CN111030632A - 基础轴向力调谐超谐波共振信号频率放大装置 - Google Patents

基础轴向力调谐超谐波共振信号频率放大装置 Download PDF

Info

Publication number
CN111030632A
CN111030632A CN201911307535.2A CN201911307535A CN111030632A CN 111030632 A CN111030632 A CN 111030632A CN 201911307535 A CN201911307535 A CN 201911307535A CN 111030632 A CN111030632 A CN 111030632A
Authority
CN
China
Prior art keywords
frequency
micrometer
signal
control block
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911307535.2A
Other languages
English (en)
Inventor
刘灿昌
栾军超
刘文晓
张鑫越
苏红建
徐艺
邵金菊
周英超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201911307535.2A priority Critical patent/CN111030632A/zh
Publication of CN111030632A publication Critical patent/CN111030632A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种基础轴向力调谐超谐波共振信号频率放大装置,本发明专利利用超谐波共振原理实现信号频率的放大。对于含有立方非线性的柔性体结构,当激励力频率接近于结构性固有频率的三分之一时,非线性项调整自由振动的频率,使自由振动项不会衰减至零而是精确等于激励频率的三倍,产生超谐波共振现象。可调直流电压电源使压电控制块通电后产生水平方向的伸长,使微米梁受力被拉长,引起微米梁振动系统固有频率的改变,微米梁振动使压电薄膜受力产生的电流信号与微米梁振动频率一致,微米梁振动使压电薄膜受力产生的电流信号经变压器初级线圈耦合传送到变压器次级线圈,经高、低通滤波电路后输出三倍频信号,经由输出端子输出。

Description

基础轴向力调谐超谐波共振信号频率放大装置
技术领域
本发明涉及一种超谐波共振信号频率放大装置,特别是一种频率可调谐的超谐波共振信号频率放大装置,属于电子器件领域。
背景技术
高频信号在通信、导航等领域的快速发展,使得它的应用变得越来越广泛。不仅在雷达设计方面,电子对抗等军事领域,而且在远距离测试、无线通信、仪器设计等民用领域方面的应用也非常普遍,近年来,高频信号的研究越来越被科学研究者所重视。随着通信技术和计算机技术等领域的发展,电子系统的工作频率越来越高,人们对高频信号的需求也日益增强。而当前常用的调频方法是调整电路参数或通过调相间接调频。高频信号由于频率较高,因此在设计、发生过程中会带来一系列问题,使其比获得低频率信号源的设计具有更大的难度。主要表现为信号的畸变、分散、参数不稳定等对信号品质产生一定影响,特别是在信号的产生和传输环节易受外界电磁波干扰的影响,限制信号发生器高频信号的产生和频率的放大。
发明内容
本发明专利针对以上缺陷,提出基础轴向力调谐超谐波共振信号频率放大装置,包括低频率静电激励装置、微米梁频率调谐装置、高频信号放大装置和滤波电路四部分。
对于含有立方非线性的柔性体结构,当激励力频率接近于结构线性固有频率的三分之一时,会产生超谐波共振现象。在某些情况下,自由振动振幅甚至大于受迫振动的振幅,可以利用该原理制造超高频信号发生装置。
低频信号静电激励装置由镀金金属膜驱动极板、压电控制块、低频信号源、镀金金属膜、微米梁、左固定端和右固定端组成;左固定端和右固定端分别与压电控制块固定连接,压电控制块中间部位与底板固定连接,压电控制块由压电陶瓷做成;左固定端和右固定端分别与微米梁固定连接,形成两端固支梁;微米梁下表面镀有一层100纳米厚镀金金属膜;低频信号源一端连接镀金金属膜驱动极板,另一端连接固定端,固定端为金属铜块,固定端与微米梁下表面镀金金属膜连接,形成充放电回路;低频信号源产生的交流信号电压在镀金金属膜驱动极板和微米梁下表面镀金金属膜之间形成交变电场,变化的电场产生交变作用力,驱动微米梁产生横向振动;当低频信号源输出电压信号频率接近于微米梁的一阶固有频率三分之一时,微米梁产生超谐波共振,低频信号源输入能量与微米梁消耗能量相等,微米梁振动保持稳定。
微米梁频率调谐装置由微米梁、左固定端、压电控制块、右固定端、可调直流电压电源和导线组成;左固定端和右固定端分别与压电控制块固定连接,左固定端和右固定端均为金属铜块,可调直流电压电源与压电控制块左右两表面组成闭合回路,当可调直流电压电源电压变化时,压电控制块产生水平方向的位移,改变微米梁的长度,微米梁的长度改变时会产生轴向应力,改变微米梁振动系统的固有频率,起到频率调谐作用。
高频信号放大装置由上表面压电薄膜、微米梁、变压器初级线圈、和限流电阻组成;微米梁上表面压电薄膜左端与限流电阻连接,限流电阻另一端与变压器初级线圈连接,变压器初级线圈另一端与微米梁上表面压电薄膜的右端连接,形成闭合回路。微米梁发生共振振动时,其上表面的压电薄膜随着微米梁做同步振动,产生感应电动势,感应电动势驱动闭合回路中的自由电荷定向运动产生电流;微米梁振动处于非线性振动,且满足微米梁基频是低频信号源驱动电压信号频率的三倍时,微米梁做超谐波振动,微米梁振动由振动频率为驱动电压信号频率的受迫振动和频率为驱动电压信号频率三倍等奇数倍的等幅自由振动组成,压电薄膜产生的电流信号与微米梁振动频率一致,压电薄膜产生的电流信号经变压器初级线圈耦合传递到变压器次级线圈。
滤波电路由变压器次级线圈,高、低通滤波电路和输出端子组成。变压器次级线圈连接高、低通滤波电路;高、低通滤波电路两端接信号输出端子,高、低通滤波电路滤除低于三倍频和高于三倍频信号后,只留下三倍频信号,经由输出端子输出三倍频电信号。该三倍频信号作为下一级放大电路的输入信号,可以得到初始输入信号的倍频信号。
频率可调谐信号频率放大装置微米梁产生倍频振动,随着微米梁振动的压电薄膜产生电压信号,经高、低通滤波电路滤波后电压信号频率为:
Figure BDA0002320738540000021
式中,
Figure BDA0002320738540000022
Figure BDA0002320738540000023
FN为压电控制块作用于微米梁的轴向力,l为微米梁的长度,E为微米梁的弹性模量,I为微米梁的截面惯性矩,ρ为微米梁的单位长度密度,A为微米梁的截面面积,
Figure BDA0002320738540000024
x为微米梁在水平方向上的位置坐标,d表示微分符号,d11为压电控制块的压电常数,h为压电控制块的厚度,U为可调直流电压电源的直流电压。
本发明专利所具有的独特优点:
1.本装置可以产生频率可调谐的输入频率三倍指数倍的放大信号;
2.微米梁超谐波自由振动属于稳定振动,能产生稳定的高频电信号。
附图说明
图1三倍频频率信号调谐放大装置示意图。
图中:1、限流电阻2、压电薄膜3、微米梁4、镀金金属膜5、变压器初级线圈6、变压器次级线圈;7、高、低通滤波电路8、信号输出端子9、右固定端10、低频信号源11、底板12、压电控制块13、镀金金属膜驱动极板14、可调直流电压电源15、左固定端
具体实施方式
下面结合附图1和实施例对本发明进一步说明:本实施例的主体结构包括低频信号静电激励装置、微米梁频率调谐装置、高频信号放大装置和滤波电路四部分。
低频信号静电激励装置包括镀金金属膜驱动极板13、压电控制块12、低频信号源10、镀金金属膜4、微米梁3、左固定端15和右固定端9组成;左固定端15和右固定端9分别与与压电控制块12固定连接,压电控制块12中间部位与底板11固定连接,压电控制块12由压电陶瓷做成;左固定端15和右固定端9分别与微米梁3固定连接,形成两端固支梁;微米梁3下表面镀有一层100纳米厚镀金金属膜4;低频信号源10一端连接镀金金属膜驱动极板13,另一端连接固定端9,固定端9为金属铜块,固定端9与微米梁3下表面镀金金属膜4连接,形成充放电回路;低频信号源10产生的交流信号电压在镀金金属膜驱动极板13和微米梁3下表面镀金金属膜4之间形成交变电场,变化的电场产生交变作用力,驱动微米梁3产生横向振动;当低频信号源10输出电压信号频率接近于微米梁3的一阶固有频率三分之一时,微米梁3产生超谐波共振,低频信号源10输入能量与微米梁3消耗能量相等,微米梁3振动保持稳定。
微米梁频率调谐装置由微米梁3、左固定端15、压电控制块12、右固定端9、可调直流电压电源14和导线组成;左固定端15和右固定端9分别与压电控制块12固定连接,左固定端15和右固定端9均为金属铜块,可调直流电压电源14与压电控制块12左右两表面组成闭合回路,当可调直流电压电源14电压变化时,压电控制块12产生水平方向的位移,改变微米梁3的长度,微米梁3的长度改变时会产生轴向应力,改变微米梁3振动系统的固有频率,起到频率调谐作用。
高频信号放大装置由上表面压电薄膜2、微米梁3、变压器初级线圈5、和限流电阻1组成;微米梁3上表面压电薄膜2左端与限流电阻1连接,限流电阻1另一端与变压器初级线圈5连接,变压器初级线圈5另一端与微米梁3上表面压电薄膜2的右端连接,形成闭合回路。微米梁3发生共振振动时,其上表面的压电薄膜2随着微米梁3做同步振动,产生感应电动势,感应电动势驱动闭合回路中的自由电荷定向运动产生电流;微米梁3振动处于非线性振动,且满足微米梁3基频是低频信号源10驱动电压信号频率的三倍时,微米梁3做超谐波振动,微米梁3振动由振动频率为驱动电压信号频率的受迫振动和频率为驱动电压信号频率三倍等奇数倍的等幅自由振动组成,压电薄膜2产生的电流信号与微米梁3振动频率一致,压电薄膜2产生的电流信号经变压器初级线圈5耦合传递到变压器次级线圈6。
滤波电路由变压器次级线圈6、高、低通滤波电路7和输出端子8组成。变压器次级线圈6连接高、低通滤波电路7;高、低通滤波电路7两端接信号输出端子8,高、低通滤波电路7滤除低于三倍频和高于三倍频信号后,只留下三倍频信号,经由输出端子8输出三倍频电信号。该三倍频信号作为下一级放大电路的输入信号,可以得到初始输入信号的倍频信号。
频率可调谐信号频率放大装置微米梁3产生倍频振动,随着微米梁3振动的压电薄膜2产生电压信号,经高、低通滤波电路7滤波后电压信号频率为:
Figure BDA0002320738540000031
Figure BDA0002320738540000035
式中
Figure BDA0002320738540000032
Figure BDA0002320738540000033
FN为压电控制块12作用于微米梁3的轴向力,l为微米梁3的长度,E为微米梁3的弹性模量,I为微米梁3的截面惯性矩,ρ为微米梁3的单位长度密度,A为微米梁3的截面面积,
Figure BDA0002320738540000034
ξ=4.73,x为微米梁3在水平方向上的位置坐标,d表示微分符号,d11为压电控制块12的压电常数,h为压电控制块12的厚度,U为可调直流电压电源14的直流电压。
算例:硅微米梁3的长度、宽度和高度分别为15微米、2微米和2微米,硅微米梁3的密度和弹性模量分别为2300kg/m3和190GPa。压电控制块12的压电常数为2.76*10-10C/N,压电控制块12的厚度为20微米,可调直流电压电源14的控制电压为2V,微米梁3一阶共振频率为42.15MHz。低频信号源10产生14.05MHz的激励信号,激励微米梁3做超谐波振动,微米梁3压电薄膜2产生频率为14.05MHz和频率为42.15MHz的电流信号。下截止频率为16MHz的低通滤波器滤除掉14.05MHz以下的电压信号,上截止频率为50MHz的高通滤波器滤除掉高于42.15MHz信号。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换以及改进,均应包含在本发明所述的保护范围之内。

Claims (3)

1.基础轴向力调谐超谐波共振信号频率放大装置包括低频率静电激励装置、微米梁频率调谐装置、高频信号放大装置和滤波电路四部分。
2.根据权利要求1所述的微米梁频率调谐装置,其特征在于,该装置由微米梁(3)、左固定端(15)、压电控制块(12)、右固定端(9)、可调直流电压电源(14)和导线组成;左固定端(15)和右固定端(9)分别与压电控制块(12)固定连接,左固定端(15)和右固定端(9)均为金属铜块,可调直流电压电源(14)与压电控制块(12)左右两表面组成闭合回路,当可调直流电压电源(14)电压变化时,压电控制块(12)产生水平方向的位移,改变微米梁(3)的长度,微米梁(3)的长度改变时会产生轴向应力,改变微米梁(3)振动系统的固有频率,起到频率调谐作用。
3.根据权利要求1所述的高频信号放大装置,其特征在于,频率可调谐信号频率放大装置微米梁(3)产生倍频振动,随着微米梁(3)振动的压电薄膜(2)产生电压信号,经高、低通滤波电路(7)滤波后电压信号频率为:
Figure FDA0002320738530000011
式中,
Figure FDA0002320738530000012
Figure FDA0002320738530000013
FN为压电控制块(12)作用于微米梁(3)的轴向力,l为微米梁(3)的长度,E为微米梁(3)的弹性模量,I为微米梁(3)的截面惯性矩,ρ为微米梁(3)的单位长度密度,A为微米梁(3)的截面面积,
Figure FDA0002320738530000014
ξ=4.73,x为微米梁(3)在水平方向上的位置坐标,d表示微分符号,d11为压电控制块(12)的压电常数,h为压电控制块(12)的厚度,U为可调直流电压电源(14)的直流电压。
CN201911307535.2A 2019-12-16 2019-12-16 基础轴向力调谐超谐波共振信号频率放大装置 Pending CN111030632A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911307535.2A CN111030632A (zh) 2019-12-16 2019-12-16 基础轴向力调谐超谐波共振信号频率放大装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911307535.2A CN111030632A (zh) 2019-12-16 2019-12-16 基础轴向力调谐超谐波共振信号频率放大装置

Publications (1)

Publication Number Publication Date
CN111030632A true CN111030632A (zh) 2020-04-17

Family

ID=70210293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911307535.2A Pending CN111030632A (zh) 2019-12-16 2019-12-16 基础轴向力调谐超谐波共振信号频率放大装置

Country Status (1)

Country Link
CN (1) CN111030632A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932671A (zh) * 2019-12-18 2020-03-27 山东理工大学 微梁长度调谐的超谐波共振信号频率放大装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201460A (ja) * 1993-12-08 1995-08-04 Tocco Inc コイル監視装置
CN104158440A (zh) * 2014-09-05 2014-11-19 苏州大学 一种升频式振动能量采集系统及采集方法
CN105207643A (zh) * 2015-09-16 2015-12-30 山东理工大学 一种谐振器纳米梁静电控制装置
CN105515547A (zh) * 2015-12-14 2016-04-20 山东理工大学 谐振器纳米梁平行板静电控制装置及其控制方法
CN107147304A (zh) * 2017-04-27 2017-09-08 山东理工大学 一种超谐波共振的信号频率放大装置
CN110429827A (zh) * 2019-08-14 2019-11-08 山东理工大学 一种超谐波共振信号倍频放大频率调谐装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201460A (ja) * 1993-12-08 1995-08-04 Tocco Inc コイル監視装置
CN104158440A (zh) * 2014-09-05 2014-11-19 苏州大学 一种升频式振动能量采集系统及采集方法
CN105207643A (zh) * 2015-09-16 2015-12-30 山东理工大学 一种谐振器纳米梁静电控制装置
CN105515547A (zh) * 2015-12-14 2016-04-20 山东理工大学 谐振器纳米梁平行板静电控制装置及其控制方法
CN107147304A (zh) * 2017-04-27 2017-09-08 山东理工大学 一种超谐波共振的信号频率放大装置
CN110429827A (zh) * 2019-08-14 2019-11-08 山东理工大学 一种超谐波共振信号倍频放大频率调谐装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932671A (zh) * 2019-12-18 2020-03-27 山东理工大学 微梁长度调谐的超谐波共振信号频率放大装置
CN110932671B (zh) * 2019-12-18 2023-08-04 山东理工大学 微梁长度调谐的超谐波共振信号频率放大装置

Similar Documents

Publication Publication Date Title
CN113098427B (zh) 一种基于mems谐振器耦合振子的声子频率梳生成方法
CN110429827B (zh) 一种超谐波共振信号倍频放大频率调谐装置
Maugin Nonlinear electromechanical effects and applications
CN107147304B (zh) 一种超谐波共振的信号频率放大装置
JP2015525872A5 (zh)
KR101053256B1 (ko) 에너지 하베스터
CN107147370B (zh) 一种基于振动模态耦合的mems振荡器及控制方法
CN111030632A (zh) 基础轴向力调谐超谐波共振信号频率放大装置
US1450246A (en) Piezo-electric resonator
CN112953435B (zh) 一种基于参数泵的mems振荡器
CN117269323B (zh) 一种液体中磁性悬浮物微谐振式质量传感器及检测方法
US6775039B2 (en) Driving circuit for an optical scanner
JPS6019040B2 (ja) 共振素子型力検出器用電気信号伝送装置
CN110932671B (zh) 微梁长度调谐的超谐波共振信号频率放大装置
US1886815A (en) Method and apparatus for generating electrical oscillations
CN107979351B (zh) 一种基于高阶同步的耦合压阻mems振荡器
US8373513B2 (en) Compensated micro/nano-resonator with improved capacitive detection and method for producing same
US20160336941A1 (en) Ultra low power thermally-actuated oscillator and driving circuit thereof
JP4039744B2 (ja) 圧電アクチュエータ
US2094062A (en) Electromechanical impedance
JPS61221584A (ja) 振動波モ−タの駆動回路
Pierce Momentum and energy of waves
CN117318706A (zh) 基于模态耦合和相位控制的振荡器频率稳定性提升系统
US10444267B2 (en) Signal processor
CN114337370B (zh) 一种动态调节频响特性的磁电换能装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200417

WD01 Invention patent application deemed withdrawn after publication