层的金属颗粒的尺寸不同。
所述金属纳米颗粒层至少设置有3层。
所述多层金属纳米颗粒层由上至下,所含有的大尺寸的金属颗粒的个数依次减少;所述多层金属纳米颗粒层由上至下,所含有的小尺寸的金属颗粒的个数依次增加。
所述第一半导体层为N型掺杂的砷化镓制成。
所述第二半导体层为P型掺杂的砷化镓制成。
所述金属纳米颗粒层设置有3层,依次为第一金属纳米颗粒层、第二金属纳米颗粒层、第三金属纳米颗粒层。
所述第一金属纳米颗粒层含有的大尺寸的金属颗粒的尺寸个数最少,含有的小尺寸的金属颗粒的个数最多。
所述第三金属纳米颗粒层含有的大尺寸的金属颗粒的尺寸个数最多,含有的小尺寸的金属颗粒的个数最少。
所述金属纳米颗粒层是由金或者银制成。
本发明的有益效果:本发明提供的这种利用连续光谱增强输出效率的光电探测器,通过在P型掺杂的砷化镓中设置多层金属纳米颗粒层,在使用连续光谱的光作为入射光的时候,每一次的金属纳米颗粒层不仅可以吸收低于金属纳米颗粒敏感度的入射光,还可以产生表面等离激元共振,并且在金属纳米颗粒附近产生局域电场;而高于金属纳米颗粒敏感度的入射光的能量却未被损耗,可以完全用于激发电子跃迁,进行光电转换,而且在所设置的金属纳米颗粒所产的表面等离激元共振,以及在金属纳米颗粒层附近产生增强的局域电场,能够增强半导体层中的电子空穴对的符合效率,从而提高了连续光谱的入射光的输出效率。
以下将结合附图对本发明做进一步详细说明。
附图说明
图1是不同材料禁带宽度所对应的光波长度进行电子吸收并跃迁示意图。
图2是利用连续光谱增强输出效率的光电探测器示意图。
图3是利用连续光谱增强输出效率的光电探测器示意图二。
图中:1、基底层;2、第一半导体层;3、第二半导体层;4、金属纳米颗粒层;5、第一金属纳米颗粒层;6、第二金属纳米颗粒层;7、第三金属纳米颗粒层。
具体实施方式
为进一步阐述本发明达成预定目的所采取的技术手段及功效,以下结合附图及实施例对本发明的具体实施方式、结构特征及其功效,详细说明如下。
实施例1
本实施例提供了一种如图2所示的利用连续光谱增强输出效率的光电探测器,利用连续光谱增强输出效率的光电探测器,包括基底层1,所述基底层1的上方设置有第一半导体层2,所述第一半导体层2的上方设置有第二半导体层3,所述第二半导体层3设置有多层金属纳米颗粒层4;并且,所述金属纳米颗粒层4的金属颗粒的尺寸不同,所述多层金属纳米颗粒层4由上至下,所含有的大尺寸的金属颗粒的个数依次减少;所述多层金属纳米颗粒层4由上至下,所含有的小尺寸的金属颗粒的个数依次增加,即:每一层的金属纳米颗粒层都含有不同尺寸的金属颗粒,最下方的一层金属纳米颗粒层所含有的最小尺寸的金属颗粒最多,最上方一层的层金属纳米颗粒层所含有的最大尺寸的金属颗粒最多,并且,所有的金属颗粒的敏感入射波长均小于需要发生光电转换的入射光的波长,即,所有的金属颗粒都不会在小于需要发生光电转换的入射光的波长的光入射的情况下产生局域表面等离激元现象,具体可以根据要求发生光电转换的入射光的波长计算金属颗粒的最大尺寸。
这样,当采用连续连续光谱的光作为入射光的时候,能够将低于金属纳米颗粒敏感度的入射光吸收,而高于金属纳米颗粒敏感度的入射光的能量却未被损耗,可以完全用于激发电子跃迁,进行光电转换,而且所设置的金属纳米颗粒,还可以产生表面等离激元共振,在金属纳米颗粒层奋进产生增强的局域电场,从而增强半导体层中的电子空穴对的符合效率,从而提高了连续光谱的入射光的输出效率。
进一步的,第一半导体层2为N型掺杂的砷化镓制成。
进一步的,第二半导体层3为P型掺杂的砷化镓制成。
进一步的,金属纳米颗粒层4至少设置有3层。
另外一种具有同样功能的结构是利用不同的金属材料制备金属颗粒,由于金属材料不同,即便相同尺寸的颗粒也会对不同波长的光相互作用,从而减小金属颗粒分布的层数,减小制备的困难程度。
实施例2
在实施例1的基础上,本实施例提供了一种利用连续光谱增强输出效率的光电探测器,利用连续光谱增强输出效率的光电探测器,包括基底层1,所述基底层1的上方设置有第一半导体层2,所述第一半导体层2的上方设置有第二半导体层3,所述第二半导体层3设置有3层金属纳米颗粒层4;依次为第一金属纳米颗粒层5、第二金属纳米颗粒层6、第三金属纳米颗粒层7;并且,所述金属纳米颗粒层4的金属颗粒的尺寸不同,所述3层金属纳米颗粒层4由上至下,所含有的大尺寸的金属颗粒的个数依次减少;所述3层金属纳米颗粒层4由上至下,所含有的小尺寸的金属颗粒的个数依次增加,即:第一金属纳米颗粒层5、第二金属纳米颗粒层6、第三金属纳米颗粒层7都含有不同尺寸的金属颗粒,第三金属纳米颗粒层7所含有的最小尺寸的金属颗粒最多,第一金属纳米颗粒层5所含有的最大尺寸的金属颗粒最多,并且,所有的金属颗粒的敏感入射波长均小于需要发生光电转换的入射光的波长,即,所有的金属颗粒都不会在小于需要发生光电转换的入射光的波长的光入射的情况下产生局域表面等离激元现象,具体可以根据要求发生光电转换的入射光的波长计算金属颗粒的最大尺寸。
若金属颗粒为金制作,入射光的波长为827nm作为敏感入射波长,则金属颗粒的尺寸不能是25nm,金属颗粒的尺寸应小于25nm或大于25nm。
入射光为连续光谱,最大的波长为827nm。因此,所有金属可以的尺寸的敏感波长均设定为小于827nm,这样,3层金属纳米颗粒层4就可以吸收掉波长小于827nm得光,而波长为827nm的能量为损耗,可以用于激发电子跃迁,而且3层金属纳米颗粒层4还可以与波长为827nm的光作用,产生表面等离激元共振,在金属结构的附近产生增强的局域场从而增强活跃层中电子空穴对的复合效率。
实施例3
在实施例1的基础上,本实施例提供了一种图3所示的利用连续光谱增强输出效率的光电探测器,利用连续光谱增强输出效率的光电探测器,包括基底层1,所述基底层1的上方设置有第一半导体层2,所述第一半导体层2的上方设置有第二半导体层3,所述第二半导体层3设置有4层金属纳米颗粒层4;并且,所述金属纳米颗粒层4的金属颗粒的尺寸不同,所述4层金属纳米颗粒层4由上至下,所含有的大尺寸的金属颗粒的个数依次减少;所述4层金属纳米颗粒层4由上至下,所含有的小尺寸的金属颗粒的个数依次增加,即:4层金属纳米颗粒层4都含有不同尺寸的金属颗粒,最上一层金属纳米颗粒层所含有的最小尺寸的金属颗粒最少,最下所含有的最小尺寸的金属颗粒最多;并且,所有的金属颗粒的敏感入射波长均小于需要发生光电转换的入射光的波长,即,所有的金属颗粒都不会在需要发生光电转换的入射光的波长的光入射的情况下产生局域表面等离激元现象,具体可以根据要求发生光电转换的入射光的波长计算金属颗粒的最大尺寸。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种利用连续光谱增强输出效率的光电探测器,其特征在于:包括基底层(1),所述基底层(1)的上方设置有第一半导体层(2),所述第一半导体层(2)的上方设置有第二半导体层(3),所述第二半导体层(3)设置有多层金属纳米颗粒层(4)。
2.如权利要求1所述的一种利用连续光谱增强输出效率的光电探测器,其特征在于:所述金属纳米颗粒层(4)的金属颗粒的尺寸不同。
3.如权利要求1所述的一种利用连续光谱增强输出效率的光电探测器,其特征在于:所述金属纳米颗粒层(4)至少设置有3层。
4.如权利要求1所述的一种利用连续光谱增强输出效率的光电探测器,其特征在于:所述多层金属纳米颗粒层(4)由上至下,所含有的大尺寸的金属颗粒的个数依次减少;所述多层金属纳米颗粒层(4)由上至下,所含有的小尺寸的金属颗粒的个数依次增加。
5.如权利要求1所述的一种利用连续光谱增强输出效率的光电探测器,其特征在于:所述第一半导体层(2)为N型掺杂的砷化镓制成。
6.如权利要求1所述的一种利用连续光谱增强输出效率的光电探测器,其特征在于:所述第二半导体层(3)为P型掺杂的砷化镓制成。
7.如权利要求1所述的一种利用连续光谱增强输出效率的光电探测器,其特征在于:所述金属纳米颗粒层(4)设置有3层,依次为第一金属纳米颗粒层(5)、第二金属纳米颗粒层(6)、第三金属纳米颗粒层(7)。
8.如权利要求7所述的一种利用连续光谱增强输出效率的光电探测器,其特征在于:所述第一金属纳米颗粒层(5)含有的大尺寸的金属颗粒的尺寸个数最少,含有的小尺寸的金属颗粒的个数最多。
9.如权利要求7所述的一种利用连续光谱增强输出效率的光电探测器,其特征在于:所述第三金属纳米颗粒层(7)含有的大尺寸的金属颗粒的尺寸个数最多,含有的小尺寸的金属颗粒的个数最少。
10.如权利要求1所述的一种利用连续光谱增强输出效率的光电探测器,其特征在于:所述金属纳米颗粒层(4)是由金或者银制成。
CN201911373776.7A 2019-12-27 2019-12-27 一种利用连续光谱增强输出效率的光电探测器 Withdrawn CN111048607A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911373776.7A CN111048607A (zh) 2019-12-27 2019-12-27 一种利用连续光谱增强输出效率的光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911373776.7A CN111048607A (zh) 2019-12-27 2019-12-27 一种利用连续光谱增强输出效率的光电探测器

Publications (1)

Publication Number Publication Date
CN111048607A true CN111048607A (zh) 2020-04-21

Family

ID=70240501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911373776.7A Withdrawn CN111048607A (zh) 2019-12-27 2019-12-27 一种利用连续光谱增强输出效率的光电探测器

Country Status (1)

Country Link
CN (1) CN111048607A (zh)

Similar Documents

Publication Publication Date Title
US11817524B1 (en) Concentrator photovoltaic subassembly and method of constructing the same
Saive Light trapping in thin silicon solar cells: A review on fundamentals and technologies
Hasan et al. Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates
US9263600B2 (en) Silicon nanoparticle photovoltaic devices
AU2008290641B2 (en) Solar cell construction
Ahmed et al. High-performance multicolor metal-semiconductor-metal Si photodetector enhanced by nanostructured NiO thin film
JP2011129925A (ja) 半導体ナノ結晶を用いた太陽電池モジュール
WO2018023995A1 (zh) 探测面板及探测装置
TW201705508A (zh) 高功率太陽能電池模組
Pandey et al. Rear contact SiGe solar cell with SiC passivated front surface for> 90-percent external quantum efficiency and improved power conversion efficiency
Hinkey et al. Interband cascade photovoltaic devices for conversion of mid-IR radiation
CN103872153B (zh) 一种以金属微纳结构作为中间电极的级联太阳能电池
Kumar et al. Spectral response enhancement of the CdS/CdTe solar nano-structured cell using ZnO window layer
US20230238468A1 (en) Transparent photovoltaic cell
US8993874B2 (en) Photonic bandgap solar cells
CN111048607A (zh) 一种利用连续光谱增强输出效率的光电探测器
Van Roosmalen Molecular-based concepts in PV towards full spectrum utilization
Sun et al. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications
CN115274911A (zh) 一种范德瓦尔斯异质结光电探测器及其制备方法
Singh et al. High responsivity visible blind Pd/Al 2 O 3/MoS 2/ITO MISM UV photodetector
Sun et al. Quantum dots modified ZnO based fast-speed response ultraviolet photodetector
US8637763B2 (en) Solar cells with engineered spectral conversion
Klem et al. Multispectral UV-Vis-IR imaging using low-cost quantum dot technology
McIntosh et al. Increased mc-Si module efficiency using fluorescent organic dyes: a ray-tracing study
CN113178497A (zh) 一种基于量子点的紫外探测器及制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200421