CN111026165A - 基于机载光电系统的瞄准线广域扫描控制方法 - Google Patents

基于机载光电系统的瞄准线广域扫描控制方法 Download PDF

Info

Publication number
CN111026165A
CN111026165A CN201911212276.5A CN201911212276A CN111026165A CN 111026165 A CN111026165 A CN 111026165A CN 201911212276 A CN201911212276 A CN 201911212276A CN 111026165 A CN111026165 A CN 111026165A
Authority
CN
China
Prior art keywords
coordinate system
scanning
angle
line
sight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911212276.5A
Other languages
English (en)
Other versions
CN111026165B (zh
Inventor
刘栋
王惠林
雷亮
陈鸣
杜佩
王冠
刘吉龙
蒋萧村
贺剑
沈宇
杨萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian institute of Applied Optics
Original Assignee
Xian institute of Applied Optics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian institute of Applied Optics filed Critical Xian institute of Applied Optics
Priority to CN201911212276.5A priority Critical patent/CN111026165B/zh
Publication of CN111026165A publication Critical patent/CN111026165A/zh
Application granted granted Critical
Publication of CN111026165B publication Critical patent/CN111026165B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明属于机载光电侦察监视技术领域,具体涉及一种基于机载光电系统的瞄准线广域扫描控制方法。本发明通过转换载机姿态和光电平台角度,结合载机平飞时的速度、高度和扫描起始点,根据传感器帧频、视场角、重叠率等,实时解算出光电平台运动的速度,能够克服载机扰动尤其是航向扰动的影响,对载机偏离航线的三个姿态角进行修正,保证了光电系统进行无缝地理扫描。光电系统中快调反射镜进行反扫补偿,瞄准线步进凝视获得地面连续的多幅图像,结合广域扫描控制流程,并通过图像处理技术拼接成一幅地面广域图像。本方法在机载光电系统实现广域扫描功能的同时,实现了光电系统凝视功能,能够提高光电系统持久侦察监视目标所在区域的能力。

Description

基于机载光电系统的瞄准线广域扫描控制方法
技术领域
本发明属于机载光电侦察监视技术领域,具体涉及一种基于机载光电系统的瞄准线广域扫描控制方法,该方法可以实时控制光电系统对地/海面进行广域无缝地理扫描,从而实现对目标所在区域进行持久侦察监视。
背景技术
当前的信息化战争对目标的侦察和监视提出了更高要求,持续全面精确高效的战区监视和目标侦察是打赢信息化战争的重要条件之一。某侦察监视系统是以有人/无人飞机作为承载平台的光电任务设备,具有覆盖区域宽广、作用距离远、目标精确地理定位、实时侦察等特点,主要作战使命是对敏感区域的战场实施监视和战术侦察,有效、快速的发现目标,并上报精确火控级瞄准信息,引导远程打击武器系统对目标实施精确打击及对毁伤效果进行评估。广域扫描是指通过控制瞄准线的运动,在载机侧向获得地面连续的多幅图像并通过图像处理技术拼接成由多个视频帧组成的一幅地面区域图像,沿载机飞行方向可持续扫描。
中国专利申请CN201010568358.6中介绍了一种运动载体光电设备惯性稳定瞄准线扫描方法,该方法是在不改变光电设备原瞄准线稳定控制结构的前提下,加入扫描控制器实现的,使光电平台的转动速度按照斜坡式的速度输入曲线逐渐变化,可用于机载、舰载、车载光电稳定平台的扫描,该专利采用扇区扫描的方法,没有补偿飞机前向运动,俯仰步进角度没有精确控制,容易形成漏扫。中国科学院长春光学精密机械与物理研究所论文《基于快速反射镜的高精度、宽频带扫描像移补偿技术研究》中介绍了动态扫描凝视成像系统工作原理,扫描指令生成的方法等,其中介绍的广域扫描指令生成推导原理方法与该专利明显不同,且忽略地球自转引起的相对角速度;论文采用的在扫描两端位置回路闭合的方法,工程实际应用时控制精度不高,造成扫描重叠率不一致。中国专利申请一种机载双波段光电广域侦察与跟踪装置中介绍了一种广域扫描功能,该扫描方法实现方位向扇扫或圆周扫描,瞄准线在地面上运动的轨迹是曲线而非直线,未考虑航向扰动造成的影响并且未考虑光电系统在飞机平飞时绕航线转动带来的误差,造成扫描曲线为歪斜的曲线而非垂直于航迹的直线,不利于图像拼接。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:目前光电系统不具备对地面进行大范围无缝地理扫描的问题,其它扫描方法或者容易形成漏扫,或者采用的在扫描两端位置回路闭合的方法在工程实际应用时控制精度不高,造成扫描重叠率不一致;或者瞄准线在地面上运动的轨迹是曲线而非直线,未考虑航向扰动造成的影响且未考虑光电系统在飞机平飞时绕航线转动带来的误差,造成扫描曲线为歪斜的曲线而非垂直于航迹的直线,不利于图像拼接。
(二)技术方案
为解决上述技术问题,本发明提供一种基于机载光电系统的瞄准线广域扫描控制方法,其包括以下步骤:
步骤1:建立地球直角坐标系e、导航坐标系n、载机机体坐标系b、光电系统基座坐标系a、瞄准线坐标系s、航向滤波坐标系LL;某点的经度λ、纬度L、高度h,通过惯导系统测得,用地球直角坐标系e表示为:
x=(RN+h)cos L cosλ
y=(RN+h)cos L sinλ
z=[RN(1-e0)2+h]sin L
其中,RN为卯酉圈半径,e0为地球扁心率;
步骤2:导航坐标系n采用东北天地理坐标系,地球直角坐标系e到导航坐标系n的坐标转换矩阵为:
Figure BDA0002298461660000031
步骤3:载机机体坐标系b,机头方向为y轴,ψ为载机航向角、θ为载机俯仰角、γ为载机横滚角,导航坐标系n到载机机体坐标系b的坐标转换矩阵为:
Figure BDA0002298461660000032
步骤4:光电系统基座坐标系a是由载机机体坐标系b沿y轴旋转180度得到,坐标转换矩阵为:
Figure BDA0002298461660000033
步骤5:瞄准线坐标系s,由光电系统基座坐标系a先沿载机横滚轴转动光电系统横滚角
Figure BDA0002298461660000034
再沿俯仰轴转动光电系统俯仰角β得到,光电系统基座坐标系a到瞄准线坐标系s的坐标转换矩阵为:
Figure BDA0002298461660000035
步骤6:采用以下公式得到地球直角坐标系e到瞄准线坐标系s的转换公式:
Figure BDA0002298461660000041
采用以下公式得到导航坐标系n到瞄准线坐标系s的转换公式:
Figure BDA0002298461660000042
步骤7:航向滤波坐标系LL,航向滤波坐标系LL由导航坐标系n沿z轴旋转α角度得到,α是载机航向角ψ低通滤波得到的值;航向滤波坐标系绕导航坐标系缓慢旋转,导航坐标系n到航向滤波坐标系LL的坐标转换矩阵为:
Figure BDA0002298461660000043
由于
Figure BDA0002298461660000044
采用以下公式得到航向滤波坐标系到瞄准线坐标系的转换公式:
Figure BDA0002298461660000045
Figure BDA0002298461660000046
采用以下公式计算在航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000047
Figure BDA0002298461660000048
在左端扫描起始点,在航向滤波坐标系下,瞄准线横滚角为
Figure BDA0002298461660000049
在右端扫描结束点,在航向滤波坐标系下,瞄准线横滚角为
Figure BDA00022984616600000410
步骤8:设目标T是瞄准线与地球表面的交点,T的速度与两个因素相关,一是瞄准线的转动,二是载机的平动;首先计算航向滤波坐标系下瞄准线的转动引起的目标运动速度,满足哥氏定理:
Figure BDA00022984616600000411
其中,
Figure BDA0002298461660000051
为航向滤波坐标系LL下瞄准线向量;
rs=[0 0 R]T
Figure BDA0002298461660000052
向量ωs为瞄准线在瞄准线坐标系s下转动的角速度向量;
用向量
Figure BDA0002298461660000053
表示瞄准线在地球直角坐标系e下的坐标,则:
Figure BDA0002298461660000054
其中,
Figure BDA0002298461660000055
用向量
Figure BDA0002298461660000056
表示载机AA在地球坐标系的坐标,设瞄准线同地面交点T用向量表示为
Figure BDA0002298461660000057
并满足:
Figure BDA0002298461660000058
其中,a=Re为地球长半径,b为地球短半径;
由于
Figure BDA0002298461660000059
通过上式可计算出rs,即载机AA与瞄准线同地面交点T的距离为R;
设ωs=[ωx ωy ωz]T,则
Figure BDA00022984616600000510
则航向滤波坐标系下转动引起的目标速度
Figure BDA00022984616600000511
Figure BDA00022984616600000512
VE、VN分别表示东、北向速度,ν为载机飞行速度,VN=v*cosψ,VE=v*sinψ,航向滤波坐标系下平动引起的目标速度
Figure BDA00022984616600000513
可表示为
Figure BDA00022984616600000514
所以目标在航向滤波坐标系下的运动速度VLL
Figure BDA0002298461660000061
步骤9:在广域扫描前,系统任务给出扫描区域起始点、载机飞行的高度、速度及航向;根据广域扫描原理,图像运动角速度ω为:
ω=φr(1-overlap)f
其中,φr为电视横滚视场角,overlap为重叠率,f为电视传感器帧频;
扫描时间t通过以下方法计算:
Figure BDA00022984616600000611
RL为左端扫描起始点载机与瞄准线在地面交点之间的距离,φp为电视传感器俯仰视场角,ts为伺服加减速占用时间;
步骤10:设载机在飞行过程中,偏离航线的横滚角为Δr,偏离航线的俯仰角为Δp,偏离航线的航向角为Δψ;在航向滤波坐标系下瞄准线横滚角为
Figure BDA0002298461660000062
俯仰角为
Figure BDA0002298461660000063
在广域扫描过程中,俯仰角
Figure BDA0002298461660000064
俯仰角速度
Figure BDA0002298461660000065
从瞄准线坐标系向量
Figure BDA0002298461660000066
到绕载机航线旋转航向角Δψ、俯仰角Δp、横滚角Δr而得到的向量
Figure BDA0002298461660000067
的转换关系为:
设,矩阵
Figure BDA0002298461660000068
矩阵
Figure BDA0002298461660000069
矩阵
Figure BDA00022984616600000610
则:
Figure BDA0002298461660000071
故,
Figure BDA0002298461660000072
由于某光电系统采用横滚和俯仰两轴控制,因此只需计算ωx2和ωy2
步骤11:为使在航向滤波坐标系下,扫描方向在水平面内垂直于载机经滤波且经步骤10修正后的航向,有:
Figure BDA0002298461660000073
根据步骤8结论有:
Figure BDA0002298461660000074
其中,
Figure BDA0002298461660000075
为R的导数;
所以
Figure BDA0002298461660000076
Figure BDA0002298461660000077
Figure BDA0002298461660000078
Figure BDA0002298461660000079
ωy=ωcosΔψcosΔp-(C11VE/R+C12VN/R)
步骤12:设
Figure BDA0002298461660000081
按照以下公式求取惯性速率指令
Figure BDA0002298461660000082
Figure BDA0002298461660000083
RM=Re*(1-2e0+3e0sin2L)
RN=Re*(1+e0sin2L)
其中,ωie表示地球自转角速度,RM为子午圈半径、RN卯酉圈半径,e0表示地球扁率,L表示纬度;
步骤13:计算一个条幅包含的帧幅数N和扫描条幅之间的步进角度。
N=t*f,N取整数;
在广域扫描过程中,近端步进角度为
θL=φp(1-overlap)
远端步进角度为
θR=RL/RRL
其中,RR为右端扫描结束点载机与瞄准线在地面交点之间的距离;
步骤14:当载机快到达扫描区域时,控制系统调用地理指向工作模式,使瞄准线提前指向该位置,在广域扫描开始时,退出地理指向模式,进入广域扫描模式;根据步骤12计算的瞄准线控制指令
Figure BDA0002298461660000084
Figure BDA0002298461660000085
使光电系统横滚和俯仰开始运动。由于对载机飞行引起的前向运动进行了补偿,瞄准线在俯仰方向上几乎不动,在横滚方向上相对地面开始从0加速到ω,当角速度ω达到匀速后,计算瞄准线横滚角度rlos_L,控制计算机给快调反射镜发指令进行反扫,并在快调反射镜进入稳态后触发电视传感器曝光而获得一幅图像,依次进行N次,快调反射镜不再反扫并停在零位,同时计算在右端扫描结束点航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000091
此时,使ω匀减速到0;
步骤15:使横滚角速度从ω减速到0的过程中,使俯仰按照步骤13的角度θR向前步进;为消除载机姿态变化的影响,该角度的控制在惯性坐标系下完成,由于惯性坐标系没有角度测量传感器,通过瞄准线的速度闭环稳定控制完成惯性坐标系的角度控制;具体方法是将稳定控制回路的积分静态变量加上步进角度进行控制,稳定控制回路为消除积分器的误差,必然会调转平台运动,平台运动被陀螺敏感到并在积分器内积分为角位置信号,由于负反馈作用,陀螺积分的角度信号与步进角度方向相反,当两者相等时,系统重新回到稳态工作点,而瞄准线实际运动的角度恰好为步进角度;
步骤16,此时,瞄准线调转到了下一条幅的扫描开始位置。在横滚方向上瞄准线相对地面开始以最大加速度从0加速到-ω,同时不断计算瞄准线的横滚角度;当角速度-ω达到匀速后,并且当航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000092
与上一条幅最后一幅图像右端扫描结束点航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000093
相等时,触发快调反射镜反扫,并在快调反射镜进入稳态后触发电视传感器曝光而获得一幅图像,依次进行N次,快调反射镜不再反扫并停在零位;使横滚相对地面角速度从-ω匀减速到0,俯仰向前步进角度θL;同理,再下一条扫描时,当航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000094
与上一条幅最后一幅图像左端扫描起始点航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000095
相等时,触发快调反射镜反扫;按照上述控制方法循环进行下去,直到系统退出广域扫描任务为止。
其中,所述步骤1中,RN=Re*(1+e0sin2L)。
其中,所述Re为地球长半轴。
其中,所述
Figure BDA0002298461660000101
其中,所述Rp为地球短半轴。
其中,所述地球扁心率e0=1/298.257=0.00335281。
其中,所述步骤7中,当载机近似匀速直线平飞时,α=ψ。
其中,所述步骤8中,a=Re为地球长半径,b=a(1-e0)为地球短半径,e0为地球扁心率。
其中,所述载机为有人飞机。
其中,所述载机为无人飞机。
(三)有益效果
为了解决现有技术存在的问题,本发明提出一种机载光电系统的瞄准线广域扫描控制方法,根据建立的广域扫描与飞机飞行同步控制策略,瞄准线在扫描近端和远端步进不同的角度以保证图像两端重叠率一致,对航向滤波并且对载机偏离航线的三个姿态角进行修正,保证了光电系统进行无缝地理扫描。结合图像拼接技术,获得了广域持久监视区域的大范围态势感知图。
与现有技术相比较,本发明具备如下有益效果:
(1)本发明根据实时采集的惯导数据和光电平台角度数据,通过坐标转换和解算,实时对飞机的前向运动进行补偿,消除载机横滚和俯仰运动运动对广域扫描的影响。根据建立的广域扫描与飞机飞行同步控制策略,瞄准线在扫描近端和远端步进不同的角度以保证图像两端重叠率一致,保证了光电系统进行无缝地理扫描。结合图像拼接技术,获得了广域持久监视区域的大范围态势感知图。
(2)本发明通过利用航向滤波和对载机偏离航线的三个姿态角进行修正,克服某光电系统采用横滚和俯仰两轴控制,容易受偏离航线扰动影响的缺点,能够进行大范围无缝地理扫描。
(3)本发明无需重新设计软件流程,即可完成对目标的凝视侦察功能,方便操作员在空中完成其他操作。本发明在现有类似光电系统的基础上不需要增加任何硬件资源,只需要增加相关软件模块并稍作修改便可实现机载光电系统的功能升级。
附图说明
图1是广域扫描控制方法的流程图。
图2是广域扫描控制方法过程示意图。
具体实施方式
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
为解决上述技术问题,本发明提供一种基于机载光电系统的瞄准线广域扫描控制方法,其包括以下步骤:
步骤1:建立地球直角坐标系e、导航坐标系n、载机机体坐标系b、光电系统基座坐标系a、瞄准线坐标系s、航向滤波坐标系LL;某点的经度λ、纬度L、高度h,通过惯导系统测得,用地球直角坐标系e表示为:
x=(RN+h)cos L cosλ
y=(RN+h)cos L sinλ
z=[RN(1-e0)2+h]sin L
其中,RN为卯酉圈半径,e0为地球扁心率;
步骤2:导航坐标系n采用东北天地理坐标系,地球直角坐标系e到导航坐标系n的坐标转换矩阵为:
Figure BDA0002298461660000111
步骤3:载机机体坐标系b,机头方向为y轴,ψ为载机航向角、θ为载机俯仰角、γ为载机横滚角,导航坐标系n到载机机体坐标系b的坐标转换矩阵为:
Figure BDA0002298461660000121
步骤4:光电系统基座坐标系a是由载机机体坐标系b沿y轴旋转180度得到,坐标转换矩阵为:
Figure BDA0002298461660000122
步骤5:瞄准线坐标系s,由光电系统基座坐标系a先沿载机横滚轴转动光电系统横滚角
Figure BDA0002298461660000123
再沿俯仰轴转动光电系统俯仰角β得到,光电系统基座坐标系a到瞄准线坐标系s的坐标转换矩阵为:
Figure BDA0002298461660000124
步骤6:采用以下公式得到地球直角坐标系e到瞄准线坐标系s的转换公式:
Figure BDA0002298461660000125
采用以下公式得到导航坐标系n到瞄准线坐标系s的转换公式:
Figure BDA0002298461660000126
步骤7:航向滤波坐标系LL,航向滤波坐标系LL由导航坐标系n沿z轴旋转α角度得到,α是载机航向角ψ低通滤波得到的值;航向滤波坐标系绕导航坐标系缓慢旋转,导航坐标系n到航向滤波坐标系LL的坐标转换矩阵为:
Figure BDA0002298461660000131
由于
Figure BDA0002298461660000132
采用以下公式得到航向滤波坐标系到瞄准线坐标系的转换公式:
Figure BDA0002298461660000133
Figure BDA0002298461660000134
采用以下公式计算在航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000135
Figure BDA0002298461660000136
在左端扫描起始点,在航向滤波坐标系下,瞄准线横滚角为
Figure BDA0002298461660000137
在右端扫描结束点,在航向滤波坐标系下,瞄准线横滚角为
Figure BDA0002298461660000138
步骤8:设目标T是瞄准线与地球表面的交点,T的速度与两个因素相关,一是瞄准线的转动,二是载机的平动;首先计算航向滤波坐标系下瞄准线的转动引起的目标运动速度,满足哥氏定理:
Figure BDA0002298461660000139
其中,
Figure BDA00022984616600001310
为航向滤波坐标系LL下瞄准线向量;
Figure BDA00022984616600001311
向量ωs为瞄准线在瞄准线坐标系s下转动的角速度向量;
用向量
Figure BDA00022984616600001312
表示瞄准线在地球直角坐标系e下的坐标,则:
Figure BDA00022984616600001313
其中,
Figure BDA00022984616600001314
用向量
Figure BDA00022984616600001315
表示载机AA在地球坐标系的坐标,设瞄准线同地面交点T用向量表示为
Figure BDA00022984616600001316
并满足:
Figure BDA00022984616600001317
其中,a=Re为地球长半径,b为地球短半径;
由于
Figure BDA0002298461660000141
通过上式可计算出rs,即载机AA与瞄准线同地面交点T的距离为R;
设ωs=[ωx ωy ωz]T,则
Figure BDA0002298461660000142
则航向滤波坐标系下转动引起的目标速度
Figure BDA0002298461660000143
Figure BDA0002298461660000144
VE、VN分别表示东、北向速度,ν为载机飞行速度,VN=v*cosψ,VE=v*sinψ,航向滤波坐标系下平动引起的目标速度
Figure BDA0002298461660000145
可表示为
Figure BDA0002298461660000146
所以目标在航向滤波坐标系下的运动速度VLL
Figure BDA0002298461660000147
步骤9:在广域扫描前,系统任务给出扫描区域起始点、载机飞行的高度、速度及航向;根据广域扫描原理,图像运动角速度ω为:
ω=φr(1-overlap)f
其中,φr为电视横滚视场角,overlap为重叠率,f为电视传感器帧频;
扫描时间t通过以下方法计算:
Figure BDA0002298461660000148
RL为左端扫描起始点载机与瞄准线在地面交点之间的距离,φp为电视传感器俯仰视场角,ts为伺服加减速占用时间;
步骤10:设载机在飞行过程中,偏离航线的横滚角为Δr,偏离航线的俯仰角为Δp,偏离航线的航向角为Δψ;在航向滤波坐标系下瞄准线横滚角为
Figure BDA0002298461660000151
俯仰角为
Figure BDA0002298461660000152
在广域扫描过程中,俯仰角
Figure BDA0002298461660000153
俯仰角速度
Figure BDA0002298461660000154
从瞄准线坐标系向量
Figure BDA0002298461660000155
到绕载机航线旋转航向角Δψ、俯仰角Δp、横滚角Δr而得到的向量
Figure BDA0002298461660000156
的转换关系为:
设,矩阵
Figure BDA0002298461660000157
矩阵
Figure BDA0002298461660000158
矩阵
Figure BDA0002298461660000159
则:
Figure BDA00022984616600001510
故,
Figure BDA00022984616600001511
由于某光电系统采用横滚和俯仰两轴控制,因此只需计算ωx2和ωy2
步骤11:为使在航向滤波坐标系下,扫描方向在水平面内垂直于载机经滤波且经步骤10修正后的航向,有:
Figure BDA0002298461660000161
根据步骤8结论有:
Figure BDA0002298461660000162
其中,
Figure BDA0002298461660000163
为R的导数;
所以
Figure BDA0002298461660000164
Figure BDA0002298461660000165
Figure BDA0002298461660000166
Figure BDA0002298461660000167
ωy=ωcosΔψcosΔp-(C11VE/R+C12VN/R)
步骤12:设
Figure BDA0002298461660000168
按照以下公式求取惯性速率指令
Figure BDA0002298461660000169
Figure BDA00022984616600001610
RM=Re*(1-2e0+3e0sin2L)
RN=Re*(1+e0sin2L)
其中,ωie表示地球自转角速度,RM为子午圈半径、RN卯酉圈半径,e0表示地球扁率,L表示纬度;
步骤13:计算一个条幅包含的帧幅数N和扫描条幅之间的步进角度。
N=t*f,N取整数;
在广域扫描过程中,近端步进角度为
θL=φp(1-overlap)
远端步进角度为
θR=RL/RRL
其中,RR为右端扫描结束点载机与瞄准线在地面交点之间的距离;
步骤14:当载机快到达扫描区域时,控制系统调用地理指向工作模式,使瞄准线提前指向该位置,在广域扫描开始时,退出地理指向模式,进入广域扫描模式;根据步骤12计算的瞄准线控制指令
Figure BDA0002298461660000171
Figure BDA0002298461660000172
使光电系统横滚和俯仰开始运动。由于对载机飞行引起的前向运动进行了补偿,瞄准线在俯仰方向上几乎不动,在横滚方向上相对地面开始从0加速到ω,当角速度ω达到匀速后,计算瞄准线横滚角度rlos_L,控制计算机给快调反射镜发指令进行反扫,并在快调反射镜进入稳态后触发电视传感器曝光而获得一幅图像,依次进行N次,快调反射镜不再反扫并停在零位,同时计算在右端扫描结束点航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000173
此时,使ω匀减速到0;
步骤15:使横滚角速度从ω减速到0的过程中,使俯仰按照步骤13的角度θR向前步进;为消除载机姿态变化的影响,该角度的控制在惯性坐标系下完成,由于惯性坐标系没有角度测量传感器,通过瞄准线的速度闭环稳定控制完成惯性坐标系的角度控制;具体方法是将稳定控制回路的积分静态变量加上步进角度进行控制,稳定控制回路为消除积分器的误差,必然会调转平台运动,平台运动被陀螺敏感到并在积分器内积分为角位置信号,由于负反馈作用,陀螺积分的角度信号与步进角度方向相反,当两者相等时,系统重新回到稳态工作点,而瞄准线实际运动的角度恰好为步进角度;
步骤16,此时,瞄准线调转到了下一条幅的扫描开始位置。在横滚方向上瞄准线相对地面开始以最大加速度从0加速到-ω,同时不断计算瞄准线的横滚角度;当角速度-ω达到匀速后,并且当航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000181
与上一条幅最后一幅图像右端扫描结束点航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000182
相等时,触发快调反射镜反扫,并在快调反射镜进入稳态后触发电视传感器曝光而获得一幅图像,依次进行N次,快调反射镜不再反扫并停在零位;使横滚相对地面角速度从-ω匀减速到0,俯仰向前步进角度θL;同理,再下一条扫描时,当航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000183
与上一条幅最后一幅图像左端扫描起始点航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000184
相等时,触发快调反射镜反扫;按照上述控制方法循环进行下去,直到系统退出广域扫描任务为止。
其中,所述步骤1中,RN=Re*(1+e0sin2L)。
其中,所述Re为地球长半轴。
其中,所述
Figure BDA0002298461660000185
其中,所述Rp为地球短半轴。
其中,所述地球扁心率e0=1/298.257=0.00335281。
其中,所述步骤7中,当载机近似匀速直线平飞时,α=ψ。
其中,所述步骤8中,a=Re为地球长半径,b=a(1-e0)为地球短半径,e0为地球扁心率。
其中,所述载机为有人飞机。
其中,所述载机为无人飞机。
实施例1
本实施例是针对基于某光电系统的瞄准线广域扫描控制方法,该方法是通过机载光电系统中的广域扫描软件包实现的。在载机平飞过程中,保持近似匀速直线飞行,广域扫描区域一般位于载机飞行航线的侧下方,瞄准线俯仰角几乎为零度,如图2所示。当光电系统接到上级系统发出的广域扫描指令时,广域扫描软件包将根据图1所示的流程完成以下解算过程。
第一步,设在匀速扫描左侧起始点飞机飞行的高度h=5km、速度v=220km/h,航向ψ=45°、横滚角γ=0.452°、俯仰角θ=-0.459°,飞机的经度λ=108.68912°,纬度L=34.52168°。光电系统横滚角
Figure BDA0002298461660000191
光电系统俯仰角β=0.5°。
因Re=6378137m,e0=0.00335281,L=34.52168°,根据以下公式计算RN
RN=Re*(1+e0sin2L)
本优选实施例中,计算可得:
RN=6385005m
再根据惯导系统测得的飞机的经度λ、纬度L、高度h,地球长半轴Re、地球扁心率e0,根据以下公式可计算飞机在地球直角坐标系下的坐标值:
x=(RN+h)cos L cosλ
y=(RN+h)cos L sinλ
z=[RN(1-e0)2+h]sin L
本优选实施例中,飞机在地球直角坐标系下的具体坐标值数据是:
x=-1687016
y=4987194
z=3597107
第二步,根据惯性导航系统输出的飞机经度λ,纬度L,用以下公式计算从地球直角坐标系到导航坐标系的转换矩阵
Figure BDA0002298461660000201
Figure BDA0002298461660000202
本优选实施例中,计算可得:
Figure BDA0002298461660000203
第三步,根据惯性导航系统输出的飞机航向角ψ、横滚角γ、俯仰角θ,用以下公式计算从导航坐标系到飞机机体坐标系的转换矩阵
Figure BDA0002298461660000204
Figure BDA0002298461660000205
本优选实施例中,计算可得:
Figure BDA0002298461660000206
第四步,基座坐标系a是由飞机机体坐标系沿y轴旋转180度得到,坐标转换矩阵为:
Figure BDA0002298461660000207
第五步,根据光电系统横滚角和俯仰角,用以下公式计算从基座坐标系到瞄准线坐标系的转换矩阵
Figure BDA0002298461660000208
Figure BDA0002298461660000211
本优选实施例中,计算可得:
Figure BDA0002298461660000212
第六步,根据第三步计算的转换矩阵
Figure BDA0002298461660000213
第四步中计算的转换矩阵
Figure BDA0002298461660000214
和转换矩阵
Figure BDA0002298461660000215
用以下公式计算转换矩阵
Figure BDA0002298461660000216
Figure BDA0002298461660000217
本优选实施例中,计算可得:
Figure BDA0002298461660000218
故C11=-0.34916298、C12=0.35896962、C21=0.7016911、C22=0.71237373
再根据第二步计算的转换矩阵
Figure BDA0002298461660000219
第三步计算的转换矩阵
Figure BDA00022984616600002110
第四步中计算的转换矩阵
Figure BDA00022984616600002111
和转换矩阵
Figure BDA00022984616600002112
用以下公式计算转换矩阵
Figure BDA00022984616600002113
Figure BDA00022984616600002114
本优选实施例中,计算可得:
Figure BDA00022984616600002115
第七步,根据滤波后航向角α=ψ,计算从导航坐标系到航向滤波坐标系的转换矩阵
Figure BDA00022984616600002116
用以下公式计算转换矩阵
Figure BDA00022984616600002117
Figure BDA0002298461660000221
本优选实施例中,计算可得:
Figure BDA0002298461660000222
采用以下算法得到航向滤波坐标系到瞄准线坐标系的转换矩阵
Figure BDA0002298461660000223
Figure BDA0002298461660000224
本优选实施例中,计算可得:
Figure BDA0002298461660000225
故,D31=-0.86557325,D33=-0.50062032。
采用以下公式计算
Figure BDA0002298461660000226
Figure BDA0002298461660000227
本优选实施例中,计算可得:
Figure BDA0002298461660000228
故在左侧扫描起始点,航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000229
同理可求得,在扫描右侧时,航向滤波坐标系下瞄准线横滚角
Figure BDA00022984616600002210
第八步,根据地球长半径Re、地球扁心率e0,采用以下公式分别计算a、b:
a=Re
b=a(1-e0)
本优选实施例中,计算可得:
a=Re=6378137
b=a(1-e0)=6356752
根据第一步计算的地球直角坐标系下的坐标值,第六步计算的转换矩阵
Figure BDA0002298461660000231
采用以下公式计算R:
Figure BDA0002298461660000232
Figure BDA0002298461660000233
又因
Figure BDA0002298461660000234
Figure BDA0002298461660000235
Figure BDA0002298461660000236
故,
Figure BDA0002298461660000237
因此,
Figure BDA0002298461660000238
本优选实施例中,R取较小值,计算可得:
R=10000m
根据第一步的假设,即RL=R=10000m。
第九步,某光电系统电视视场为0.8°×0.6°,即φr=0.8°,φp=0.6°,重叠率overlap=0.2,电视帧频f=30HZ。系统加减速占用时间ts=0.5s。根据飞机飞行速度v和第八步计算结果RL,采用以下公式计算ω和t:
ω=φr(1-overlap)f
Figure BDA0002298461660000241
本优选实施例中,计算可得:
ω=19.2°/s
t=0.87s
第十步,设飞机在飞行过程中,偏离航线的横滚角为Δr=-0.5°,偏离航线的俯仰角为Δp=0.8°,偏离航线的航向角为Δψ=1.5°,根据第七步计算的
Figure BDA0002298461660000242
第九步计算的ω,采用以下公式计算
Figure BDA0002298461660000243
本优选实施例中,计算可得:
ωx2=0.4862°/s
ωy2=19.1915°/s
第十一步,根据以下公式分别计算VN、VE
VN=v*cosψ
VE=v*sinψ
本优选实施例中,计算可得:
VN=43.206m/s
VE=43.206m/s
再根据第六步中获得的转换系数C11、C12、C21、C22,第七步计算的
Figure BDA0002298461660000244
第八步计算的距离R,第十步计算的ωx2、ωy2及以上步骤计算的VN、VE,用以下公式分别计算在左端起始点开始扫描时,光电平台俯仰和横滚角速度:
Figure BDA0002298461660000251
ωy=ωcosΔψcosΔp-(C11VE/R+C12VN/R)=ωy2-(C11VE/R+C12VN/R)
本优选实施例中,计算可得:
ωx=-0.136°/s
ωy=19.189°/s
同理可得,光电平台在扫描时任意时刻的俯仰和横滚角速度。
第十二步,因e0=0.00335281,Re=6378137m,L=34.52168°,ωie=0.004178°/s,根据以下公式计算RM
RM=Re*(1-2e0+3e0sin2L)
本优选实施例中,计算可得:
RM=6355972m
Figure BDA0002298461660000252
用以下公式计算
Figure BDA0002298461660000253
Figure BDA0002298461660000254
由于以上公式第二项值太小,在工程实际中,可以忽略,故本优选实施例中,计算可得:
Figure BDA0002298461660000255
Figure BDA0002298461660000256
第十三步,计算一个条幅包含的帧幅数N并取整数,根据以下公式计算N:
N=t*f
本优选实施例中,计算可得:
N=26
计算近端步进角度,根据以下公式计算θL
θL=φp(1-overlap)
本优选实施例中,计算可得:
θL=0.48°
设扫描到右端时,载机飞行的高度h=5km、速度v=220km/h,航向ψ=45.1°、横滚角γ=-0.352°、俯仰角θ=-0.559°,飞机所在点的经度λ=108.68953°,纬度L=34.52209°。光电平台横滚角
Figure BDA0002298461660000262
俯仰角β=0.5°,重复第一步至第八步,可计算出RR=21667m。
计算远端步进角度,根据以下公式计算θR
θR=RL/RRL
本优选实施例中,计算可得:
θR=0.221°
第十四步,当飞机快到达扫描区域时,控制系统调用地理指向工作模式,使瞄准线提前指向地理指向点,在广域扫描开始时,退出地理指向模式,进入广域扫描模式。根据第十二步实时计算的瞄准线控制指令
Figure BDA0002298461660000261
使光电系统横滚和俯仰开始运动。由于对飞机飞行引起的前向运动进行了补偿,瞄准线在俯仰方向上几乎不动,在横滚方向上相对地面开始从0加速到ω,当角速度达到匀速后,计算航向滤波坐标系下瞄准线横滚角度
Figure BDA0002298461660000271
控制计算机给快调反射镜发指令进行反扫,并在快调反射镜进入稳态后触发电视传感器曝光而获得一幅图像,依次进行N=26次,快调反射镜不再反扫并停在零位,同时计算航向滤波坐标系下瞄准线横滚角度
Figure BDA0002298461660000272
此时,使角速度匀减速到0。
第十五步,使横滚角速度从ω匀减速到0的过程中,使俯仰按照第十三步计算的角度θR=0.221°向前步进。为消除飞机姿态变化的影响,该角度的控制在惯性坐标系下完成,由于惯性坐标系没有角度测量传感器,通过瞄准线的速度闭环稳定控制完成惯性坐标系的角度控制。具体方法是将稳定控制回路的积分静态变量加上步进角度进行控制,稳定控制回路为消除积分器的误差,必然会调转平台运动,平台运动被陀螺敏感到并在积分器内积分为角位置信号,由于负反馈作用,陀螺积分的角度信号与步进角度方向相反,当两者相等时,系统重新回到稳态工作点,而瞄准线实际运动的角度恰好为步进角度。
第十六步,此时,瞄准线调转到了下一条幅的扫描开始位置。在横滚方向上瞄准线相对地面开始以最大加速度从0加速到-ω,同时不断计算在航向滤波坐标系下瞄准线的横滚角度
Figure BDA0002298461660000273
当角速度-ω达到匀速后,并且当横滚角度
Figure BDA0002298461660000274
与上一条幅最后一幅图像瞄准线横滚角度
Figure BDA0002298461660000275
相等时,触发快调反射镜反扫,并在快调反射镜进入稳态后触发电视传感器曝光而获得一幅图像,依次进行N=26次,快调反射镜不再反扫并停在零位。使横滚相对地面角速度从-ω匀减速到0,俯仰向前步进角度θL=0.48°。同理,再下一条扫描时,当在航向滤波坐标系下瞄准线横滚角
Figure BDA0002298461660000276
与上一条幅最后一幅图像瞄准线横滚角度
Figure BDA0002298461660000281
相等时,触发快调反射镜反扫,其余过程与以上步骤相同。按照上述控制方法循环进行下去,直到系统退出广域扫描任务为止。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

1.一种基于机载光电系统的瞄准线广域扫描控制方法,其特征在于,其包括以下步骤:
步骤1:建立地球直角坐标系e、导航坐标系n、载机机体坐标系b、光电系统基座坐标系a、瞄准线坐标系s、航向滤波坐标系LL;
Figure FDA0002298461650000011
其中,RN为卯酉圈半径,e0为地球扁心率;
步骤2:导航坐标系n采用东北天地理坐标系,地球直角坐标系e到导航坐标系n的坐标转换矩阵为:
Figure FDA0002298461650000012
步骤3:载机机体坐标系b,机头方向为y轴,ψ为载机航向角、θ为载机俯仰角、γ为载机横滚角,导航坐标系n到载机机体坐标系b的坐标转换矩阵为:
Figure FDA0002298461650000013
步骤4:光电系统基座坐标系a是由载机机体坐标系b沿y轴旋转180度得到,坐标转换矩阵为:
Figure FDA0002298461650000021
步骤5:瞄准线坐标系s,由光电系统基座坐标系a先沿载机横滚轴转动光电系统横滚角
Figure FDA0002298461650000022
再沿俯仰轴转动光电系统俯仰角β得到,光电系统基座坐标系a到瞄准线坐标系s的坐标转换矩阵为:
Figure FDA0002298461650000023
步骤6:采用以下公式得到地球直角坐标系e到瞄准线坐标系s的转换公式:
Figure FDA0002298461650000024
采用以下公式得到导航坐标系n到瞄准线坐标系s的转换公式:
Figure FDA0002298461650000025
步骤7:航向滤波坐标系LL,航向滤波坐标系LL由导航坐标系n沿z轴旋转α角度得到,α是载机航向角ψ低通滤波得到的值;航向滤波坐标系绕导航坐标系缓慢旋转,导航坐标系n到航向滤波坐标系LL的坐标转换矩阵为:
Figure FDA0002298461650000026
由于
Figure FDA0002298461650000027
采用以下公式得到航向滤波坐标系到瞄准线坐标系的转换公式:
Figure FDA0002298461650000028
Figure FDA0002298461650000029
采用以下公式计算在航向滤波坐标系下瞄准线横滚角
Figure FDA00022984616500000210
Figure FDA0002298461650000031
在左端扫描起始点,在航向滤波坐标系下,瞄准线横滚角为
Figure FDA0002298461650000032
在右端扫描结束点,在航向滤波坐标系下,瞄准线横滚角为
Figure FDA0002298461650000033
步骤8:设目标T是瞄准线与地球表面的交点,T的速度与两个因素相关,一是瞄准线的转动,二是载机的平动;首先计算航向滤波坐标系下瞄准线的转动引起的目标运动速度,满足哥氏定理:
Figure FDA0002298461650000034
其中,
Figure FDA0002298461650000035
为航向滤波坐标系LL下瞄准线向量;
rs=[0 0 R]T
Figure FDA0002298461650000036
向量ωs为瞄准线在瞄准线坐标系s下转动的角速度向量;
用向量
Figure FDA0002298461650000037
表示瞄准线在地球直角坐标系e下的坐标,则:
Figure FDA0002298461650000038
其中,
Figure FDA0002298461650000039
用向量
Figure FDA00022984616500000310
表示载机AA在地球坐标系的坐标,设瞄准线同地面交点T用向量表示为
Figure FDA00022984616500000311
并满足:
Figure FDA00022984616500000312
其中,a=Re为地球长半径,b为地球短半径;
由于
Figure FDA00022984616500000313
通过上式可计算出rs,即载机AA与瞄准线同地面交点T的距离为R;
设ωs=[ωx ωy ωz]T,则
Figure FDA00022984616500000314
则航向滤波坐标系下转动引起的目标速度
Figure FDA00022984616500000315
Figure FDA0002298461650000041
VE、VN分别表示东、北向速度,ν为载机飞行速度,VN=v*cosψ,VE=v*sinψ,航向滤波坐标系下平动引起的目标速度
Figure FDA0002298461650000042
可表示为
Figure FDA0002298461650000043
所以目标在航向滤波坐标系下的运动速度VLL
Figure FDA0002298461650000044
步骤9:在广域扫描前,系统任务给出扫描区域起始点、载机飞行的高度、速度及航向;根据广域扫描原理,图像运动角速度ω为:
ω=φr(1-overlap)f
其中,φr为电视横滚视场角,overlap为重叠率,f为电视传感器帧频;
扫描时间t通过以下方法计算:
Figure FDA0002298461650000045
RL为左端扫描起始点载机与瞄准线在地面交点之间的距离,φp为电视传感器俯仰视场角,ts为伺服加减速占用时间;
步骤10:设载机在飞行过程中,偏离航线的横滚角为Δr,偏离航线的俯仰角为Δp,偏离航线的航向角为Δψ;在航向滤波坐标系下瞄准线横滚角为
Figure FDA0002298461650000046
俯仰角为
Figure FDA0002298461650000047
在广域扫描过程中,俯仰角
Figure FDA0002298461650000048
俯仰角速度
Figure FDA0002298461650000049
从瞄准线坐标系向量
Figure FDA00022984616500000410
到绕载机航线旋转航向角Δψ、俯仰角Δp、横滚角Δr而得到的向量
Figure FDA00022984616500000411
的转换关系为:
设,矩阵
Figure FDA0002298461650000051
矩阵
Figure FDA0002298461650000052
矩阵
Figure FDA0002298461650000053
则:
Figure FDA0002298461650000054
故,
Figure FDA0002298461650000055
由于某光电系统采用横滚和俯仰两轴控制,因此只需计算ωx2和ωy2
步骤11:为使在航向滤波坐标系下,扫描方向在水平面内垂直于载机经滤波且经步骤10修正后的航向,有:
Figure FDA0002298461650000056
根据步骤8结论有:
Figure FDA0002298461650000057
其中,
Figure FDA0002298461650000058
为R的导数;
所以
Figure FDA0002298461650000059
Figure FDA0002298461650000061
Figure FDA0002298461650000062
Figure FDA0002298461650000063
ωy=ωcosΔψcosΔp-(C11VE/R+C12VN/R)
步骤12:设
Figure FDA0002298461650000064
按照以下公式求取惯性速率指令
Figure FDA0002298461650000065
Figure FDA0002298461650000066
RM=Re*(1-2e0+3e0 sin2 L)
RN=Re*(1+e0 sin2 L)
其中,ωie表示地球自转角速度,RM为子午圈半径、RN卯酉圈半径,e0表示地球扁率,L表示纬度;
步骤13:计算一个条幅包含的帧幅数N和扫描条幅之间的步进角度。
N=t*f,N取整数;
在广域扫描过程中,近端步进角度为
θL=φp(1-overlap)
远端步进角度为
θR=RL/RRL
其中,RR为右端扫描结束点载机与瞄准线在地面交点之间的距离;
步骤14:当载机快到达扫描区域时,控制系统调用地理指向工作模式,使瞄准线提前指向该位置,在广域扫描开始时,退出地理指向模式,进入广域扫描模式;根据步骤12计算的瞄准线控制指令
Figure FDA0002298461650000071
Figure FDA0002298461650000072
使光电系统横滚和俯仰开始运动。由于对载机飞行引起的前向运动进行了补偿,瞄准线在俯仰方向上几乎不动,在横滚方向上相对地面开始从0加速到ω,当角速度ω达到匀速后,计算瞄准线横滚角度rlos_L,控制计算机给快调反射镜发指令进行反扫,并在快调反射镜进入稳态后触发电视传感器曝光而获得一幅图像,依次进行N次,快调反射镜不再反扫并停在零位,同时计算在右端扫描结束点航向滤波坐标系下瞄准线横滚角
Figure FDA0002298461650000073
此时,使ω匀减速到0;
步骤15:使横滚角速度从ω减速到0的过程中,使俯仰按照步骤13的角度θR向前步进;为消除载机姿态变化的影响,该角度的控制在惯性坐标系下完成,由于惯性坐标系没有角度测量传感器,通过瞄准线的速度闭环稳定控制完成惯性坐标系的角度控制;具体方法是将稳定控制回路的积分静态变量加上步进角度进行控制,稳定控制回路为消除积分器的误差,必然会调转平台运动,平台运动被陀螺敏感到并在积分器内积分为角位置信号,由于负反馈作用,陀螺积分的角度信号与步进角度方向相反,当两者相等时,系统重新回到稳态工作点,而瞄准线实际运动的角度恰好为步进角度;
步骤16,此时,瞄准线调转到了下一条幅的扫描开始位置。在横滚方向上瞄准线相对地面开始以最大加速度从0加速到-ω,同时不断计算瞄准线的横滚角度;当角速度-ω达到匀速后,并且当航向滤波坐标系下瞄准线横滚角
Figure FDA0002298461650000074
与上一条幅最后一幅图像右端扫描结束点航向滤波坐标系下瞄准线横滚角
Figure FDA0002298461650000075
相等时,触发快调反射镜反扫,并在快调反射镜进入稳态后触发电视传感器曝光而获得一幅图像,依次进行N次,快调反射镜不再反扫并停在零位;使横滚相对地面角速度从-ω匀减速到0,俯仰向前步进角度θL;同理,再下一条扫描时,当航向滤波坐标系下瞄准线横滚角
Figure FDA0002298461650000081
与上一条幅最后一幅图像左端扫描起始点航向滤波坐标系下瞄准线横滚角
Figure FDA0002298461650000082
相等时,触发快调反射镜反扫;按照上述控制方法循环进行下去,直到系统退出广域扫描任务为止。
2.如权利要求1所述的基于机载光电系统的瞄准线广域扫描控制方法,其特征在于,所述步骤1中,RN=Re*(1+e0 sin2 L)。
3.如权利要求2所述的基于机载光电系统的瞄准线广域扫描控制方法,其特征在于,所述Re为地球长半轴。
4.如权利要求2所述的基于机载光电系统的瞄准线广域扫描控制方法,其特征在于,所述
Figure FDA0002298461650000083
5.如权利要求4所述的基于机载光电系统的瞄准线广域扫描控制方法,其特征在于,所述Rp为地球短半轴。
6.如权利要求5所述的基于机载光电系统的瞄准线广域扫描控制方法,其特征在于,所述地球扁心率e0=1/298.257=0.00335281。
7.如权利要求5所述的基于机载光电系统的瞄准线广域扫描控制方法,其特征在于,所述步骤7中,当载机近似匀速直线平飞时,α=ψ。
8.如权利要求7所述的基于机载光电系统的瞄准线广域扫描控制方法,其特征在于,所述步骤8中,a=Re为地球长半径,b=a(1-e0)为地球短半径,e0为地球扁心率。
9.如权利要求1所述的基于机载光电系统的瞄准线广域扫描控制方法,其特征在于,所述载机为有人飞机。
10.如权利要求1所述的基于机载光电系统的瞄准线广域扫描控制方法,其特征在于,所述载机为无人飞机。
CN201911212276.5A 2019-12-02 2019-12-02 基于机载光电系统的瞄准线广域扫描控制方法 Active CN111026165B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911212276.5A CN111026165B (zh) 2019-12-02 2019-12-02 基于机载光电系统的瞄准线广域扫描控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911212276.5A CN111026165B (zh) 2019-12-02 2019-12-02 基于机载光电系统的瞄准线广域扫描控制方法

Publications (2)

Publication Number Publication Date
CN111026165A true CN111026165A (zh) 2020-04-17
CN111026165B CN111026165B (zh) 2023-03-28

Family

ID=70203741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911212276.5A Active CN111026165B (zh) 2019-12-02 2019-12-02 基于机载光电系统的瞄准线广域扫描控制方法

Country Status (1)

Country Link
CN (1) CN111026165B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112001980A (zh) * 2020-08-24 2020-11-27 北京理工大学 一种用于图像毁伤评估的半实物仿真系统及其实现方法
CN112066957A (zh) * 2020-08-28 2020-12-11 凯迈(洛阳)测控有限公司 一种控制机载光电转塔瞄准线按地理方位运动的方法
CN112182774A (zh) * 2020-10-16 2021-01-05 西安应用光学研究所 一种直升机载环境下的三维场景实时更新方法
CN112269403A (zh) * 2020-09-30 2021-01-26 凯迈(洛阳)测控有限公司 控制卧装光电吊舱瞄准线按吊装光电转塔方式运动的方法
CN112689084A (zh) * 2020-12-08 2021-04-20 武汉华中天经通视科技有限公司 一种机载光电侦察成像系统及电子稳像方法
CN113654526A (zh) * 2021-07-30 2021-11-16 北京控制与电子技术研究所 一种低空快速飞行条件下的光电吊舱扫描方法
CN113703465A (zh) * 2020-05-22 2021-11-26 中国科学院长春光学精密机械与物理研究所 大倾角高空对地成像的航向重叠率控制方法、装置及载机
CN115134477A (zh) * 2022-04-29 2022-09-30 西安应用光学研究所 一种光电系统同步定位方法
CN113739773B (zh) * 2021-09-08 2024-06-07 西安应用光学研究所 一种适用于小型飞行器光电系统高效扫描方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845403A1 (fr) * 2006-04-13 2007-10-17 Sagem Defense Securite Système et procédé de stabilisation d'une ligne de visée
CN108614273A (zh) * 2016-12-09 2018-10-02 中国人民解放军92232部队 一种机载双波段光电广域侦察与跟踪装置及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845403A1 (fr) * 2006-04-13 2007-10-17 Sagem Defense Securite Système et procédé de stabilisation d'une ligne de visée
CN108614273A (zh) * 2016-12-09 2018-10-02 中国人民解放军92232部队 一种机载双波段光电广域侦察与跟踪装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马忠孝等: "影响光电侦察系统目标定位精度因素分析", 《应用光学》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703465A (zh) * 2020-05-22 2021-11-26 中国科学院长春光学精密机械与物理研究所 大倾角高空对地成像的航向重叠率控制方法、装置及载机
CN113703465B (zh) * 2020-05-22 2023-02-10 中国科学院长春光学精密机械与物理研究所 大倾角高空对地成像的航向重叠率控制方法、装置及载机
CN112001980A (zh) * 2020-08-24 2020-11-27 北京理工大学 一种用于图像毁伤评估的半实物仿真系统及其实现方法
CN112001980B (zh) * 2020-08-24 2022-07-19 北京理工大学 一种用于图像毁伤评估的半实物仿真系统及其实现方法
CN112066957A (zh) * 2020-08-28 2020-12-11 凯迈(洛阳)测控有限公司 一种控制机载光电转塔瞄准线按地理方位运动的方法
CN112066957B (zh) * 2020-08-28 2022-05-24 凯迈(洛阳)测控有限公司 一种控制机载光电转塔瞄准线按地理方位运动的方法
CN112269403A (zh) * 2020-09-30 2021-01-26 凯迈(洛阳)测控有限公司 控制卧装光电吊舱瞄准线按吊装光电转塔方式运动的方法
CN112269403B (zh) * 2020-09-30 2022-11-11 凯迈(洛阳)测控有限公司 控制卧装光电吊舱瞄准线按吊装光电转塔方式运动的方法
CN112182774A (zh) * 2020-10-16 2021-01-05 西安应用光学研究所 一种直升机载环境下的三维场景实时更新方法
CN112182774B (zh) * 2020-10-16 2024-03-26 西安应用光学研究所 一种直升机载环境下的三维场景实时更新方法
CN112689084A (zh) * 2020-12-08 2021-04-20 武汉华中天经通视科技有限公司 一种机载光电侦察成像系统及电子稳像方法
CN113654526A (zh) * 2021-07-30 2021-11-16 北京控制与电子技术研究所 一种低空快速飞行条件下的光电吊舱扫描方法
CN113654526B (zh) * 2021-07-30 2023-11-14 北京控制与电子技术研究所 一种低空快速飞行条件下的光电吊舱扫描方法
CN113739773B (zh) * 2021-09-08 2024-06-07 西安应用光学研究所 一种适用于小型飞行器光电系统高效扫描方法
CN115134477A (zh) * 2022-04-29 2022-09-30 西安应用光学研究所 一种光电系统同步定位方法

Also Published As

Publication number Publication date
CN111026165B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
CN111026165B (zh) 基于机载光电系统的瞄准线广域扫描控制方法
US7602415B2 (en) Compensation for overflight velocity when stabilizing an airborne camera
CN108614273B (zh) 一种机载双波段光电广域侦察与跟踪装置及方法
CN110033480B (zh) 基于航摄测量的机载光电系统目标运动矢量估计方法
US9641810B2 (en) Method for acquiring images from arbitrary perspectives with UAVs equipped with fixed imagers
CN111586256B (zh) 一种基于二维快速反射镜的动态扫描宽幅成像控制系统及方法
CN111366155B (zh) 基于机载光电系统的局域扫描方法
CN102902282B (zh) 基于光轴与惯性轴重合的地理跟踪方法
CN108344396B (zh) 一种敏捷卫星斜条带成像模式姿态计算方法
CN107505615A (zh) 星载sar滑动聚束成像模式星体姿态设计方法
CN109445470A (zh) 基于载体姿态角信息前馈的光电系统视轴稳定方法
CN115562378B (zh) 一种光电稳定平台、角速度补偿方法、存储介质
CN106005455B (zh) 一种基于地理坐标系指向控制的两轴吊舱系统
CN110658854A (zh) 一种基于组合惯导信息应用的光电转塔视频跟踪前馈补偿方法
CN112197760A (zh) 基于激光测距和自稳云台的无人机地形测绘装置及方法
CN112414402A (zh) 一种高精度稳定平台系统、控制方法、设备、介质及终端
CN112882498B (zh) 具有抑制图像旋转功能的三轴光电搜索跟踪装置及方法
CN112066957B (zh) 一种控制机载光电转塔瞄准线按地理方位运动的方法
RU2686453C1 (ru) Способ навигации летательного аппарата
CN110362120A (zh) 一种二维扫描宽幅成像平台扫描控制方法
CN114148536B (zh) 一种用于光电吊舱的线位移补偿控制方法
RU2498193C2 (ru) Способ инерциального автосопровождения заданного объекта визирования и система для его осуществления
CN113739773A (zh) 一种适用于小型飞行器光电系统高效扫描方法
CN117519302A (zh) 相机视轴偏心情况下的二维转台高精度捕获方法及系统
CN114859960A (zh) 固定翼无人机光电吊舱对定点目标的持续跟踪侦察方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant