CN111030651A - 一种双电压源脉冲调制器电路及快前沿脉冲调制器 - Google Patents

一种双电压源脉冲调制器电路及快前沿脉冲调制器 Download PDF

Info

Publication number
CN111030651A
CN111030651A CN201911265318.1A CN201911265318A CN111030651A CN 111030651 A CN111030651 A CN 111030651A CN 201911265318 A CN201911265318 A CN 201911265318A CN 111030651 A CN111030651 A CN 111030651A
Authority
CN
China
Prior art keywords
voltage
voltage source
pulse modulator
power supply
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911265318.1A
Other languages
English (en)
Other versions
CN111030651B (zh
Inventor
朱四桃
杨莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Xinhai Pulse Technology Co Ltd
Original Assignee
Xi'an Xinhai Pulse Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Xinhai Pulse Technology Co Ltd filed Critical Xi'an Xinhai Pulse Technology Co Ltd
Priority to CN201911265318.1A priority Critical patent/CN111030651B/zh
Publication of CN111030651A publication Critical patent/CN111030651A/zh
Application granted granted Critical
Publication of CN111030651B publication Critical patent/CN111030651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种双电压源脉冲调制器电路及快前沿脉冲调制器,脉冲调制器电路包括开关单元和负载单元,所述的开关单元包括半导体开关;其特征在于,还包括直流电压源单元和高电压源单元;所述的高电压电源的输出电压高于直流电源的输出电压。本发明提出一种双电压源快前沿脉冲调制器,其电源由两路组成,其中一路为高电压源单元,另一路为直流电压源单元。高电压源单元用于快速拉升调制脉冲前沿,使输出至微波放大器负载的脉冲前沿达到30ns之内;直流电压源单元用于产生维持电压,在调制脉冲脉内保持一定的电压幅值并将脉内顶降控制在规定范围内。

Description

一种双电压源脉冲调制器电路及快前沿脉冲调制器
技术领域
本发明属于脉冲功率技术领域,涉及一种双电压源脉冲调制器电路及快前沿脉冲调制器,特别适用于固态微波功率放大器的快前沿脉冲调制器。
背景技术
脉冲调制器主要为固态微波功率放大器提供脉冲电源,为了保证放大器在大功率条件下高效率工作,要求脉冲调制器在放大器两端输出脉冲具有较快的前后沿、较小的过冲和顶降。脉冲调制器主要由直流电源、充电电阻、储能电容、半导体开关、开关控制模块及其负载组成,负载即为固态微波功率放大器。脉冲调制器的工作流程为:直流电源通过充电电阻将能量储存在储能电容;开关控制模块产生重复频率几十kHz、脉冲宽度几十ns~几十us连续可调的脉冲控制信号,控制半导体开关导通与关断;储能电容通过半导体开关通断,在负载端输出与控制信号同相的调制脉冲信号。
在脉冲调制器设计中,为了获得较快的脉冲前后沿及减小调制器热损耗,半导体开关一般选择导通与关断时间在ns量级、导通电阻在mΩ量级的GaN半导体NMOS管;储能电容容值一般设计在几百uF以上,以保持调制脉冲在高电压、大电流、us级脉宽输出时,具有较小的脉冲顶降。
在实际应用中,为了防止微波功率放大器输出微波耦合至脉冲调制器,通常在两者之间设计一段四分之一波长传输线,并在脉冲调制器端连接一个微波接地电容,使得放大器向调制器的微波传输通道阻抗为“开路”,以实现两者之间微波传输的有效隔离。微波接地电容主要用于微波传输接地,其集总电容值在pF量级,在脉冲调制器电路中可忽略。由于四分之一波长传输线的引入,增加了脉冲调制器与放大器之间的接线电感,该电感使得放大器端调制脉冲前沿严重恶化。以目前国内外普遍采用的GaN半导体微波功率放大器为例,其导通电阻约为700mΩ,工作于X波段时,四分之一波长传输线的引入电感约为40nH。放大器脉冲前沿的时间常数为τ=L/R,其中L为传输线引入电感,R为放大器导通电阻,计算得到τ约为60ns,脉冲前沿上升时间一般为时间常数τ的3~4倍。因此,即使调制器输出为理想的“方波”,在放大器两端的调制脉冲上升沿也在200ns以上,难以满足使用要求。
发明内容
本发明针对目前X波段微波功率放大器调制脉冲前沿小于30ns的研制要求,提出一种双电压源脉冲调制器电路及快前沿脉冲调制器,解决了脉冲调制器与微波功率放大器之间传输线电感对调制脉冲前沿的恶化问题,可将脉冲前沿陡化至30ns以内,具有重要的实用价值。
传统的脉冲调制器一般由直流电源、充电电阻、储能电容、半导体开关、开关控制模块及其负载组成,其中负载包括传输线电感、接地电容及放大器导通电阻(X波段微波接地电容的集总参数在亚pF量级,在脉冲调制器电路中可忽略)。本发明在传统脉冲调制器基础上,增加了高电压源单元,包括高电压电源、高电压充电电阻、高电压储能电容,并增加了两个二极管,以实现两路电源之间的隔离。
本发明的技术方案如下:
一种双电压源脉冲调制器电路,包括开关单元和负载单元,所述的开关单元包括半导体开关;其特征在于,还包括直流电压源单元和高电压源单元;
所述的直流电压源单元包括直流电源、充电电阻、储能电容和隔离二极管,直流电源和充电电阻串联后,与储能电容并联后组成直流电压源供电模块,直流电压源供电模块与隔离二极管串联后跨接在半导体开关的漏极D和地之间;
所述的高电压源单元包括高电压电源、高电压充电电阻、高电压储能电容和高压隔离二极管,高电压电源和高电压充电电阻串联后,与高电压储能电容并联构成高电压源供电模块,高电压源供电模块与高压隔离二极管串联后跨接在半导体开关的漏极D和地之间。
所述的高电压电源的输出电压高于直流电源的输出电压。
上述双电压源脉冲调制器电路中,高电压电源的输出电压是直流电源输出电压的1.5至10倍。
上述双电压源脉冲调制器电路中,高电压电源的输出电压是直流电源输出电压的3倍。
上述双电压源脉冲调制器电路中,所述的负载单元包括传输线电感、接地电容及放大器导通电阻;传输线电感和放大器导通电阻串联,再与接地电容并联构成负载单元,跨接在半导体开关的源极S和地之间。
上述双电压源脉冲调制器电路中,所述的开关单元还包括开关控制模块,开关控制模块设置在半导体开关的栅极G和源极S之间。
上述双电压源脉冲调制器电路中,开关控制模块由信号发生器、放大器和驱动器串接而成。
上述双电压源脉冲调制器电路中,半导体开关为N沟道MOSFET器件。
一种快前沿脉冲调制器,包括上述的双电压源脉冲调制器电路。
上述快前沿脉冲调制器中,80V脉冲电压信号的前沿为25ns。
本发明具有的技术效果如下:双电压源快前沿脉冲调制器的电源模块由两路组成,其中一路为高电压源单元,另一路为直流电压源单元,高电压源单元的电压高于直流电压源单元的电压,高电压源单元主要用于将脉冲前沿快速拉升,在几十ns之内将放大器调制脉冲前沿迅速拉升至规定幅值;直流电压源单元用于产生调制脉冲维持电压,在脉内保持一定的电压幅值并将脉冲顶降控制在要求范围内。
附图说明
图1传统脉冲调制器组成示意图;
图2传统80V电压源脉冲调制器输出电压波形;
图3传统80V电压源脉冲调制器在放大器两端输出调制脉冲电压波形;
图4本发明双电压源快前沿脉冲调制器组成示意图;
图5本发明双电压源快前沿脉冲调制器输出电压波形;
图6本发明双电压源脉冲调制器在放大器两端输出调制脉冲电压波形;
附图标记如下:1—直流电源、2—充电电阻、3—储能电容、4—半导体开关、5—开关控制模块、6—接地电容、7—传输线电感、8—放大器导通电阻、9—地、10—高电压电源、11—高电压充电电阻、12—高电压储能电容、13—高压隔离二极管、14—隔离二极管。
具体实施方式
下面结合附图对本发明做进一步描述。
如图1所示,传统的脉冲调制器一般由直流电压源单元、开关单元和负载单元组成。其中直流电压源单元包括直流电源1、充电电阻2、储能电容3;开关单元包括半导体开关4和开关控制模块5;负载单元包括传输线电感7、接地电容6及放大器导通电阻8。其中直流电源1和充电电阻2串联,再与储能电容3并联后,跨接在半导体开关4的漏极D和地9之间;传输线电感7和放大器导通电阻8串联,再与接地电容6并联后,跨接在半导体开关4的源极S和地9之间。半导体开关4采用N沟道MOSFET器件,型号为IPB060N15N5,输出电压达到数百伏、电流数百安。
半导体开关4的栅极G和源极S之间设置有开关控制模块5,开关控制模块由信号发生器、74LVC1G125型放大器和2EDF7235K型专用NMOS管栅极驱动器串接组成。信号发生器产生重复频率几十kHz、脉冲宽度几十ns~几十us连续可调的TTL脉冲控制信号,经放大器形成电压幅值为18V的脉冲控制信号,然后通过2EDF7235K型专用NMOS管栅极驱动器加载在半导体开关4的栅极G和源极S之间,控制半导体开关4快速导通与关断。
以某课题要求研制的80V、120A脉冲调制器为例,其主要技术指标要求为:调制脉冲电压80V,脉冲峰值电流120A,脉冲前沿小于30ns,前沿过冲小于10%,脉宽100ns~5us,脉冲顶降小于2%。传统的脉冲调制器参数可设计为:直流电源1输出电压80V,充电电阻2阻值1Ω,储能电容3容值500uF,半导体开关4导通与关断时间4ns,微波功率放大器为GaN半导体器件,其导通电阻8阻值R约为700mΩ。工作于X波段时,脉冲调制器与放大器之间四分之一波长传输线的引入电感7电感值L约为40nH,接地电容6主要用于微波传输接地,其集总电容值在pF量级,在脉冲调制器电路中可忽略。微波放大器端调制脉冲前沿和后沿的时间常数L/R约为60ns,脉冲前沿和后沿一般为时间常数τ的3~4倍。因此,即使调制器输出为比较理想的方波,在放大器电阻8两端的调制脉冲前后沿也在200ns以上,很难达到技术指标要求。图2给出了传统脉冲调制器在半导体开关4源极S端输出电压波形,图3给出了放大器电阻8两端的调制脉冲波形。
本发明在传统脉冲调制器基础之上,增加了高电压源单元和二极管13、14,如图4所示。高电压源单元包括高电压电源10、高电压充电电阻11和高电压储能电容12,其联接关系为高电压电源10和高电压充电电阻11串联,再与高电压储能电容12并联。高电压电源10的输出电压要高于直流电源1的输出电压。使用中高电压源单元与高压隔离二极管13串联,跨接在半导体开关4的漏极D和地9之间,直流电压源单元与半导体开关4的漏极D之间串接隔离二极管14,高压隔离二极管13和隔离二极管14的作用在于对直流电压源单元与高电压源单元进行隔离。
通常高电压电源10的输出电压是直流电源1的输出电压的1.5至10倍,优选3倍,在满足前沿要求的同时,尽可能降低电压值,避免器件或电路避免击穿。在本设计中,高电压电源10输出电压设计为240V,高电压储能电容12容值设计一般在几十nF,需要在具体设计中优化,容值太大会使储能过剩而在脉冲前沿产生过冲;容值太小会使储能欠缺而使前沿变缓。
半导体开关4接收到开关控制模块5的脉冲触发信号后迅速导通,高电压源单元在半导体开关4源极S端输出240V电压,由于微波接地电容6可忽略,因此在放大器电阻8端调制脉冲幅值达到240V的前沿上升时间约为200ns(负载时间常数L/R约为60ns,脉冲前沿上升时间一般为时间常数τ的3~4倍),达到80V的前沿上升时间约为24ns。在具体参数设计时,高电压储能电容12容值须优化选取:放大器电阻8端调制脉冲前沿在0~80V上升过程中,高电压储能电容12电压随着电流泄放而降低,当放大器电阻8端脉冲前沿电压升至80V时,高电压储能电容12电压也恰好降至80V,满足此条件的高电压储能电容12容值设计为最佳。通过理论与仿真,高电压储能电容12容值设计为25nF。储能电容3容值则越大越好,有利于保持脉内电压恒定,提高脉冲峰值电压稳定性。
高电压源单元将调制脉冲前沿拉升至80V后,直流电压源单元产生的80V电压对脉冲平顶进行维持。图5给出了双电压源脉冲调制器在半导体开关4源极S端输出电压波形,图6给出了双电压源脉冲调制器在放大器电阻8两端的脉冲上升沿电压波形。通过对图3和图6波形比较可以看出,双电压源脉冲调制器在微波放大器上的调制脉冲前沿得到极大改善,约为25ns,达到了技术指标要求。

Claims (9)

1.一种双电压源脉冲调制器电路,包括直流电压源单元、开关单元和负载单元,所述的开关单元包括半导体开关(4);其特征在于:还包括高电压源单元;
所述的直流电压源单元包括直流电源(1)、充电电阻(2)、储能电容(3)和隔离二极管(14),直流电源(1)和充电电阻(2)串联后,与储能电容(3)并联后组成直流电压源供电模块,直流电压源供电模块与隔离二极管(14)串联后跨接在半导体开关(4)的漏极D和地(9)之间;
所述的高电压源单元包括高电压电源(10)、高电压充电电阻(11)、高电压储能电容(12)和高压隔离二极管(13),高电压电源(10)和高电压充电电阻(11)串联后,与高电压储能电容(12)并联构成高电压源供电模块,高电压源供电模块与高压隔离二极管(13)串联后跨接在半导体开关(4)的漏极D和地(9)之间;
所述的高电压电源(10)的输出电压高于直流电源(1)的输出电压。
2.根据权利要求1所述的双电压源脉冲调制器电路,其特征在于:高电压电源(10)的输出电压是直流电源(1)输出电压的1.5至10倍。
3.根据权利要求2所述的双电压源脉冲调制器电路,其特征在于:高电压电源(10)的输出电压是直流电源(1)输出电压的3倍。
4.根据权利要求1所述的双电压源脉冲调制器电路,其特征在于:所述的负载单元包括传输线电感(7)、接地电容(6)及放大器导通电阻(8);传输线电感(7)和放大器导通电阻(8)串联,再与接地电容(6)并联构成负载单元,跨接在半导体开关(4)的源极S和地(10)之间。
5.根据权利要求1所述的双电压源脉冲调制器电路,其特征在于:所述的开关单元还包括开关控制模块(5),开关控制模块(5)设置在半导体开关(4)的栅极G和源极S之间。
6.根据权利要求5所述的双电压源脉冲调制器电路,其特征在于:开关控制模块(5)由信号发生器、放大器和驱动器串接而成。
7.根据权利要求1所述的双电压源脉冲调制器电路,其特征在于:半导体开关(4)为N沟道MOSFET器件。
8.一种快前沿脉冲调制器,其特征在于:包括权利要求1至7任意之一的双电压源脉冲调制器电路。
9.根据权利要求8所述的快前沿脉冲调制器,其特征在于:80V脉冲电压信号的前沿为25ns。
CN201911265318.1A 2019-12-11 2019-12-11 一种双电压源脉冲调制器电路及快前沿脉冲调制器 Active CN111030651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911265318.1A CN111030651B (zh) 2019-12-11 2019-12-11 一种双电压源脉冲调制器电路及快前沿脉冲调制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911265318.1A CN111030651B (zh) 2019-12-11 2019-12-11 一种双电压源脉冲调制器电路及快前沿脉冲调制器

Publications (2)

Publication Number Publication Date
CN111030651A true CN111030651A (zh) 2020-04-17
CN111030651B CN111030651B (zh) 2023-04-25

Family

ID=70208866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911265318.1A Active CN111030651B (zh) 2019-12-11 2019-12-11 一种双电压源脉冲调制器电路及快前沿脉冲调制器

Country Status (1)

Country Link
CN (1) CN111030651B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112130123A (zh) * 2020-09-07 2020-12-25 成都信息工程大学 一种天气雷达脉冲调制器的仿真方法与系统
CN113395056A (zh) * 2021-06-11 2021-09-14 西安交通大学 一种快前沿大电流脉冲调制器电路及脉冲调制器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795127A (zh) * 2010-02-04 2010-08-04 西安理工大学 一种高压方波脉冲发生器及产生高压方波脉冲的方法
CN102668322A (zh) * 2009-09-30 2012-09-12 奥佐集团股份公司 用于改变交流电压的装置、具有叠加数据信号的交流电压,用于数据传输的方法,接收器的应用,以及通信架构
WO2014094515A1 (zh) * 2012-12-17 2014-06-26 浙江大学 一种基于多路开关延时输出的液相脉冲放电系统
CN105577147A (zh) * 2016-02-18 2016-05-11 合肥雷科电子科技有限公司 一种高压脉冲电源的顶降补偿电路及其顶降补偿方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668322A (zh) * 2009-09-30 2012-09-12 奥佐集团股份公司 用于改变交流电压的装置、具有叠加数据信号的交流电压,用于数据传输的方法,接收器的应用,以及通信架构
CN101795127A (zh) * 2010-02-04 2010-08-04 西安理工大学 一种高压方波脉冲发生器及产生高压方波脉冲的方法
WO2014094515A1 (zh) * 2012-12-17 2014-06-26 浙江大学 一种基于多路开关延时输出的液相脉冲放电系统
CN105577147A (zh) * 2016-02-18 2016-05-11 合肥雷科电子科技有限公司 一种高压脉冲电源的顶降补偿电路及其顶降补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李杰;谢宇彤;马冰;王利鸣;章林文;: "一种常压放电等离子体产生研究脉冲高压电源" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112130123A (zh) * 2020-09-07 2020-12-25 成都信息工程大学 一种天气雷达脉冲调制器的仿真方法与系统
CN113395056A (zh) * 2021-06-11 2021-09-14 西安交通大学 一种快前沿大电流脉冲调制器电路及脉冲调制器
CN113395056B (zh) * 2021-06-11 2023-08-29 西安交通大学 一种快前沿大电流脉冲调制器电路及脉冲调制器

Also Published As

Publication number Publication date
CN111030651B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
US8170075B1 (en) Method and apparatus for driving laser diodes
EP4266579A2 (en) Transformer resonant converter
EP2424458B1 (de) Hf-chirurgiegenerator und verfahren zum betreiben eines hf-chirurgiegenerators
CN103096599B (zh) Led调光驱动装置及方法
CN101754560B (zh) 栅格调制装置
CN111030651B (zh) 一种双电压源脉冲调制器电路及快前沿脉冲调制器
CN105449997A (zh) 一种功率变换器的功率开关管隔离栅驱动电路
CN110071707A (zh) 协同脉冲信号发生装置
CN109995265B (zh) 程控高压重频纳秒脉冲电源、系统及控制方法
CN112737395B (zh) 一种双极性全固态ltd方波脉冲发生电路
CN112165313A (zh) 一种基于雪崩管的高幅值高重频快脉冲产生电路
CN111030652B (zh) 一种快速前后沿脉冲调制器
CN102545552B (zh) 一种匹配电路和使用该匹配电路的大功率脉冲电源
CN210724812U (zh) 一种后沿陡化的脉冲调制器电路及脉冲调制器
CN203590071U (zh) 一种脉冲变压器的磁控管调制器
CN112187090B (zh) 基于能量效率和稳定性设计模型的IPOx构架式高压微秒脉冲电源
CN201839100U (zh) 基于脉冲功率放大器的供电装置
CN101951034A (zh) 基于脉冲功率放大器的供电装置
CN105610307B (zh) 一种产生固定负压的功率开关管隔离栅驱动电路
CN101529708B (zh) 微波传输线直流/直流变换器
CN102237800B (zh) 适合宽脉冲负载的前级储能交替馈电式高压变换器
CN102214540B (zh) 一种用于空间行波管控制极的宽脉冲低损耗负电压调制器
CN218276654U (zh) 一种双隔离驱动功放电路
JPH05103462A (ja) スイツチモード電源を具えた回路配置
CN106163070B (zh) 一种强流离子源用弧电源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant