CN111030872B - 一种通信网络数据传输平稳运行的可靠控制方法 - Google Patents

一种通信网络数据传输平稳运行的可靠控制方法 Download PDF

Info

Publication number
CN111030872B
CN111030872B CN201911343892.4A CN201911343892A CN111030872B CN 111030872 B CN111030872 B CN 111030872B CN 201911343892 A CN201911343892 A CN 201911343892A CN 111030872 B CN111030872 B CN 111030872B
Authority
CN
China
Prior art keywords
communication network
data transmission
data
matrix
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911343892.4A
Other languages
English (en)
Other versions
CN111030872A (zh
Inventor
张俊锋
杨浩月
丁丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201911343892.4A priority Critical patent/CN111030872B/zh
Publication of CN111030872A publication Critical patent/CN111030872A/zh
Application granted granted Critical
Publication of CN111030872B publication Critical patent/CN111030872B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/142Network analysis or design using statistical or mathematical methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种通信网络数据传输平稳运行的可靠控制方法。本发明利用正马尔科夫跳变系统的状态反馈饱和控制方法,针对含有网络拥塞、网络崩溃、网络错误等随机发生故障的通信网络数据传输过程进行数据测量与采集且建立系统中数据包数量的正马尔科夫跳变系统模型。然后,对建模后的系统设计一种可靠控制器,从而获得通信网络数据传输平稳运行的可靠饱和控制方法。与现存的控制技术相比,本发明方法可以有效的改善并解决通信网络数据传输过程中的拥塞、崩溃和错误等问题,实现复杂通信网络中数据的平稳传输。

Description

一种通信网络数据传输平稳运行的可靠控制方法
技术领域
本发明属于自动化技术与现代控制领域,涉及一种通信网络数据传输过程中通过控制数据中心发出数据包的数量来实现网络数据传输过程平稳运行的可靠控制方法,可用于网络数据传输过程。
背景技术
近些年,网络为人们的生活带来了极大的便利,如通过网络浏览新闻、查阅资料、进行娱乐活动等,这些行为都会产生大量的网络数据,这也使得网络传输过程出现了各种各样的问题,导致数据传输受到阻塞或因网络数据传输错误、网络攻击等因素使得网络运行中断。这些问题会影响人们的工作效率、降低生活质量,甚至可能导致信息安全问题。由此可见,通信网络系统的平稳健康运行,对于网络中数据的及时传输、网络的安全以及信息安全都至关重要。因此维护网络正常运行不出现故障,并确保出现故障后能够迅速、准确地定位并排除问题是非常必要的。
一个数据通信网络包括忙时和闲时两种阶段。忙时和闲时分别表示网络中存在大量数据包和少量数据包。实际上,很难区分通信网络系统的忙时和闲时。它们之间的切换是随机的和不准确的。它更可能依赖于某个随机过程。因此,一个数据通信网络中忙时和闲时的切换更适合用一个马尔科夫随机过程表示。网络系统的状态变量(待发送的数据个数)总是非负的,如果一个系统的状态在任意时刻都是非负的,那么这个系统被称为正系统。因此,采用正系统的分析方法可以更有效地分析网络数据传输过程中的数据包变化。
在互联网快速发展的时代,网络的使用是必不可少的。对于一个突发事件或重大新闻,网络系统需要接收或发送大量的数据信息。这意味着系统需要长时间持续不断地处于工作状态,而如此高强度、长时间的运行会导致网络系统传输速度变慢而发生网络拥塞甚至传输故障。这就是典型的执行器故障问题。网络的带宽限制、外部摄动、网络时延的发生和网络速度的降低都是执行器故障现象。网络数据传输过程中的故障也是变化的、随机发生的。这些故障的发生更适合用一个马尔科夫随机过程来表示。如果不解决这些传输故障,网络拥塞和网络崩溃现象就会发生。这给人们的生活带来极大不便,更有可能造成社会资源浪费以及信息安全问题。因此,以带有执行器故障的正马尔科夫跳变系统模型和正系统的方法分析网络数据传输中数据包的变化是非常合理的,且具有明显的优势。
发明内容
本发明的目的是针对通信网络数据传输过程出现的故障问题,提出一种网络数据传输平稳运行的可靠控制方法。
本发明采用正马尔科夫跳变系统的可靠饱和控制方法,对通信网络数据传输过程中的数据包进行控制,设计含有随机发生执行器故障的正马尔科夫跳变系统的可靠饱和控制器实现通信网络数据的平稳传输。具体技术方案如下:
一种通信网络数据传输平稳运行的可靠控制方法,该方法包括以下步骤:
步骤1、建立通信网络数据传输过程数据报数量的状态空间模型,具体方法是:
1.1分析通信网络数据传输动态过程并采集模型数据,建立系统状态空间模型;
1.2设计马尔科夫跳变信号及其转移概率满足的条件;
步骤2、设计对网络数据传输过程产生影响非线性条件;
步骤3、设计系统期望的增益性能指标;
步骤4、设计通信网络数据传输平稳运行的可靠控制器。
进一步的,步骤1.1具体如下:
分析该通信网络数据传输过程,建立数据包数量的状态空间模型如下:
Figure BDA0002331762960000021
其中x(t)=[x1(t),x2(t),...,xn(t)]T∈Rn表示通信网络数据传输的数据包,n代表通信网络中子网络的数量;uf(t)∈Rm表示带有故障的数据中心发出的数据包数量,m表示数据中心的节点个数;y(t)∈Rn表示数据终端测量到接受的数据包个数,n表示测量输出传感器个数;ω(t)∈Rn代表网络传输过程中对的外部扰动输入,可由外部扰动测量传感器获得其值。
非线性函数f(x(t))=[f1(x1(t)),f2(x2(t)),…,fn(xn(t))]T∈Rn和g(x(t))=[g1(x1(t)),g2(x2(t)),…,gn(xn(t))]T∈Rn是向量值函数,代表各种外部不确定因素对网络传输数据包的影响;函数sat(u)表示网络带宽对网络数据传输的限制,且被定义作sat(u)=[sat(u1(t)),sat(u2(t)),…,sat(um(t))]T;rt表示一个马尔科夫跳变过程,取值在一个有限集S={1,2,...,J},J∈N+内。A(rt),B(rt),C(rt),D(rt),E(rt)为已知的系统矩阵;为方便起见,记rt=i,i∈S,则它们可被记作Ai,Bi,Ci,Di,Ei;假设矩阵Ai是Metzler矩阵,Bi≥0,Ci≥0,Di≥0,Ei≥0;Rn,N+,Rn×n分别表示n维向量、正整数和n×n维欧氏矩阵空间。
进一步的,步骤1.2具体如下:
设计马尔科夫跳变信号rt,其转移概率满足以下条件:
Figure BDA0002331762960000031
其中,Δ>0,随着Δ趋于0有(ο(Δ)/Δ)趋于0;对于每个i∈S,i≠j都有λij>0且
Figure BDA0002331762960000032
进一步的,步骤2具体如下:
给出非线性函数满足以下条件:
Figure BDA0002331762960000033
Figure BDA0002331762960000034
其中xp∈R,p∈{1,2,…n},且0<η1<η2,0<η3<η4
进一步的,步骤3具体如下:
考虑如下性能约束:
Figure BDA0002331762960000035
Figure BDA0002331762960000036
其中
Figure BDA0002331762960000037
E{·}表示数学期望,||·||1代表标准的1范数,即向量元素的绝对值之和。
进一步的,步骤4具体如下:
4.1设计带有故障的控制输入模型为
Figure BDA0002331762960000038
其中矩阵
Figure BDA0002331762960000039
是未知的故障对角矩阵;st是一个取值在有限集Z中的马尔科夫随机过程,Z={1,2,…,N},N∈N+;该马尔科夫过程表示通信网络数据传输过程中发生的故障是变化的并且是随机的,它的转移概率满足:
Figure BDA0002331762960000041
其中,Δ>0,随着Δ趋于0有(ο(Δ)/Δ)趋于0;对于每个k∈S,k≠l都有
Figure BDA0002331762960000042
Figure BDA0002331762960000043
为方便起见,对于每个k∈Z,记st=k,假设故障矩阵是未知的且满足:
Figure BDA0002331762960000044
其中H ik>0和
Figure BDA0002331762960000046
的是给定的矩阵;
4.2设计控制输入的饱和函数转化为凸包形式;对于给定的矩阵Kik∈Rm×n和Fik∈Rm×n,sat(Kikx(t))可被表示为
Figure BDA0002331762960000047
其中
Figure BDA0002331762960000048
M,θ=1,2,…2m是对角元素为0或1的矩阵集合M的元素;
4.3设计可靠控制器为
Figure BDA0002331762960000049
其中
Figure BDA00023317629600000410
是将要设计的控制器增益;
4.4设计
Figure BDA00023317629600000411
Figure BDA00023317629600000412
Fik∈Rn是将要设计的吸引域增益;构造一个随机余正李雅普诺夫函数
V(x(t),rt,st)=xT(t)vik,
其中vik>0,vik∈Rn是n维实数列向量并且列中每个元素都为正数;计算上述李雅普诺夫函数的若无穷小算子:
Figure BDA00023317629600000413
其中T代表矩阵的转置;
4.5可得:
Figure BDA0002331762960000051
为了使通信网络系统达到步骤3提出的增益性能指标,我们提出以下设计方法:
步骤5设计常数βi>0,δi>0,γ>0,
Figure BDA0002331762960000052
和向量vik>0,νik∈Rn,
Figure BDA0002331762960000054
Figure BDA0002331762960000055
Figure BDA0002331762960000056
使得以下不等式
Υik≥0,
Figure BDA0002331762960000057
Figure BDA0002331762960000058
Figure BDA0002331762960000059
Figure BDA00023317629600000510
Figure BDA00023317629600000511
Figure BDA00023317629600000512
Figure BDA00023317629600000513
Figure BDA00023317629600000514
对于每一个i∈S,k∈Z,θ=1,2,…2m
Figure BDA00023317629600000515
成立,其中
Figure BDA00023317629600000516
Figure BDA00023317629600000517
Figure BDA00023317629600000518
Figure BDA00023317629600000519
Figure BDA00023317629600000520
步骤6、设计步骤1中的系统在步骤4.3中的可靠控制器下是随机稳定的:
6.1为了设计可靠控制器增益使得通信网络系统达到期望的性能,根据步骤3计算若无穷小算子满足:
ΓV(x(t),i,k)<0;
6.2依据步骤3可获得以下不等式关系:
Figure BDA0002331762960000061
Figure BDA0002331762960000062
然后可得:
ΓV(x(t),i,k)<-η4α||x(t)||1
6.3此外,通信网络的外部扰动ω(t)≠0时,可得
Figure BDA0002331762960000063
Figure BDA0002331762960000064
进一步,根据步骤5中第五个不等式可得
Figure BDA0002331762960000065
6.4结合步骤4.5和步骤6.2可推出
Figure BDA0002331762960000066
根据步骤2和步骤5可知以下不等式成立:
Figure BDA0002331762960000067
6.5根据步骤5中的条件,考虑可靠控制器中的控制器增益由非负分量和非正分量组成;具体形式如下:
情况一:M=0
Figure BDA0002331762960000068
Figure BDA0002331762960000069
情况二:M=I
Figure BDA0002331762960000071
Figure BDA0002331762960000072
情况三:M≠0,M≠I
Figure BDA0002331762960000073
Figure BDA0002331762960000074
Figure BDA0002331762960000075
Figure BDA0002331762960000076
6.6由步骤6.4和6.5可推出以下不等式:
Figure BDA0002331762960000077
Figure BDA0002331762960000078
Figure BDA0002331762960000079
结合步骤4.5与步骤5可得:ΓV(x(t),i,k)<0;
6.7综合步骤4.4至步骤6.6可得到通信网络系统数据传输过程可靠控制器增益和吸引域增益,具体形式如下:
Figure BDA0002331762960000081
Figure BDA0002331762960000082
本发明的有益效果如下:
本发明方法考虑通信网络系统数据传输过程的故障问题,利用正马尔科夫跳变系统建立网络传输过程数据包数量的状态空间模型。借助一个随机余正李雅普诺夫函数设计出一种带有随机发生故障的通信网络系统的可靠控制器,可以有效的改善并解决通信网络系统数据传输过程中由网络时延、外部扰动以及带宽限制造成的网络拥塞、网络崩溃以及网络错误等问题。根据正系统的研究方法设计了可靠控制器,保证通信网络数据的平稳传输。
附图说明
图1是本发明的终端设备与传输信道的关系示意图。
具体实施方式
下面结合附图对本发明作进一步说明。
以通信网络系统为实际对象,以系统中数据中心发出的数据报数量为输入,以整个通信网络中的数据包数量为状态,以终端设备测量到的数据包接收数量为输出建立状态空间模型。
步骤1、考虑通信网络系统模型。一个通信网络数据传输系统通常包含一组传输信道和数据电路终端设备。图1展示了终端设备与传输信道的联系。
1.1分析该通信网络数据传输过程,建立数据包数量的状态空间模型如下:
Figure BDA0002331762960000083
其中x(t)=[x1(t),x2(t),...,xn(t)]T∈Rn表示通信网络数据传输的数据包,n代表通信网络中子网络的数量;uf(t)∈Rm表示带有故障的数据中心发出的数据包数量,m表示数据中心的节点个数;y(t)∈Rn表示数据终端测量到接受的数据包个数,n表示测量输出传感器个数;ω(t)∈Rn代表网络传输过程中对的外部扰动输入,可由外部扰动测量传感器获得其值。
非线性函数f(x(t))=[f1(x1(t)),f2(x2(t)),…,fn(xn(t))]T∈Rn和g(x(t))=[g1(x1(t)),g2(x2(t)),…,gn(xn(t))]T∈Rn是向量值函数,代表各种外部不确定因素对网络传输数据包的影响;函数sat(u)表示网络带宽对网络数据传输的限制,且被定义作sat(u)=[sat(u1(t)),sat(u2(t)),…,sat(um(t))]T;rt表示一个马尔科夫跳变过程,取值在一个有限集S={1,2,...,J},J∈N+内。A(rt),B(rt),C(rt),D(rt),E(rt)为已知的系统矩阵;为方便起见,记rt=i,i∈S,则它们可被记作Ai,Bi,Ci,Di,Ei;假设矩阵Ai是Metzler矩阵,Bi≥0,Ci≥0,Di≥0,Ei≥0;Rn,N+,Rn×n分别表示n维向量、正整数和n×n维欧氏矩阵空间。
1.2设计马尔科夫跳变信号rt,其转移概率满足以下条件:
Figure BDA0002331762960000091
其中,Δ>0,随着Δ趋于0有(ο(Δ)/Δ)趋于0。对于每个i∈S,i≠j都有λij>0且
Figure BDA0002331762960000092
步骤2、在实际网络数据传输过程中,网络忙时和外界因素对网络数据传输的数据包会产生影响。因此,我们给出非线性函数满足以下条件:
Figure BDA0002331762960000093
Figure BDA0002331762960000094
其中xp∈R,p∈{1,2,…n},且0<η1<η2,0<η3<η4
步骤3、由于所考虑的通信网络是在忙时和闲时之间随机切换的,并且外部扰动输入也会对整个系统产生影响。因此,分析整个网络系统的性能是非常重要的并考虑如下性能约束:
Figure BDA0002331762960000095
Figure BDA0002331762960000096
其中
Figure BDA0002331762960000097
E{·}表示数学期望,||·||1代表标准的1范数,即向量元素的绝对值之和。
步骤4、设计通信网络数据传输过程数据包数量变化的可靠控制器,具体步骤是:
4.1设计带有故障的控制输入模型为
Figure BDA0002331762960000101
其中矩阵
Figure BDA0002331762960000102
是未知的故障对角矩阵。st是一个取值在有限集Z中的马尔科夫随机过程,Z={1,2,…,N},N∈NT。该马尔科夫过程表示通信网络数据传输过程中发生的故障是变化的并且是随机的。它的转移概率满足:
Figure BDA0002331762960000103
其中,Δ>0,随着Δ趋于0有(ο(Δ)/Δ)趋于0。对于每个k∈S,k≠l都有
Figure BDA0002331762960000104
Figure BDA0002331762960000105
为方便起见,对于每个k∈Z,记st=k。假设故障矩阵是未知的且满足:
Figure BDA0002331762960000106
其中H ik>0和
Figure BDA0002331762960000108
的是给定的矩阵。
4.2设计控制输入的饱和函数转化为凸包形式。对于给定的矩阵Kik∈Rm×n和Fik∈Rm×n,sat(Kikx(t))可被表示为
Figure BDA0002331762960000109
其中
Figure BDA00023317629600001010
0<μ<1。M,θ=1,2,…2m是对角元素全为0或1的矩阵集合M的元素。
4.3设计可靠控制器为
Figure BDA00023317629600001011
其中
Figure BDA00023317629600001012
Kik∈Rm×n是将要设计的控制器增益。
4.4设计
Figure BDA00023317629600001013
Figure BDA00023317629600001014
Fik∈Rn是将要设计的吸引域增益。构造一个随机余正李雅普诺夫函数
V(x(t),rt,st)=xT(t)vik,
其中vik>0,vik∈Rn是n维实数列向量并且列中每个元素都为正数。计算上述李雅普诺夫函数的若无穷小算子:
Figure BDA0002331762960000111
其中T代表矩阵的转置,其他符号的定义与步骤1.2与步骤4.1中一致。
4.5结合步骤2可得:
Figure BDA0002331762960000112
步骤5、设计常数βi>0,δi>0,γ>0,
Figure BDA0002331762960000113
和向量vik>0,νik∈Rn,
Figure BDA0002331762960000115
Figure BDA0002331762960000116
使得以下不等式
Υik≥0,
Figure BDA0002331762960000117
Figure BDA0002331762960000118
Figure BDA0002331762960000119
Figure BDA00023317629600001110
Figure BDA00023317629600001111
Figure BDA00023317629600001112
Figure BDA00023317629600001113
Figure BDA00023317629600001114
对于每一个i∈S,k∈Z,θ=1,2,…2m
Figure BDA00023317629600001115
成立,其中
Figure BDA00023317629600001116
Figure BDA00023317629600001117
Figure BDA00023317629600001118
Figure BDA00023317629600001119
Figure BDA00023317629600001120
步骤6、设计步骤1中的系统在步骤4.3中的可靠控制器下是随机稳定的。
6.1为了设计可靠控制器增益使得通信网络系统达到期望的性能,根据步骤3计算若无穷小算子满足:
ΓV(x(t),i,k)<0。
6.2依据步骤3可获得以下不等式关系:
Figure BDA0002331762960000121
Figure BDA0002331762960000122
然后可得:
ΓV(x(t),i,k)<-η4α||x(t)||1
6.3此外,通信网络的外部扰动ω(t)≠0时,可得
Figure BDA0002331762960000123
Figure BDA0002331762960000124
进一步,根据步骤5中第五个不等式可得
Figure BDA0002331762960000125
6.4结合步骤4.5和步骤6.2可推出
Figure BDA0002331762960000126
根据步骤2和步骤5可知以下不等式成立:
Figure BDA0002331762960000127
6.5根据步骤5中的条件,考虑可靠控制器中的控制器增益由非负分量和非正分量组成。具体形式如下:
情况一:M=0
Figure BDA0002331762960000128
Figure BDA0002331762960000131
情况二:M=I
Figure BDA0002331762960000132
Figure BDA0002331762960000133
情况三:M≠0,M≠I
Figure BDA0002331762960000134
Figure BDA0002331762960000135
Figure BDA0002331762960000136
Figure BDA0002331762960000137
6.6由步骤6.4和6.5可推出以下不等式:
Figure BDA0002331762960000138
Figure BDA0002331762960000139
Figure BDA0002331762960000141
结合步骤4.5与步骤5可得:ΓV(x(t),i,k)<0。
6.7综合步骤4.4至步骤6.6可得到通信网络系统数据传输过程可靠控制器增益和吸引域增益,具体形式如下:
Figure BDA0002331762960000142
Figure BDA0002331762960000143

Claims (1)

1.一种通信网络数据传输平稳运行的可靠控制方法,其特征在于该方法包括以下步骤:
步骤1、建立通信网络数据传输过程数据包数量的状态空间模型,具体方法是:
1.1分析通信网络数据传输动态过程并采集模型数据,建立系统状态空间模型;
1.2设计马尔科夫跳变信号及其转移概率满足的条件;
步骤2、设计对网络数据传输过程产生影响非线性条件;
步骤3、设计系统期望的增益性能指标;
步骤4、设计通信网络数据传输平稳运行的可靠控制器;
步骤1.1具体如下:
分析该通信网络数据传输过程,建立数据包数量的状态空间模型如下:
Figure FDA0003584695730000011
其中x(t)=[x1(t),x2(t),...,xn(t)]T∈Rn表示通信网络数据传输的数据包,n代表通信网络中子网络的数量;uf(t)∈Rm表示带有故障的数据中心发出的数据包数量,m表示数据中心的节点个数;y(t)∈Rn表示数据终端测量到接受的数据包个数,n表示测量输出传感器个数;ω(t)∈Rn代表网络传输过程中对的外部扰动输入,可由外部扰动测量传感器获得其值;
非线性函数f(x(t))=[f1(x1(t)),f2(x2(t)),…,fn(xn(t))]T∈Rn,和g(x(t))=[g1(x1(t)),g2(x2(t)),…,gn(xn(t))]T∈Rn是向量值函数,代表各种外部不确定因素对网络传输数据包的影响;函数sat(u)表示网络带宽对网络数据传输的限制,且被定义作sat(u)=[sat(u1(t)),sat(u2(t)),…,sat(um(t))]T;rt表示一个马尔科夫跳变过程,取值在一个有限集S={1,2,...,J},J∈N+内;A(rt),B(rt),C(rt),D(rt),E(rt)为已知的系统矩阵;为方便起见,记rt=i,i∈S,则它们可被记作Ai,Bi,Ci,Di,Ei;假设矩阵Ai是Metzler矩阵,Bi≥0,Ci≥0,Di≥0,Ei≥0;Rn,N+,Rn×n分别表示n维向量、正整数和n×n维欧氏矩阵空间;
步骤1.2具体如下:
设计马尔科夫跳变信号rt,其转移概率满足以下条件:
Figure FDA0003584695730000021
其中,Δ>0,随着Δ趋于0有(o(Δ)/Δ)趋于0;对于每个i∈S,i≠j都有λij>0且
Figure FDA0003584695730000022
步骤2具体如下:
给出非线性函数满足以下条件:
Figure FDA0003584695730000023
Figure FDA0003584695730000024
其中xp∈R,p∈{1,2,…n},且0<η1<η2,0<η3<η4
步骤3具体如下:
考虑如下性能约束:
Figure FDA0003584695730000025
Figure FDA0003584695730000026
其中
Figure FDA0003584695730000027
E{·}表示数学期望,||·||1代表标准的1范数,即向量元素的绝对值之和;
步骤4具体如下:
4.1设计带有故障的控制输入模型为
Figure FDA0003584695730000028
其中矩阵
Figure FDA0003584695730000029
是未知的故障对角矩阵;st是一个取值在有限集Z中的马尔科夫随机过程,Z={1,2,…,N},N∈NT;该马尔科夫随机过程表示通信网络数据传输过程中发生的故障是变化的并且是随机的,它的转移概率满足:
Figure FDA00035846957300000210
其中,Δ>0,随着Δ趋于0有(o(Δ)/Δ)趋于0;对于每个k∈S,k≠l都有
Figure FDA00035846957300000211
Figure FDA00035846957300000212
为方便起见,对于每个k∈Z,记st=k,假设故障矩阵是未知的且满足:
Figure FDA0003584695730000031
其中
Figure FDA0003584695730000032
Figure FDA0003584695730000033
的是给定的矩阵;
4.2设计控制输入的饱和函数转化为凸包形式;对于给定的矩阵Kik∈Rm×n和Fik∈Rm×n,sat(Kikx(t))可被表示为
Figure FDA0003584695730000034
其中
Figure FDA0003584695730000035
M,θ=1,2,…2m是对角元素全为0或1的矩阵集合M的元素;
4.3设计可靠控制器为
Figure FDA0003584695730000036
其中
Figure FDA0003584695730000037
Kik∈Rm×n是将要设计的控制器增益;
4.4设计
Figure FDA0003584695730000038
Figure FDA0003584695730000039
是将要设计的吸引域增益;构造一个随机余正李雅普诺夫函数
V(x(t),rt,st)=xT(t)vik,
其中
Figure FDA00035846957300000310
vik∈Rn是n维实数列向量并且列中每个元素都为正数;计算上述李雅普诺夫函数的若无穷小算子:
Figure FDA00035846957300000311
其中T代表矩阵的转置;
4.5可得:
Figure FDA00035846957300000312
为了使通信网络系统达到提出的增益性能指标,我们提出以下设计方法:
步骤5设计常数βi>0,δi>0,γ>0,
Figure FDA00035846957300000313
和向量
Figure FDA00035846957300000314
νik∈Rn,
Figure FDA00035846957300000315
Figure FDA0003584695730000041
Figure FDA0003584695730000042
使得以下不等式
Υik≥0,
Figure FDA0003584695730000043
Figure FDA0003584695730000044
Figure FDA0003584695730000045
Figure FDA0003584695730000046
Figure FDA0003584695730000047
Figure FDA0003584695730000048
Figure FDA0003584695730000049
Figure FDA00035846957300000410
对于每一个i∈S,k∈Z,θ=1,2,…2m
Figure FDA00035846957300000411
成立,其中
Figure FDA00035846957300000412
Figure FDA00035846957300000413
Figure FDA00035846957300000414
Figure FDA00035846957300000415
Figure FDA00035846957300000416
步骤6、设计步骤1中的系统在步骤4.3中的可靠控制器下是随机稳定的:
6.1为了设计可靠控制器增益使得通信网络系统达到期望的性能,根据步骤3计算若无穷小算子满足:
ΓV(x(t),i,k)<0;
6.2依据步骤3可获得以下不等式关系:
Figure FDA00035846957300000417
Figure FDA00035846957300000418
然后可得:
ΓV(x(t),i,k)<-η4α||x(t)||1
6.3此外,通信网络的外部扰动ω(t)≠0时,可得
Figure FDA0003584695730000051
Figure FDA0003584695730000052
进一步,根据步骤5中第五个不等式可得
Figure FDA0003584695730000053
6.4结合步骤4.5和步骤6.2可推出
Figure FDA0003584695730000054
根据步骤2和步骤5可知以下不等式成立:
Figure FDA0003584695730000055
6.5根据步骤5中的条件,考虑可靠控制器中的控制器增益由非负分量和非正分量组成;具体形式如下:
情况一:M=0
Figure FDA0003584695730000056
Figure FDA0003584695730000057
情况二:M=I
Figure FDA0003584695730000058
Figure FDA0003584695730000059
情况三:M≠0,M≠I
Figure FDA0003584695730000061
Figure FDA0003584695730000062
Figure FDA0003584695730000063
Figure FDA0003584695730000064
6.6由步骤6.4和6.5可推出以下不等式:
Figure FDA0003584695730000065
Figure FDA0003584695730000066
Figure FDA0003584695730000067
结合步骤4.5与步骤5可得:ΓV(x(t),i,k)<0;
6.7综合步骤4.4至步骤6.6可得到通信网络系统数据传输过程可靠控制器增益和吸引域增益,具体形式如下:
Figure FDA0003584695730000068
Figure FDA0003584695730000069
CN201911343892.4A 2019-12-23 2019-12-23 一种通信网络数据传输平稳运行的可靠控制方法 Active CN111030872B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911343892.4A CN111030872B (zh) 2019-12-23 2019-12-23 一种通信网络数据传输平稳运行的可靠控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911343892.4A CN111030872B (zh) 2019-12-23 2019-12-23 一种通信网络数据传输平稳运行的可靠控制方法

Publications (2)

Publication Number Publication Date
CN111030872A CN111030872A (zh) 2020-04-17
CN111030872B true CN111030872B (zh) 2022-06-03

Family

ID=70212829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911343892.4A Active CN111030872B (zh) 2019-12-23 2019-12-23 一种通信网络数据传输平稳运行的可靠控制方法

Country Status (1)

Country Link
CN (1) CN111030872B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115171380B (zh) * 2022-07-01 2023-05-12 广西师范大学 一种抑制网络攻击造成车联网拥塞的控制模型和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319147A (zh) * 2018-03-13 2018-07-24 江南大学 一类具有短时延和数据丢包的网络化线性参数变化系统的h∞容错控制方法
CN108983608A (zh) * 2018-07-16 2018-12-11 南京邮电大学 丢包及转移概率部分未知的变采样ncs控制器设计方法
CN109495348A (zh) * 2018-12-11 2019-03-19 湖州师范学院 一种具有时延和数据包丢失的网络控制系统h∞故障检测方法
CN110011929A (zh) * 2019-04-23 2019-07-12 杭州电子科技大学 一种改善网络拥塞现象的分布式预测控制方法
CN110110496A (zh) * 2019-06-06 2019-08-09 杭州电子科技大学 一种基于非线性系统建模的城市供水的可靠控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070058554A1 (en) * 2005-09-14 2007-03-15 Alcatel Method of networking systems reliability estimation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319147A (zh) * 2018-03-13 2018-07-24 江南大学 一类具有短时延和数据丢包的网络化线性参数变化系统的h∞容错控制方法
CN108983608A (zh) * 2018-07-16 2018-12-11 南京邮电大学 丢包及转移概率部分未知的变采样ncs控制器设计方法
CN109495348A (zh) * 2018-12-11 2019-03-19 湖州师范学院 一种具有时延和数据包丢失的网络控制系统h∞故障检测方法
CN110011929A (zh) * 2019-04-23 2019-07-12 杭州电子科技大学 一种改善网络拥塞现象的分布式预测控制方法
CN110110496A (zh) * 2019-06-06 2019-08-09 杭州电子科技大学 一种基于非线性系统建模的城市供水的可靠控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Robust Non-Fragile Control of Positive Semi-Markovian Jump Systems With Actuator Saturation;Dan Ding;《IEEE》;20190613;第1-3节 *

Also Published As

Publication number Publication date
CN111030872A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
Ma et al. Distributed filtering for nonlinear time‐delay systems over sensor networks subject to multiplicative link noises and switching topology
Dong et al. Distributed filtering in sensor networks with randomly occurring saturations and successive packet dropouts
Ma et al. Bipartite consensus on networks of agents with antagonistic interactions and measurement noises
Sun Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts
Zhang et al. Consensus of multi‐agent systems with linear dynamics using event‐triggered control
CN115442375B (zh) 一种基于云边协同技术的物业数字化管理系统
CN111431819A (zh) 一种基于序列化的协议流特征的网络流量分类方法和装置
CN111030872B (zh) 一种通信网络数据传输平稳运行的可靠控制方法
Krishnaswamy et al. Data-driven learning to predict wan network traffic
Śliwiński et al. Non‐linear system modelling based on constrained Volterra series estimates
CN115833395A (zh) 一种配电网的运行状态的分析方法、装置及在线监测系统
Li et al. control for networked stochastic non‐linear systems with randomly occurring sensor saturations, multiple delays and packet dropouts
Rezaei et al. Event‐triggered distributed Kalman filter with consensus on estimation for state‐saturated systems
Tsvetkov et al. Model of Restoration of the Communication Network Using the Technology of Software Defined Networks
Li et al. Dissipative networked filtering for two-dimensional systems with randomly occurring uncertainties and redundant channels
Stegagno et al. Distributed cooperative adaptive state estimation and system identification for multi‐agent systems
Liang et al. Dynamic event-triggered and asynchronous sliding mode control for TS fuzzy Markov jump systems
Zhang et al. Fault detection for a class of network‐based nonlinear systems with communication constraints and random packet dropouts
Zhong et al. An H i/H∞ optimisation approach to distributed event-triggered fault detection over wireless sensor networks
Liu et al. Stability conditions for remote state estimation of multiple systems over multiple Markov fading channels
Liu et al. Network-based filtering for stochastic Markovian jump systems with application to PWM-driven boost converter
Rong et al. Finite-time stabilization of nonlinear systems using an event-triggered controller with exponential gains
US11490339B1 (en) Method for determining pilot power, communication device, and storage medium
CN115225381B (zh) 异步故障检测滤波器设计方法
Tan et al. Observer‐based distributed hybrid‐triggered H∞ control for sensor networked systems with input quantisation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant