CN111039993B - 乙酰丙酮钌配合物及在光解水制氢中的应用 - Google Patents

乙酰丙酮钌配合物及在光解水制氢中的应用 Download PDF

Info

Publication number
CN111039993B
CN111039993B CN201911371708.7A CN201911371708A CN111039993B CN 111039993 B CN111039993 B CN 111039993B CN 201911371708 A CN201911371708 A CN 201911371708A CN 111039993 B CN111039993 B CN 111039993B
Authority
CN
China
Prior art keywords
ruthenium
complex
acetylacetone
water
photolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201911371708.7A
Other languages
English (en)
Other versions
CN111039993A (zh
Inventor
高峰
王家强
闫茹
李小兰
刘佳琦
李国奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan University YNU
Original Assignee
Yunnan University YNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan University YNU filed Critical Yunnan University YNU
Priority to CN201911371708.7A priority Critical patent/CN111039993B/zh
Publication of CN111039993A publication Critical patent/CN111039993A/zh
Application granted granted Critical
Publication of CN111039993B publication Critical patent/CN111039993B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种乙酰丙酮钌配合物及在光解水制氢中的应用,所述乙酰丙酮钌配合物由阳离子和阴离子两部分组成,其特征在于:所述阳离子结构式如式I所示,其中,所述R为OCH3、F或Br。本发明的乙酰丙酮钌配合物可作为紫外—可见—近红外光解水制氢的光敏剂,其合成的乙酰丙酮钌配合物结构稳定,具有良好的、范围广泛的光谱吸收性质,能够在甲醇水溶液中作为光敏剂,与纳米铂催化剂协同作用,分别在紫外光、可见光、近红外区以及紫外—可见—近红外太阳光全波段都获得了较好的光解水催化性能。

Description

乙酰丙酮钌配合物及在光解水制氢中的应用
技术领域
本发明涉及光解水制氢催化剂和光敏剂技术领域,特别涉及一种乙酰丙酮钌配合物及在光解水制氢中的应用。
背景技术
以煤、石油、天然气等为代表的不可再生的化石能源,是目前全球消耗的最主要能源。但随着人类的不断开采,大部分化石能源将在本世纪开采殆尽。同时,由于化石能源的使用,大量新增温室气体CO2以及同时产生的烟气污染,正在严重威胁着全球生态。因此,开发更清洁的可再生能源是当前社会面临的迫切问题。
氢是一种清洁能源,其完全燃烧的产物——水,不会给环境带来任何污染。而氢作为燃料的发热值是相同质量汽油的2.7倍。氢主要以化合物的形态贮存于水中,而水是地球上最广泛的物质。更重要的是,其燃烧产物水能够再次被分解为氢气和氧气,重复利用。传统的电解水虽然取得了一定的进展,但是该过程需要耗费大量由化石能源提供的电力,造成了一定的资源消耗和环境污染。太阳能,是一种取之不尽用之不竭、清洁环保的一次能源。每年到达地球表面上的太阳辐射能约相当于130万亿吨煤,是最大的可开发能源。因此,利用太阳能光解水制氢成为具有可再生、节能、环保等多种优势的解决方案。
当前开发的太阳能光解水催化剂主要集中在非均相半导体材料。如催化剂TiO2半导体能够吸收波长<370nm的紫外光,通过价带—导带的电子跃迁产生“电子—空穴”,使水电离生成氢气和氧气[Chem.Rev.,2014,114,9987–10043]。早期研究中对半导体光催化剂的优化改造,主要集中在缩小催化剂尺寸到纳米颗粒(增加催化剂比表面积)、离子掺杂(提高“电子—空穴”分离效果)、半导体复合(提高光利用率)、贵金属沉积(抑制光致电子和光致空穴的自复合、并降低还原反应的超电压)等,在一定程度上提高了催化活性。近期研究发现,可调控相结构的Ga2O3半导体,能极大地增强了水同时裂解为氢气和氧气效率[Angew.Chem.Int.Ed.,2012,51,13089–13092]。
事实上,太阳光的光谱范围内,波长小于400nm的紫外光区仅占4%,而43%为波长400~700nm的可见光,53%为波长大于700nm的红外光。大多数半导体催化材料的吸收集中在紫外区,太阳能利用率有待提升。于是研究者将目光投向了如何提升催化体系的可见光区吸收性能。在近期报道中,研究者用邻苯二酚等烯二醇类有机配体对TiO2纳米颗粒进行了表面修饰,把TiO2的光吸收范围扩展到了可见光区,从而提高TiO2半导体的太阳光吸收利用率[J.Phys.Chem.C,2016,120,23625–23630]。
设计具有良好光吸收性质的光敏剂,将能量或电子传递给催化剂,也是当前光催化领域的研究热点之一。多吡啶类钌配合物[Ru(bpy)3]2+(bpy=2,2’-联吡啶)及其衍生物代表了最早也是当前最普遍应用在光催化中的光敏剂[PNAS,2012,109,15612–15616]。以[Ru(bpy)3]2+作为光敏剂,在金属Pt的催化下,完成了世界上首例可见光催化光解水制氢[Nature,1979,281,657–658]。研究证明,在[Ru(bpy)3]2+结构中引入具有低能反键π轨道的配体、引入强给电子能力的配体、扩展配体的共轭面积是三个有效的使配合物吸收光谱红移的手段[Inorg.Chem.,2017,56,252–260]。纳米颗粒Pt、胶体Pt、单原子Pt等也被广泛用作催化中心,由不同的光敏剂调控其催化性能。最近,Sakai研究组构建了三核Ru配合物光敏剂[{Ru(dmb)2}3(HAT)]6+,将其可见光吸收峰波长调控到595nm,成功地在700-800nm近红外光的驱动下,以胶状颗粒Pt为催化剂,抗坏血酸为牺牲剂的条件下还原水制氢[Angew.Chem.Int.Ed.,2018,57,208–212]。因此,设计基于过渡金属配合物的、具有更广的光吸收、尤其是覆盖太阳光全范围的紫外—可见—近红外区范围的光敏剂,对提高光解水制氢催化剂性能这一关键问题具有重要意义。
发明内容
本发明的发明第一个目的在于:针对当前光解水制氢的研究,提供一种既具有良好水溶性和全光谱范围光吸收性质的乙酰丙酮钌配合物,作为光解水制氢的光敏剂。
本发明采用的技术方案如下:一种乙酰丙酮钌配合物,所述乙酰丙酮钌配合物由阳离子和阴离子两部分组成,其特征在于:所述阳离子结构式如式I所示:
Figure BDA0002339824350000031
其中,所述R为OCH3、F、Cl、Br、CH3或NMe2
在上述阳离子结构式中,R的值可分别为OCH3、F、Cl、Br、CH3或NMe2(二甲氨基,或写为N(CH3)2),进而可以分别得到Ru1(R=0CH3)、Ru2(R=F)和Ru3(R=Br)等乙酰丙酮钌配合物。其中,式I分子结构中,两端的R可以相同,也可以不同,进一步,得到的Ru1、Ru2和Ru3可以单独使用,也可以混用。
在本发明中,乙酰丙酮钌配合物并不限定阴离子的种类,本技术领域常规阴离子均能实现本发明的目的,作为优选,阴离子为无机盐阴离子,更优选为PF6 、ClO4 、Cl、NO3 或BPh4 ,作为一种最优选方案,本发明所述乙酰丙酮钌配合物的阴离子为PF6
本发明的第二个目的在于,提供上述一种乙酰丙酮钌配合物的制备方法。
本发明采用的技术方案如下:乙酰丙酮钌配合物的制备方法,其特征在于:包括以下步骤:
步骤1、将2-氨基-5-甲氧基苯甲醛、2-氨基-5-氟苯甲醛或2-氨基-5-溴苯甲醛的溶液与2,6-二乙酰吡啶混合反应,得到反应液,将反应液蒸干得到三联吡啶配体;
步骤2、将得到的三联吡啶配体与乙酰丙酮的茂型钌配合物反应,得到三联吡啶钌的乙酰丙酮配合物;
步骤3、将得到的三联吡啶钌的乙酰丙酮配合物在乙腈中回流反应后,即得到乙酰丙酮钌配合物。
进一步,在步骤1中,为了更好地时反应进行,2-氨基-5-甲氧基苯甲醛、2-氨基-5-氟苯甲醛或2-氨基-5-溴苯甲醛的溶液与2,6-二乙酰吡啶和强碱(例如氢氧化钾、氢氧化钠等)共同混合反应,得到反应液,将反应液蒸干,为了使得到的固体纯度更高,得到的固体用有机溶剂(例如甲醇、乙醇、丙醇等)洗涤,抽滤,真空干燥得到三联吡啶配体。
进一步,为了更好地得到高得率、高纯度的三联吡啶钌的乙酰丙酮配合物,所述步骤2具体为,三联吡啶配体与乙酰丙酮的茂型钌配合物、可溶性氯化物(例如氯化锂、氯化钠、氯化钾等)和二甲基甲酰胺混合回流反应,反应后得到反应液,将反应液倒入浓盐水中静置沉淀,然后抽滤,得到固体,再将固体溶于二氯甲烷或氯仿中,然后加入乙醚重结晶,最终得到三联吡啶钌的乙酰丙酮配合物。
进一步,为了更好地得到高得率、高纯度的乙酰丙酮钌配合物,所述步骤3具体为,将三联吡啶钌的乙酰丙酮配合物溶于乙腈中回流,然后加入饱和无机盐溶液(例如饱和NH4PF6溶液、饱和NH4Cl溶液或饱和NH4NO3溶液,优选为饱和NH4PF6溶液),产生沉淀,抽滤后得到固体,然后再将固体溶于丙酮中,经中性氧化铝柱层析纯化后,最后经真空干燥得到乙酰丙酮钌配合物。
进一步,在将固体溶于丙酮前,依次用水和乙醚对固体进行洗涤,然后再将其溶于丙酮中。
本发明的第三个目的在于,提供上述乙酰丙酮钌配合物在光解水制氢中的应用。
本发明采用的技术方案如下:一种乙酰丙酮钌配合物在光解水制氢中的应用,其特征在于:将乙酰丙酮钌配合物作为紫外-可见-近红外光解水制氢的光敏剂使用。
进一步,本发明的乙酰丙酮钌配合物在甲醇水溶液中作为光敏剂,并与纳米铂催化剂一同使用,共同发挥光解水催化作用。
在本发明中,发明人研发得到了一种具有良好紫外—可见—近红外光吸收的乙酰丙酮钌配合物,其能够在甲醇水溶液中作为光敏剂,与纳米铂催化剂协同作用,分别在紫外光、可见光、近红外区以及紫外—可见—近红外太阳光全波段都获得较好的光解水催化性能。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明提供了一种乙酰丙酮钌配合物,可作为紫外—可见—近红外光解水制氢的光敏剂,本发明合成的乙酰丙酮钌配合物结构稳定,具有良好的、范围广泛的光谱吸收性质,是新型的光解水制氢光敏剂;
2、本发明合成的一种新型乙酰丙酮钌配合物在光解水制氢光敏剂中的应用,具有以下优势:(1)具有良好的水溶性;(2)具有良好的光谱性质,在紫外—可见—近红外区都具有较好的光吸收性质;(3)所构建的“甲醇水溶液—纳米铂催化剂—乙酰丙酮钌光敏剂”光解水制氢体系在近红外区的光解水性能优于已见报道的各种光解水制氢体系。
附图说明
图1为本发明所制备的乙酰丙酮钌配合物的合成途径;
图2为本发明所制备的乙酰丙酮钌配合物水溶液吸收光谱图;
图3为本发明所制备的乙酰丙酮钌配合物Ru3(R=Br)在紫外—可见—近红外区和可见—近红外区光解水制氢实验数据图;
图4为本发明所制备的乙酰丙酮钌配合物Ru3(R=Br)在近红外区(>700nm)光解水制氢实验数据图。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备,所用试剂和材料均为市购。
实施例1
乙酰丙酮钌配合物Ru1的制备:
步骤1、将2-氨基-5-甲氧基苯甲醛(2mmol)的水溶液加入2,6-二乙酰吡啶(135mg,0.825mmol),氢氧化钾(363mg,6.47mmol),反应过夜;
步骤2、将反应液蒸干,固体用30mL甲醇洗涤,抽滤,真空干燥得甲氧基三联吡啶配体(221.3mg,产率68%);
步骤3、称取该配体107mg(0.29mmol),与[Ru(cym)(acac)Cl](0.24mmol,100mg)(乙酰丙酮的茂型钌配合物),氯化锂100mg,DMF(二甲基甲酰胺)3mL,回流反应3h,反应液变为深绿色;
步骤4、将反应液倒入浓盐水中静置沉淀,抽滤,将固体溶于5mL二氯甲烷,加入100mL乙醚重结晶,抽滤,固体溶于30mL乙腈,回流24h,溶液变为紫色,加入100mL饱和NH4PF6溶液,产生沉淀,抽滤,依次用水、乙醚洗涤,将固体溶于5mL丙酮,经过中性氧化铝柱层析纯化,真空干燥,得产物乙酰丙酮钌配合物Ru1(29.2mg,总产率19%)。
核磁共振氢谱图:1H NMR(DMSO-d6,300MHz):δ=9.05(d,2H,2J=9.33Hz),8.73(m,4H),8.57(d,2H,2J=8.58Hz),8.10(t,1H,3J=7.68Hz),7.67(d,2H,2J=9.54Hz),7.59(s,2H),5.26(s,1H),3.99(s,6H),2.50(s,3H),2.10(s,3H),1.18(s,3H)。电喷雾质谱图:ESI-MS:[M]+实验值m/z=635.13,计算值m/z=635.12。
实施例2
乙酰丙酮钌配合物Ru2的制备:
与上述乙酰丙酮钌配合物Ru1相同方法合成,将其中将2-氨基-5-甲氧基苯甲醛替换为2-氨基-5-氟苯甲醛,反应乙酰丙酮钌配合物Ru2(46.7mg,总产率31%)。核磁共振氢谱图:1H NMR(acetone-d6,300MHz):δ=9.41(m,2H),8.83(d,3H,2J=8.04Hz),8.74(dd,4H,2J=8.82Hz,2J=19.29Hz),8.18(t,1H,3J=8.10Hz),7.91(m,3H),5.33(s,1H),2.59(s,3H),2.11(s,3H),1.22(s,3H)。电喷雾质谱图:ESI-MS:[M]+实验值m/z=611.08,计算值m/z=611.08。
实施例3
乙酰丙酮钌配合物Ru2的制备:
与上述乙酰丙酮钌配合物Ru1相同方法合成,将其中将2-氨基-5-甲氧基苯甲醛替换为2-氨基-5-溴苯甲醛,反应乙酰丙酮钌配合物Ru3(21mg,产率:12.1%)。核磁共振氢谱图:1H NMR(acetone-d6,300MHz):δ=9.13(d,2H,2J=9.36Hz),8.73(d,2H,2J=8.07Hz),8.64(d,2H,2J=8.76Hz),8.54(d,2H,2J=8.70Hz),8.28(d,2H,2J=2.04Hz),8.03(m,3H),5.21(s,1H),2.47(s,3H),1.99(s,3H),1.08(s,3H)。电喷雾质谱图:ESI-MS:[M]+实验值m/z=730.94,计算值m/z=730.92。
实施例4
乙酰丙酮钌配合物的吸收光谱测试:
在25℃,将乙酰丙酮钌配合物配置为20μM水溶液,于PE-UV365紫外可见光谱仪记录300-970nm范围的紫外吸收光谱。
实施例5
将乙酰丙酮钌配合物配置成10μM浓度的甲醇水溶液(体积比1:1),取50mL该溶液,加入10mg纳米铂催化剂,分别以400nm截止滤光片和700nm截止滤光片设置光催化光源PLS-SXE 300UV,在Labsolar-6A全玻璃自动在线微量气体分析系统进行光解水反应,间隔10分钟自动取样,在气相色谱分析氢气产量。
从图3和图4可以看出,本发明构建的“甲醇水溶液—纳米铂催化剂—乙酰丙酮钌光敏剂”在紫外光、可见光、近红外区以及紫外—可见—近红外太阳光全波段都获得较好的光解水催化性能。
因此,本发明制备的乙酰丙酮钌配合物是具有广泛吸收波长范围和良好吸收性质的光解水制氢的光敏剂,尤其是在近红外区,基于“甲醇水溶液—纳米铂催化剂—乙酰丙酮钌光敏剂”体系的构建,具有优于已见报道的各种光解水制氢体系的催化性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种乙酰丙酮钌配合物,所述乙酰丙酮钌配合物由阳离子和阴离子两部分组成,其特征在于:所述阳离子结构式如式I所示:
Figure FDA0002686182710000011
其中,所述R为OCH3、F、Cl、Br、CH3或NMe2,所述阴离子为PF6 、ClO4 、Cl、NO3 或BPh4
2.如权利要求1所述的乙酰丙酮钌配合物的制备方法,其特征在于:包括以下步骤:
步骤1、将2-氨基-5-甲氧基苯甲醛、2-氨基-5-氟苯甲醛或2-氨基-5-溴苯甲醛的溶液与2,6-二乙酰吡啶混合反应,得到反应液,将反应液蒸干得到三联吡啶配体;
步骤2、将得到的三联吡啶配体与乙酰丙酮的茂型钌配合物反应,得到三联吡啶钌的乙酰丙酮配合物;
步骤3、将得到的三联吡啶钌的乙酰丙酮配合物在乙腈中回流反应后,即得到乙酰丙酮钌配合物;其中,在步骤1中,2-氨基-5-甲氧基苯甲醛、2-氨基-5-氟苯甲醛或2-氨基-5-溴苯甲醛的溶液与2,6-二乙酰吡啶和强碱共同混合反应,得到反应液,将反应液蒸干,得到的固体用有机溶剂洗涤,抽滤,真空干燥得到三联吡啶配体。
3.如权利要求2所述的乙酰丙酮钌配合物的制备方法,其特征在于:所述步骤2具体为,三联吡啶配体与乙酰丙酮的茂型钌配合物、可溶性氯化物和二甲基甲酰胺混合回流反应,反应后得到反应液,将反应液倒入浓盐水中静置沉淀,然后抽滤,得到固体,再将固体溶于二氯甲烷或氯仿中,然后加入乙醚重结晶,最终得到三联吡啶钌的乙酰丙酮配合物。
4.如权利要求2所述的乙酰丙酮钌配合物的制备方法,其特征在于:所述步骤3具体为,将三联吡啶钌的乙酰丙酮配合物溶于乙腈中回流,然后加入饱和无机盐溶液,产生沉淀,抽滤后得到固体,然后再将固体溶于丙酮中,经中性氧化铝柱层析纯化后,最后经真空干燥得到乙酰丙酮钌配合物。
5.如权利要求4所述的乙酰丙酮钌配合物的制备方法,其特征在于:在将固体溶于丙酮前,依次用水和乙醚对固体进行洗涤,然后再将其溶于丙酮中。
6.一种如权利要求1所述的乙酰丙酮钌配合物在光解水制氢中的应用,其特征在于:将乙酰丙酮钌配合物作为紫外-可见-近红外光解水制氢的光敏剂使用。
7.如权利要求6所述的乙酰丙酮钌配合物在光解水制氢中的应用,其特征在于:所述乙酰丙酮钌配合物在甲醇水溶液中作为光敏剂,并与纳米铂催化剂一同使用,共同发挥光解水催化作用。
CN201911371708.7A 2019-12-27 2019-12-27 乙酰丙酮钌配合物及在光解水制氢中的应用 Expired - Fee Related CN111039993B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911371708.7A CN111039993B (zh) 2019-12-27 2019-12-27 乙酰丙酮钌配合物及在光解水制氢中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911371708.7A CN111039993B (zh) 2019-12-27 2019-12-27 乙酰丙酮钌配合物及在光解水制氢中的应用

Publications (2)

Publication Number Publication Date
CN111039993A CN111039993A (zh) 2020-04-21
CN111039993B true CN111039993B (zh) 2020-11-13

Family

ID=70239312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911371708.7A Expired - Fee Related CN111039993B (zh) 2019-12-27 2019-12-27 乙酰丙酮钌配合物及在光解水制氢中的应用

Country Status (1)

Country Link
CN (1) CN111039993B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109588047A (zh) * 2016-02-26 2019-04-05 沙特基础工业全球技术公司 使用甲醛进行的碳介导水裂解

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814186A (zh) * 2012-09-07 2012-12-12 中国科学院长春应用化学研究所 一种光解水制氢催化剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109588047A (zh) * 2016-02-26 2019-04-05 沙特基础工业全球技术公司 使用甲醛进行的碳介导水裂解

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Effect of the CF3 Substituents on the Charge-Transfer Kinetics of High-Efficiency Cyclometalated Ruthenium Sensitizers;The-Duy Nguyen et al.,;《Inorganic Chemistry》;20161213;第56卷;第252-260页 *
Near-Infrared Light-Driven Hydrogen Evolution from Water Using a Polypyridyl Triruthenium Photosensitizer;Yutaro Tsuji et al.,;《Angew.Chem.Int.Ed.》;20171016;第57卷;第208-212页 *

Also Published As

Publication number Publication date
CN111039993A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
Wang et al. Surface-layer bromine doping enhanced generation of surface oxygen vacancies in bismuth molybdate for efficient photocatalytic nitrogen fixation
Karmakar et al. Covalent grafting of molecular photosensitizer and catalyst on MOF-808: effect of pore confinement toward visible light-driven CO 2 reduction in water
Wang et al. Effect of S vacancy in Cu3SnS4 on high selectivity and activity of photocatalytic CO2 reduction
Guo et al. Strategies for improving the photocatalytic performance of metal-organic frameworks for CO2 reduction: A review
Zhong et al. In-situ growth of COF on BiOBr 2D material with excellent visible-light-responsive activity for U (VI) photocatalytic reduction
Yuan et al. Enhanced visible-light-induced hydrogen evolution from water in a noble-metal-free system catalyzed by ZnTCPP-MoS2/TiO2 assembly
Wen et al. Photocatalytic H2 production on hybrid catalyst system composed of inorganic semiconductor and cobaloximes catalysts
Liu et al. Enhanced photocatalytic CO2 reduction by integrating an iron based metal-organic framework and a photosensitizer
Ji et al. A high-efficiency dye-sensitized Pt (II) decorated metal-organic cage for visible-light-driven hydrogen production
Zhang et al. Flower-like microspheres Z-scheme Bi2Sn2O7/NiAl-LDH heterojunction for boosting photocatalytic CO2 reduction under visible light
CN109201115B (zh) 一种光催化产氢催化剂及其制备方法和用途
Sun et al. Engineering high-coordinated cerium single-atom sites on carbon nitride nanosheets for efficient photocatalytic amine oxidation and water splitting into hydrogen
Fang et al. Ternary heterojunction stabilized photocatalyst of Co-TiO2/g-C3N4 in boosting sulfite oxidation during wet desulfurization
Song et al. Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol
Liu et al. Enhancing photocatalytic nitrogen fixation performance of Co-doped bismuth molybdate through band engineering tuning
Lakadamyali et al. Colloidal metal oxide particles loaded with synthetic catalysts for solar H 2 production
Yang et al. Photocatalytic reduction of nitrogen to ammonia by bismuth oxyhalides containing oxygen vacancies
Xu et al. Enhanced photocatalytic hydrogen evolution over coal-based carbon quantum dots modified CoMoO4/g-C3N4
Liu et al. Visible-light-driven photocatalysis over nano-TiO2 with different morphologies: From morphology through active site to photocatalytic performance
CN111686821A (zh) 一种钌配合物和钼硫团簇染料敏化光催化产氢体系反应液
Ma et al. Visible-light-driven CO2 reduction with g-C3N4-based composite: Enhancing the activity of manganese catalysts
Li et al. In situ topotactic formation of the pn-type inorganic intergrowth bulk heterojunction NiO (Al)/CuO (Ni, Al) for photocatalytic CO2 methanation
Wang et al. Research advances on photo-assisted CO2 conversion to methanol
Chen et al. Visible-light-driven photocatalytic CO 2 reduction to formate over a zirconium-porphyrin metal–organic framework with shp-a topology
CN108080036B (zh) 一种基于光敏性金属-有机配位纳米笼与二氧化钛的杂化材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201113

Termination date: 20211227

CF01 Termination of patent right due to non-payment of annual fee