CN111026160A - Trajectory tracking control method for quad-rotor unmanned aerial vehicle - Google Patents

Trajectory tracking control method for quad-rotor unmanned aerial vehicle Download PDF

Info

Publication number
CN111026160A
CN111026160A CN201911367910.2A CN201911367910A CN111026160A CN 111026160 A CN111026160 A CN 111026160A CN 201911367910 A CN201911367910 A CN 201911367910A CN 111026160 A CN111026160 A CN 111026160A
Authority
CN
China
Prior art keywords
angle
loop
uav
disturbance
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911367910.2A
Other languages
Chinese (zh)
Other versions
CN111026160B (en
Inventor
刘智伟
程星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201911367910.2A priority Critical patent/CN111026160B/en
Publication of CN111026160A publication Critical patent/CN111026160A/en
Application granted granted Critical
Publication of CN111026160B publication Critical patent/CN111026160B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明属于机器人控制领域,具体涉及一种四旋翼无人机轨迹跟踪控制方法,包括:采用位置速度控制环实时估计该环路的扰动,并基于该扰动估计量计算无人机合力控制量以及第一角度及其对应的角速度和角加速度,第一角度为横滚角度和俯仰角度,该环路扰动估计误差在固定时间内收敛到零;采用姿态角控制环实时估计该环路扰动,并基于该扰动估计量,分别计算无人机绕机体坐标系x、y、z轴转动的力矩控制量,第二角度为偏航角度,该环路扰动估计误差在固定时间内收敛到零;基于合力控制量和力矩控制量控制无人机轨迹跟踪,其中无人机的角度、角速度误差以及位置、速度误差均在固定时间内收敛到零。本发明实现对无人机在固定时间上的高精度轨迹跟踪控制。

Figure 201911367910

The invention belongs to the field of robot control, and in particular relates to a trajectory tracking control method for a quadrotor unmanned aerial vehicle. The first angle and its corresponding angular velocity and angular acceleration, the first angle is the roll angle and the pitch angle, the loop disturbance estimation error converges to zero within a fixed time; the attitude angle control loop is used to estimate the loop disturbance in real time, and Based on the disturbance estimator, the torque control quantities of the UAV rotating around the x, y, and z axes of the body coordinate system are respectively calculated, and the second angle is the yaw angle, and the error of the loop disturbance estimation converges to zero within a fixed time; The resultant force control amount and the torque control amount control the trajectory tracking of the UAV, in which the angle, angular velocity error, and position and velocity errors of the UAV converge to zero within a fixed time. The invention realizes the high-precision trajectory tracking control of the unmanned aerial vehicle at a fixed time.

Figure 201911367910

Description

一种四旋翼无人机轨迹跟踪控制方法A kind of quadrotor UAV trajectory tracking control method

技术领域technical field

本发明属于机器人控制领域,更具体地,涉及一种四旋翼无人机轨迹跟踪控制方法。The invention belongs to the field of robot control, and more particularly, relates to a trajectory tracking control method of a quadrotor unmanned aerial vehicle.

背景技术Background technique

随着现代控制理论和旋翼无人机技术研究的发展,旋翼无人机可以实现稳定悬停,定点起飞和降落等优良特性,旋翼无人机作为实现未来空中物流交通运输的主流发展方向,激励了大量科研人员从事旋翼无人机控制系统相关课题的研究工作。With the development of modern control theory and research on rotary-wing drone technology, rotary-wing drones can achieve excellent characteristics such as stable hovering, fixed-point take-off and landing. As the mainstream development direction of future air logistics and transportation, rotary-wing drones encourage A large number of researchers are engaged in the research work on the related topics of the control system of the rotary-wing UAV.

然而用于单旋翼无人机在实际应用中往往存在着控制难度高稳定性差,针对应用领域的稳定性简易性,研究人员也开始将研究对象转向四旋翼无人机系统。另一方面,因存在输入变量更多,四旋翼往往比单旋翼无人机更加灵活、易于控制且稳定性更好,可以在飞行时,同时完成某些高要求任务,如航拍。因而,四旋翼无人机更符合实际应用需求。However, in practical applications for single-rotor UAVs, there are often difficulties in control, high stability and poor stability. In view of the simplicity of stability in the application field, researchers have also begun to turn their research objects to quad-rotor UAV systems. On the other hand, due to the existence of more input variables, quadrotors are often more flexible, easier to control, and more stable than single-rotor UAVs, and can complete certain demanding tasks, such as aerial photography, at the same time while flying. Therefore, the quadrotor UAV is more in line with practical application needs.

在实际应用中,可能会要求四旋翼无人机系统在固定时间完成轨迹跟踪任务,而目前主流控制方法无法实现固定时间轨迹跟踪,为满足实际应用需求,固定时间跟踪方法尤为重要。另外,同大多机械刚体结构一样,四旋翼无人机的动态特性可通过由其机械参数表示的数学模型表达,但前提是无人机的结构已知,且机械参数已知。实际上,无人机在工作过程中,受工况以及外部干扰的影响,其部分机械参数往往无法精确测得。故在对无人机进行数学建模时,通常需要考虑参数不确定性。In practical applications, the quadrotor UAV system may be required to complete the trajectory tracking task at a fixed time, and the current mainstream control methods cannot achieve fixed-time trajectory tracking. In order to meet the needs of practical applications, the fixed-time tracking method is particularly important. In addition, like most mechanical rigid body structures, the dynamic characteristics of the quadrotor UAV can be expressed by a mathematical model represented by its mechanical parameters, but the premise is that the structure of the UAV is known and the mechanical parameters are known. In fact, due to the influence of working conditions and external disturbances, some mechanical parameters of the UAV cannot be accurately measured during the working process. Therefore, it is usually necessary to consider parameter uncertainty when mathematical modeling of UAVs.

因此,结合以上,在任务空间中考虑扰动及模型参数不确定性的四旋翼无人机系统的有限时间轨迹跟踪控制具有重要意义。Therefore, combined with the above, it is of great significance to consider the disturbance and model parameter uncertainty in the finite-time trajectory tracking control of the quadrotor UAV system in the mission space.

发明内容SUMMARY OF THE INVENTION

本发明提供一种四旋翼无人机轨迹跟踪控制方法,用以解决现有四旋翼无人机轨迹跟踪控制中因在建模时机械参数无法精确获得且无法固定轨迹跟踪时间而导致在实际应用中无法实现对无人机在时间和轨迹上的高精度跟踪控制的技术问题。The present invention provides a four-rotor UAV trajectory tracking control method, which is used to solve the problem of practical application in the existing four-rotor UAV trajectory tracking control because mechanical parameters cannot be accurately obtained during modeling and the trajectory tracking time cannot be fixed. The technical problem that the high-precision tracking control of the UAV in time and trajectory cannot be realized.

本发明解决上述技术问题的技术方案如下:一种四旋翼无人机轨迹跟踪控制方法,包括:The technical solution of the present invention to solve the above-mentioned technical problems is as follows: a trajectory tracking control method of a quadrotor unmanned aerial vehicle, comprising:

基于期望位置及其对应的速度和加速度以及实时采集的实际位置及其对应的速度和角度,采用位置速度控制环,实时估计该环路的扰动,并基于该扰动的估计量,计算无人机的合力控制量以及参考第一角度及其对应的角速度和角加速度,其中,所述第一角度为横滚角度和俯仰角度,该环路的扰动估计误差在固定时间内收敛到零;Based on the desired position and its corresponding velocity and acceleration, as well as the actual position collected in real time and its corresponding velocity and angle, a position-velocity control loop is used to estimate the disturbance of the loop in real time, and based on the estimated amount of the disturbance, calculate the UAV The resultant force control amount and the reference first angle and its corresponding angular velocity and angular acceleration, wherein, the first angle is the roll angle and the pitch angle, and the disturbance estimation error of the loop converges to zero within a fixed time;

基于所述参考第一角度及其对应的角速度和角加速度、期望第二角度其对应的角速度和角加速度以及实际角度及其对应的角速度,采用姿态角控制环,实时估计该环路的扰动,并基于该扰动的估计量,分别计算无人机绕机体坐标系x、y、z轴转动的力矩控制量,其中,所述第二角度为偏航角度,该环路的扰动估计误差在固定时间内收敛到零;Based on the reference first angle and its corresponding angular velocity and angular acceleration, the expected second angle and its corresponding angular velocity and angular acceleration, and the actual angle and its corresponding angular velocity, an attitude angle control loop is used to estimate the disturbance of the loop in real time, And based on the estimated amount of the disturbance, the torque control amount of the UAV rotating around the x, y, and z axes of the body coordinate system is calculated respectively, wherein the second angle is the yaw angle, and the disturbance estimation error of the loop is fixed. converges to zero in time;

基于所述合力控制量和所述力矩控制量,控制无人机轨迹跟踪,其中,无人机的角度、角速度误差以及位置、速度误差均在固定时间内收敛到零。Based on the resultant force control amount and the torque control amount, the trajectory tracking of the UAV is controlled, wherein the angle, angular velocity errors, and position and velocity errors of the UAV converge to zero within a fixed time.

本发明的有益效果是:本方法是一种考虑扰动及模型参数不确定性的固定时间轨迹跟踪控制方法,通过控制位置速度环中的扰动估计误差以及姿态角控制环中的扰动估计误差均在固定时间内收敛到零,进而实现位置速度控制环在固定时间内使得无人机的角度、角速度误差收敛到零以及实现姿态角控制环在孤独时间内使得无人机的位置、速度误差在固定时间内收敛到零。具体实现中,可考虑四旋翼无人机模型中的动力学参数不确定性以及外部扰动,选用适当的控制参数来满足对机器人的工作速度和工作精度的要求,使得所涉及控制方法在实际应用中可实现四旋翼无人机系统在固定时间完成轨迹跟踪任务,时效性好,实用性更强,实现在实际应用中对无人机在时间和轨迹上的高精度跟踪控制。The beneficial effects of the present invention are as follows: the method is a fixed-time trajectory tracking control method considering the disturbance and the uncertainty of the model parameters. By controlling the disturbance estimation error in the position velocity loop and the disturbance estimation error in the attitude angle control loop, both Convergence to zero in a fixed time, and then realize the position and speed control loop to make the angle and angular velocity error of the UAV converge to zero in a fixed time, and realize the attitude angle control loop to make the position and speed error of the UAV in a fixed time in a lonely time. converges to zero in time. In the specific implementation, the uncertainty of dynamic parameters and external disturbances in the quadrotor UAV model can be considered, and appropriate control parameters can be selected to meet the requirements for the working speed and working accuracy of the robot, so that the involved control methods can be applied in practice. The quadrotor UAV system can complete the trajectory tracking task in a fixed time, with good timeliness and stronger practicability, and realizes the high-precision tracking control of the UAV in time and trajectory in practical applications.

上述技术方案的基础上,本发明还可以做如下改进。On the basis of the above technical solutions, the present invention can also be improved as follows.

进一步,所述位置速度控制环包括用于使得该环路的扰动估计误差在第一固定时间T1内收敛到零的状态估计器,表示为:Further, the position-velocity control loop includes a state estimator for making the disturbance estimation error of the loop converge to zero within the first fixed time T1, expressed as:

Figure BDA0002338929550000031
Figure BDA0002338929550000031

其中,

Figure BDA0002338929550000032
为该环路的实际扰动D1的估计量,在初始时刻t0,该环路的实际扰动量D1为零,L1为该环路的实际扰动各分量变化率的上界;ki,i=1,2,3为控制增益常数;
Figure BDA0002338929550000033
v为无人机的实际速度矢量,vd为无人机的期望速度矢量,g为重力加速度,u1为所述合力控制量,ez表示大地坐标系下z轴的单位矢量,m为无人机质量,R∈R3×3为依次以机体坐标系的z、y、x顺序旋转的旋转矩阵,ad为无人机的期望加速度矢量;in,
Figure BDA0002338929550000032
is the estimator of the actual disturbance D 1 of the loop. At the initial time t 0 , the actual disturbance D 1 of the loop is zero, and L 1 is the upper bound of the rate of change of the actual disturbance components of the loop; k i , i=1,2,3 is the control gain constant;
Figure BDA0002338929550000033
v is the actual velocity vector of the drone, v d is the expected velocity vector of the drone, g is the acceleration of gravity, u 1 is the control amount of the resultant force, e z represents the unit vector of the z-axis in the geodetic coordinate system, and m is the The mass of the drone, R∈R 3×3 is the rotation matrix that rotates in the order of z, y, and x of the body coordinate system, and a d is the expected acceleration vector of the drone;

则所述第一固定时间T1表示为:Then the first fixed time T1 is expressed as:

Figure BDA0002338929550000034
Figure BDA0002338929550000034

进一步,所述合力控制量u1表示为:Further, the resultant force control amount u 1 is expressed as:

Figure BDA0002338929550000035
Figure BDA0002338929550000035

Figure BDA0002338929550000041
Figure BDA0002338929550000041

Figure BDA0002338929550000042
Figure BDA0002338929550000042

其中,αi>0,βi>0,0<ni<mi,0<pi<qi,i=1,2,mi,ni,pi,qi均为正奇数;p为无人机的实际位置,pd为无人机的期望位置,ev为无人机的速度误差,S1为该环路的预设滑模面。Wherein, α i >0, β i >0, 0<n i <m i , 0<p i <q i , i=1, 2, and m i , n i , p i , and q i are all positive odd numbers; p is the actual position of the UAV, p d is the desired position of the UAV, e v is the speed error of the UAV, and S 1 is the preset sliding surface of the loop.

进一步,所述参考第一角度的计算表达式为:Further, the calculation expression of the reference first angle is:

Figure BDA0002338929550000043
Figure BDA0002338929550000043

其中,ψ为大地坐标系下的偏航角度。Among them, ψ is the yaw angle in the geodetic coordinate system.

进一步,所述位置速度控制环控制的位置和速度误差在第四固定时间T4内收敛于零,表达式为:Further, the position and velocity errors controlled by the position-velocity control loop converge to zero within the fourth fixed time T4, and the expression is:

Figure BDA0002338929550000044
Figure BDA0002338929550000044

本发明的进一步有益效果是:本发明采用上述位置速度控制环中状态估计器和控制律进行协同作用,由第四固定时间的公式可知,只需要根据实际需要有效设置参数,即可有效实现位置和速度误差在固定时间内收敛于零,实用性强。Further beneficial effects of the present invention are: the present invention adopts the state estimator and the control law in the above-mentioned position-speed control loop to perform synergistic action, and it can be known from the formula of the fourth fixed time that the position can be effectively realized only by effectively setting parameters according to actual needs. And the speed error converges to zero in a fixed time, which is very practical.

进一步,所述姿态角控制环节包括用于使得该环路的扰动估计误差在第二固定时间T2内收敛到零的间状态估计器表示为:Further, the attitude angle control link includes an inter-state estimator for making the disturbance estimation error of the loop converge to zero within the second fixed time T 2 , which is expressed as:

Figure BDA0002338929550000045
Figure BDA0002338929550000045

其中,

Figure BDA0002338929550000046
为WD2的估计量,D2为该环路的实际扰动,L2为该环路的实际扰动各分量变化率的上界,在初始时刻t0,该环路的实际扰动量D2为零,W为坐标系变换矩阵,I为单位矩阵,Ω为机体坐标系下的实际角速度矢量,
Figure BDA0002338929550000051
为在大地坐标系下的无人机的期望角速度矢量,τ'为该环的滑模控制律;ki,i=4,5,6为控制增益常数,
Figure BDA0002338929550000052
in,
Figure BDA0002338929550000046
is the estimator of WD 2 , D 2 is the actual disturbance of the loop, L 2 is the upper bound of the rate of change of each component of the actual disturbance of the loop, and at the initial time t 0 , the actual disturbance of the loop D 2 is zero, W is the coordinate system transformation matrix, I is the unit matrix, Ω is the actual angular velocity vector in the body coordinate system,
Figure BDA0002338929550000051
is the expected angular velocity vector of the UAV in the geodetic coordinate system, τ' is the sliding mode control law of the loop; k i , i=4, 5, 6 are the control gain constants,
Figure BDA0002338929550000052

则所述第二固定时间T2表示为:Then the second fixed time T 2 is expressed as:

Figure BDA0002338929550000053
Figure BDA0002338929550000053

进一步,所述无人机绕机体坐标系x、y、z轴转动的力矩控制量分别为u2、u3、u4,表示为:[u2,u3,u4]T=τ;τ=I-1Wτ';Further, the torque control quantities for the rotation of the UAV around the x, y, and z axes of the body coordinate system are respectively u 2 , u 3 , and u 4 , which are expressed as: [u 2 , u 3 , u 4 ] T = τ; τ=I -1 Wτ';

Figure BDA0002338929550000054
Figure BDA0002338929550000054

Figure BDA0002338929550000055
Figure BDA0002338929550000055

其中,αi>0,βi>0,0<ni<mi,0<pi<qi,i=3,4,mi,ni,pi,qi均为正奇数;Θ为在大地坐标系下的无人机的实际角度矢量,Θd为在大地坐标系下的无人机的期望角度矢量,

Figure BDA0002338929550000056
为在大地坐标系下的无人机的期望角加速度矢量,
Figure BDA0002338929550000057
为W的导数,
Figure BDA0002338929550000058
S2为该环路的预设滑模面。Wherein, α i > 0, β i > 0, 0 < n i <m i , 0 < p i <q i , i=3, 4, and m i , n i , p i , and q i are all positive odd numbers; Θ is the actual angle vector of the UAV under the geodetic coordinate system, Θd is the desired angle vector of the UAV under the geodetic coordinate system,
Figure BDA0002338929550000056
is the expected angular acceleration vector of the UAV in the geodetic coordinate system,
Figure BDA0002338929550000057
is the derivative of W,
Figure BDA0002338929550000058
S 2 is the preset sliding surface of the loop.

进一步,所述姿态角控制环控制的角度、角速度误差在第三固定时间T3内收敛于零,T3的表达式为:Further, the angle and angular velocity error controlled by the attitude angle control loop converge to zero within the third fixed time T3, and the expression of T3 is:

Figure BDA0002338929550000059
Figure BDA0002338929550000059

本发明的进一步有益效果是:本发明采用上述姿态角控制环中状态估计器和控制律进行协同作用,由第三固定时间的公式可知,只需要根据实际需要有效设置参数,即可有效实现角度、角速度误差在固定时间内收敛于零,实用性强。A further beneficial effect of the present invention is that: the present invention adopts the state estimator and the control law in the above attitude angle control loop to perform synergistic action, and it can be known from the formula of the third fixed time that the angle can be effectively realized only by effectively setting parameters according to actual needs. , The angular velocity error converges to zero in a fixed time, and the practicability is strong.

进一步,所述轨迹跟踪总的收敛时间T≤max(T1,T2)+T3+T4Further, the total convergence time of the trajectory tracking is T≤max(T 1 , T 2 )+T 3 +T 4 .

本发明的进一步有益效果是:角度、角速度误差先收敛,然后位置和速度误差再收敛,并且扰动收敛时间T1、T2与控制输入量无关,基于此,确定的轨迹跟踪总的收敛时间,精确度高,实用性强。The further beneficial effects of the present invention are: the angle and angular velocity errors converge first, then the position and velocity errors converge again, and the disturbance convergence times T 1 and T 2 are independent of the control input. Based on this, the determined total convergence time of the trajectory tracking, High precision and strong practicability.

本发明还提供一种存储介质,所述存储介质中存储有指令,当计算机读取所述指令时,使所述计算机执行如上述任一种四旋翼无人机轨迹跟踪控制方法。The present invention also provides a storage medium in which instructions are stored, and when a computer reads the instructions, the computer is made to execute any of the above-mentioned four-rotor UAV trajectory tracking control methods.

附图说明Description of drawings

图1为本发明实施例提供的一种四旋翼无人机轨迹跟踪控制方法的流程框图;1 is a flowchart of a method for tracking and controlling a trajectory of a quadrotor unmanned aerial vehicle provided by an embodiment of the present invention;

图2为本发明实施例提供的四旋翼无人机轨迹跟踪双环控制示意图;2 is a schematic diagram of a quadrotor UAV trajectory tracking dual-loop control provided by an embodiment of the present invention;

图3为本发明实施例提供的四旋翼无人机模型图;3 is a model diagram of a quadrotor unmanned aerial vehicle provided by an embodiment of the present invention;

图4为本发明实施例提供的位置速度控制环的结构图;4 is a structural diagram of a position-speed control loop provided by an embodiment of the present invention;

图5为本发明实施例提供的姿态角控制环的结构图;5 is a structural diagram of an attitude angle control loop provided by an embodiment of the present invention;

图6为本发明实施例提供的位置速度控制环和姿态角控制环中扰动估计量和实际扰动量之间的对比图;6 is a comparison diagram between a disturbance estimate and an actual disturbance in a position-speed control loop and an attitude angle control loop provided by an embodiment of the present invention;

图7为本发明实施例提供的任务空间中位置和姿态角的跟踪轨迹图;7 is a tracking trajectory diagram of a position and an attitude angle in a task space provided by an embodiment of the present invention;

图8为本发明实施例提供的无人机的控制输入量示意图;8 is a schematic diagram of a control input of an unmanned aerial vehicle provided by an embodiment of the present invention;

图9为本发明实施例提供的任务空间中位置和姿态角轨迹跟踪图。FIG. 9 is a trajectory tracking diagram of a position and an attitude angle in a task space provided by an embodiment of the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.

实施例一Example 1

一种四旋翼无人机轨迹跟踪控制方法100,如图1所示,包括:A four-rotor UAV trajectory tracking control method 100, as shown in FIG. 1, includes:

步骤110、基于期望位置及其对应的速度和加速度以及实时采集的实际位置及其对应的速度和角度,采用位置速度控制环,实时估计该环路的扰动,并基于该扰动的估计量,计算无人机的合力控制量以及参考第一角度及其对应的角速度和角加速度,其中,第一角度为横滚角度和俯仰角度,该环路的扰动估计误差在固定时间内收敛到零;Step 110: Based on the desired position and its corresponding speed and acceleration, as well as the actual position collected in real time and its corresponding speed and angle, a position-velocity control loop is used to estimate the disturbance of the loop in real time, and based on the estimated amount of the disturbance, calculate The resultant force control amount of the UAV and the reference first angle and its corresponding angular velocity and angular acceleration, where the first angle is the roll angle and the pitch angle, and the disturbance estimation error of the loop converges to zero within a fixed time;

步骤120、基于参考第一角度及其对应的角速度和角加速度、期望第二角度其对应的角速度和角加速度以及实际角度及其对应的角速度,采用姿态角控制环,实时估计该环路的扰动,并基于该扰动的估计量,分别计算无人机绕机体坐标系x、y、z轴转动的力矩控制量,其中,第二角度为偏航角度,该环路的扰动估计误差在固定时间内收敛到零;Step 120, based on the reference first angle and its corresponding angular velocity and angular acceleration, the expected second angle and its corresponding angular velocity and angular acceleration and the actual angle and its corresponding angular velocity, adopt the attitude angle control loop to estimate the disturbance of the loop in real time , and based on the estimated amount of the disturbance, respectively calculate the torque control amount of the UAV rotating around the x, y, and z axes of the body coordinate system, where the second angle is the yaw angle, and the disturbance estimation error of the loop is within a fixed time inner converges to zero;

步骤130、基于合力控制量和力矩控制量,控制无人机轨迹跟踪,其中,无人机的角度、角速度误差以及位置、速度误差均在固定时间内收敛到零。Step 130: Control the trajectory tracking of the UAV based on the resultant force control amount and the torque control amount, wherein the angle, angular velocity error, and position and velocity errors of the UAV converge to zero within a fixed time.

需要说明的是,本方法首先考虑扰动,对无人机进行动力学和运动学建模;然后把无人机的轨迹跟踪控制转换为双环控制,外环是位置速度控制环,内环是姿态角环控制;如图2所示,位置速度控制环输入期望的位置和速度以及实际的位置和速度,输出给电机的部分控制输入量以及给姿态角控制环的参考期望的角度和角速度;姿态角控制环输入期望的角度和角速度以及实际的角度和角速度,输出给电机的另一部分控制输入量。接下来,进行内外环控制器设计,具体包括:位置速度控制器设计,包括固定时间状态估计器和固定时间滑模控制器设计,其中状态估计器可以在固定时间后准确估计位置速度控制环的扰动,在准确补偿位置速度控制环的扰动后,另外一个固定时间后在所提出的滑模控制律的控制下可以跟踪期望的位置速度轨迹;姿态角控制器设计,包括固定时间状态估计器和固定时间滑模控制器设计,其中状态估计器可以在固定时间后准确估计姿态角控制环的扰动,在准确补偿姿态角控制环的扰动后,另外一个固定时间后在所提出的滑模控制律的控制下可以跟踪期望的角度和角速度。其中,状态估计器的估计误差收敛于0的时间由它的参数唯一决定;补偿扰动后,滑模控制器控制位置速度收敛到期望的位置速度值的时间由它的参数唯一决定。基于该系统设计,进行上述四旋翼无人机轨迹跟踪控制。其中,横滚角度、俯仰角度和偏航角度均为在大地坐标系下的角度。It should be noted that this method first considers the disturbance, and models the dynamics and kinematics of the UAV; then converts the trajectory tracking control of the UAV into a double-loop control, the outer loop is the position and velocity control loop, and the inner loop is the attitude Angle loop control; as shown in Figure 2, the position and speed control loop inputs the desired position and speed and the actual position and speed, and outputs part of the control input to the motor and the reference desired angle and angular speed for the attitude angle control loop; Attitude The angle control loop inputs the desired angle and angular velocity as well as the actual angle and angular velocity, and outputs the control input to another part of the motor. Next, the inner and outer loop controller design is carried out, including: position velocity controller design, including fixed-time state estimator and fixed-time sliding mode controller design, in which the state estimator can accurately estimate the position and velocity control loop after a fixed time. disturbance, after accurately compensating the disturbance of the position-velocity control loop, the desired position-velocity trajectory can be tracked after another fixed time under the control of the proposed sliding mode control law; the attitude angle controller design includes a fixed-time state estimator and Fixed-time sliding mode controller design, in which the state estimator can accurately estimate the disturbance of the attitude angle control loop after a fixed time, after accurately compensating for the disturbance of the attitude angle control loop, and another fixed time after the proposed sliding mode control law The desired angle and angular velocity can be tracked under the control of . Among them, the time when the estimation error of the state estimator converges to 0 is uniquely determined by its parameters; after compensating the disturbance, the time when the sliding mode controller controls the position velocity to converge to the desired position velocity value is uniquely determined by its parameters. Based on the system design, the trajectory tracking control of the above quadrotor UAV is carried out. Among them, the roll angle, pitch angle and yaw angle are all angles in the geodetic coordinate system.

本方法是一种考虑扰动及模型参数不确定性的固定时间轨迹跟踪控制方法,通过控制位置速度环中的扰动估计误差以及姿态角控制环中的扰动估计误差均在固定时间内收敛到零,进而实现位置速度控制环在固定时间内使得无人机的角度、角速度误差收敛到零以及实现姿态角控制环在孤独时间内使得无人机的位置、速度误差在固定时间内收敛到零。具体实现中,可考虑四旋翼无人机模型中的动力学参数不确定性以及外部扰动,选用适当的控制参数来满足对机器人的工作速度和工作精度的要求,使得所涉及控制方法在实际应用中可实现四旋翼无人机系统在固定时间完成轨迹跟踪任务,时效性好,实用性更强。This method is a fixed-time trajectory tracking control method that considers the disturbance and the uncertainty of the model parameters. By controlling the disturbance estimation error in the position velocity loop and the disturbance estimation error in the attitude angle control loop, both converge to zero within a fixed time. Then, the position and velocity control loop can make the angle and angular velocity error of the UAV converge to zero in a fixed time, and the attitude angle control loop can make the position and velocity error of the UAV converge to zero in a fixed time in a lonely time. In the specific implementation, the uncertainty of dynamic parameters and external disturbances in the quadrotor UAV model can be considered, and appropriate control parameters can be selected to meet the requirements for the working speed and working accuracy of the robot, so that the involved control methods can be applied in practice. The four-rotor UAV system can complete the trajectory tracking task in a fixed time, with good timeliness and stronger practicability.

为保证前述方法的结果正确性,将上述方法建立在以下三项条件基础上:In order to ensure the correctness of the results of the above methods, the above methods are established on the basis of the following three conditions:

(1)位置速度控制环的扰动满足:

Figure BDA0002338929550000081
即位置速度控制环的扰动初始值为0,而且其一次导存在且有界;(1) The disturbance of the position-speed control loop satisfies:
Figure BDA0002338929550000081
That is, the initial value of the disturbance of the position-velocity control loop is 0, and its first derivative exists and is bounded;

(2)姿态角控制环的扰动满足:

Figure BDA0002338929550000082
即姿态角控制环的扰动初始值为0,而且其一次导存在且有界;(2) The disturbance of the attitude angle control loop satisfies:
Figure BDA0002338929550000082
That is, the initial value of the disturbance of the attitude angle control loop is 0, and its first derivative exists and is bounded;

(3)四旋翼无人机旋转角度满足

Figure BDA0002338929550000083
(3) The rotation angle of the quadrotor UAV meets the requirements
Figure BDA0002338929550000083

动力学和运动学建模模型为:The dynamics and kinematics modeling models are:

Figure BDA0002338929550000091
Figure BDA0002338929550000091

如图3所示的四旋翼无人机模型图,图中,E={ex,ey,ez}表示大地坐标系,B={bx,by,bz}表示无人机机身坐标系,p=[x,y,z]T∈R3表示无人机在世界坐标系中的位置,v=[vx,vy,vz]T∈R3为无人机在世界坐标系中的速度,Θ=[φ,θ,ψ]T∈R3为无人机在世界坐标系中的欧拉角,Ω=[ωxyz]T∈R3为无人机在机身坐标系中的角速度,g,m分别为重力加速度和无人机质量,ez为z方向的单位向量,D1=[dx,dy,dz]T∈R3,D2=[dφ,dθ,dψ]T∈R3为扰动;I=diag(Ixx,Iyy,Izz)∈R3×3表示惯性矩阵;τ=[u2,u3,u4]T∈R3表示系统输入力矩,u1表示系统输入无人机总升力;R∈R3×3,W∈R3×3表示旋转矩阵,C·=cos(·),S·=sin(·),另外:The quadrotor UAV model diagram shown in Figure 3, in the figure, E={ ex , e y , e z } represents the geodetic coordinate system, B={b x , b y , b z } represents the UAV Body coordinate system, p=[x, y, z] T ∈ R 3 represents the position of the UAV in the world coordinate system, v=[v x , v y , v z ] T ∈ R 3 is the UAV The speed in the world coordinate system, Θ=[φ,θ,ψ] T ∈R 3 is the Euler angle of the drone in the world coordinate system, Ω=[ω xyz ] T ∈ R 3 is the angular velocity of the drone in the fuselage coordinate system, g, m are the gravitational acceleration and the mass of the drone, respectively, e z is the unit vector in the z direction, D 1 = [d x , d y , d z ] T ∈R 3 ,D 2 =[d φ ,d θ ,d ψ ] T ∈ R 3 is disturbance; I=diag(I xx ,I yy ,I zz )∈R 3×3 is inertia matrix; τ=[u 2 , u 3 , u 4 ] T ∈ R 3 represents the system input torque, u 1 represents the total lift of the system input UAV; R ∈ R 3×3 , W ∈ R 3×3 represents the rotation matrix , C = cos( ·), S · =sin(·), in addition:

Figure BDA0002338929550000092
Figure BDA0002338929550000092

Figure BDA0002338929550000093
Figure BDA0002338929550000093

跟踪目标的数学表达式为:

Figure BDA0002338929550000094
该表达式即为当前跟踪目标,pd=[xd,yd,zd]T∈R3,vd=[vx_d,vy_d,vz_d]T∈R3,ad=[ax_d,ay_d,az_d]T∈R3分别表示跟踪目标的位置状态、速度、加速度。The mathematical expression for tracking the target is:
Figure BDA0002338929550000094
This expression is the current tracking target, p d =[x d ,y d ,z d ] T ∈R 3 ,v d =[v x_d ,v y_d , v z_d ] T ∈R 3 ,ad =[a x_d , a y_d , a z_d ] T ∈ R 3 represent the position state, velocity, and acceleration of the tracking target, respectively.

四旋翼无人机的物理参数如下表1所示:The physical parameters of the quadrotor UAV are shown in Table 1 below:

表1四旋翼无人机物理参数Table 1 Physical parameters of quadrotor UAV

Figure BDA0002338929550000095
Figure BDA0002338929550000095

Figure BDA0002338929550000101
Figure BDA0002338929550000101

结合目标的位置、速度、加速度,根据牛顿第二定律,可以得到位置速度控制方程:Combined with the position, velocity and acceleration of the target, according to Newton's second law, the position and velocity control equation can be obtained:

Figure BDA0002338929550000102
Figure BDA0002338929550000102

其中,T4是收敛时间的上界,由设计参数决定的常数,

Figure BDA0002338929550000103
是扰动的估计值。由此可以得到
Figure BDA0002338929550000104
Figure BDA0002338929550000105
则u1,
Figure BDA0002338929550000106
都可以确定,
Figure BDA0002338929550000107
where T4 is the upper bound on the convergence time, a constant determined by the design parameters,
Figure BDA0002338929550000103
is the estimated value of the disturbance. From this it can be obtained
Figure BDA0002338929550000104
make
Figure BDA0002338929550000105
Then u 1 ,
Figure BDA0002338929550000106
can be sure,
Figure BDA0002338929550000107

目标的角度Θd=[φddd]T∈R3,可以得到:The angle of the target Θ d = [φ d , θ d , ψ d ] T ∈ R 3 , we can get:

Figure BDA0002338929550000108
Figure BDA0002338929550000108

ψd可以自行设计,一般设为0;对Θds求导数可得目标角速度

Figure BDA0002338929550000109
aΩ_d=[aωx_d,aωy_d,aωz_d]T∈R3目标角加速度,aΩ_d是控制器设计参数决定的,θ为横滚角度,φ为俯仰角度,ψ为偏航角度。ψ d can be designed by yourself, and is generally set to 0; the target angular velocity can be obtained by taking the derivative of Θ ds
Figure BDA0002338929550000109
a Ω_d = [a ωx_d , a ωy_d , a ωz_d ] T ∈ R 3 target angular acceleration, a Ω_d is determined by the controller design parameters, θ is the roll angle, φ is the pitch angle, and ψ is the yaw angle.

结合目标的角度、角速度、加速度,可以得到姿态角控制环的控制方程:Combined with the angle, angular velocity and acceleration of the target, the control equation of the attitude angle control loop can be obtained:

Figure BDA0002338929550000111
Figure BDA0002338929550000111

其中,T3是收敛时间的上界,由设计参数决定的常数,

Figure BDA0002338929550000112
是扰动的估计值。由此可以得到τ,则u2,u3,u4都可以确定。where T3 is the upper bound on the convergence time, a constant determined by the design parameters,
Figure BDA0002338929550000112
is the estimated value of the disturbance. From this, τ can be obtained, then u 2 , u 3 , and u 4 can be determined.

优选的,上述位置速度控制环包括用于使得该环路的扰动估计误差在第一固定时间T1内收敛到零的状态估计器,表示为:Preferably, the above-mentioned position-velocity control loop includes a state estimator for making the disturbance estimation error of the loop converge to zero within the first fixed time T1, expressed as:

Figure BDA0002338929550000113
Figure BDA0002338929550000113

其中,

Figure BDA0002338929550000114
为该环路的实际扰动D1的估计量,在初始时刻t0,该环路的实际扰动量D1为零,L1为该环路的实际扰动各分量变化率的上界;ki,i=1,2,3为控制增益常数;
Figure BDA0002338929550000115
v为无人机的实际速度矢量,vd为无人机的期望速度矢量,g为重力加速度,u1为所述合力控制量,ez表示大地坐标系下z轴的单位矢量,m为无人机质量,R∈R3×3为依次以机体坐标系的z、y、x顺序旋转的旋转矩阵,ad为无人机的期望加速度矢量;则上述第一固定时间T1表示为:in,
Figure BDA0002338929550000114
is the estimator of the actual disturbance D 1 of the loop. At the initial time t 0 , the actual disturbance D 1 of the loop is zero, and L 1 is the upper bound of the rate of change of the actual disturbance components of the loop; k i , i=1,2,3 is the control gain constant;
Figure BDA0002338929550000115
v is the actual velocity vector of the drone, v d is the expected velocity vector of the drone, g is the acceleration of gravity, u 1 is the control amount of the resultant force, e z represents the unit vector of the z-axis in the geodetic coordinate system, and m is the The mass of the drone, R∈R3 ×3 is the rotation matrix that rotates in the order of z, y, and x of the body coordinate system, and a d is the expected acceleration vector of the drone; then the above-mentioned first fixed time T1 is expressed as :

Figure BDA0002338929550000116
Figure BDA0002338929550000116

优选的,上述合力控制量u1表示为:Preferably, the above-mentioned resultant force control amount u 1 is expressed as:

Figure BDA0002338929550000117
Figure BDA0002338929550000117

Figure BDA0002338929550000121
Figure BDA0002338929550000121

Figure BDA0002338929550000122
Figure BDA0002338929550000122

其中,αi>0,βi>0,0<ni<mi,0<pi<qi,i=1,2,mi,ni,pi,qi均为正奇数;p为无人机的实际位置,pd为无人机的期望位置,ev为无人机的速度误差,S1为该环路的预设滑模面。Wherein, α i >0, β i >0, 0<n i <m i , 0<p i <q i , i=1, 2, and m i , n i , p i , and q i are all positive odd numbers; p is the actual position of the UAV, p d is the desired position of the UAV, e v is the speed error of the UAV, and S 1 is the preset sliding surface of the loop.

优选的,上述位置速度控制环控制的位置和速度误差在第四固定时间T4内收敛于零,表达式为:Preferably, the position and speed errors controlled by the above-mentioned position-speed control loop converge to zero within the fourth fixed time T4, and the expression is:

Figure BDA0002338929550000123
Figure BDA0002338929550000123

如图4所示,位置速度控制环的结构包括状态估计器和控制律,图中:As shown in Figure 4, the structure of the position-velocity control loop includes a state estimator and a control law. In the figure:

Figure BDA0002338929550000124
Figure BDA0002338929550000124

Figure BDA0002338929550000125
Figure BDA0002338929550000125

Figure BDA0002338929550000126
Figure BDA0002338929550000126

优选的,上述姿态角控制环节包括用于使得该环路的扰动估计误差在第二固定时间T2内收敛到零的间状态估计器表示为:Preferably, the above-mentioned attitude angle control link includes an inter-state estimator for making the disturbance estimation error of the loop converge to zero within the second fixed time T 2 , which is expressed as:

Figure BDA0002338929550000127
Figure BDA0002338929550000127

其中,

Figure BDA0002338929550000131
为WD2的估计量,D2为该环路的实际扰动,L2为该环路的实际扰动各分量变化率的上界,在初始时刻t0,该环路的实际扰动量D2为零,W为坐标系变换矩阵,I为单位矩阵,Ω为机体坐标系下的实际角速度矢量,
Figure BDA0002338929550000132
为在大地坐标系下的无人机的期望角速度矢量,τ'为该环的滑模控制律;ki,i=4,5,6为控制增益常数,
Figure BDA0002338929550000133
in,
Figure BDA0002338929550000131
is the estimator of WD 2 , D 2 is the actual disturbance of the loop, L 2 is the upper bound of the rate of change of each component of the actual disturbance of the loop, and at the initial time t 0 , the actual disturbance of the loop D 2 is zero, W is the coordinate system transformation matrix, I is the unit matrix, Ω is the actual angular velocity vector in the body coordinate system,
Figure BDA0002338929550000132
is the expected angular velocity vector of the UAV in the geodetic coordinate system, τ' is the sliding mode control law of the loop; k i , i=4, 5, 6 are the control gain constants,
Figure BDA0002338929550000133

则上述第二固定时间T2表示为:Then the above-mentioned second fixed time T 2 is expressed as:

Figure BDA0002338929550000134
Figure BDA0002338929550000134

各估计器的参数的选取具体可见如下表2,扰动设置为:The selection of parameters of each estimator can be seen in Table 2 below, and the disturbance settings are:

di=0.2sin(5t),i=x,y,z,φ,θ,ψ;d i = 0.2sin(5t), i = x, y, z, φ, θ, ψ;

表2估计器的参数Table 2 Parameters of the estimator

参数名称parameter name 参数取值parameter value 参数名称parameter name 参数取值parameter value k<sub>1</sub>k<sub>1</sub> 33 k<sub>4</sub>k<sub>4</sub> 33 k<sub>2</sub>k<sub>2</sub> 0.50.5 k<sub>5</sub>k<sub>5</sub> 0.50.5 k<sub>3</sub>k<sub>3</sub> 44 k<sub>6</sub>k<sub>6</sub> 44 μ<sub>1</sub>μ<sub>1</sub> 0.50.5 μ<sub>2</sub>μ<sub>2</sub> 0.50.5 λ<sub>1</sub>λ<sub>1</sub> 22 λ<sub>2</sub>λ<sub>2</sub> 22

优选的,上述无人机绕机体坐标系x、y、z轴转动的力矩控制量分别为u2、u3、u4,表示为:[u2,u3,u4]T=τ;τ=I-1Wτ';Preferably, the torque control quantities for the rotation of the UAV around the x, y, and z axes of the body coordinate system are respectively u 2 , u 3 , and u 4 , which are expressed as: [u 2 , u 3 , u 4 ] T = τ; τ=I -1 Wτ';

Figure BDA0002338929550000135
Figure BDA0002338929550000135

Figure BDA0002338929550000136
Figure BDA0002338929550000136

其中,αi>0,βi>0,0<ni<mi,0<pi<qi,i=3,4,mi,ni,pi,qi均为正奇数;Θ为在大地坐标系下的无人机的实际角度矢量,Θd为在大地坐标系下的无人机的期望角度矢量,

Figure BDA0002338929550000141
为在大地坐标系下的无人机的期望角加速度矢量,
Figure BDA0002338929550000142
为W的导数,
Figure BDA0002338929550000143
S2为该环路的预设滑模面。Wherein, α i > 0, β i > 0, 0 < n i <m i , 0 < p i <q i , i=3, 4, and m i , n i , p i , and q i are all positive odd numbers; Θ is the actual angle vector of the UAV under the geodetic coordinate system, Θd is the desired angle vector of the UAV under the geodetic coordinate system,
Figure BDA0002338929550000141
is the expected angular acceleration vector of the UAV in the geodetic coordinate system,
Figure BDA0002338929550000142
is the derivative of W,
Figure BDA0002338929550000143
S 2 is the preset sliding surface of the loop.

优选的,上述姿态角控制环控制的角度、角速度误差在第三固定时间T3内收敛于零,T3的表达式为:Preferably, the angle and angular velocity errors controlled by the above attitude angle control loop converge to zero within the third fixed time T3, and the expression of T3 is:

Figure BDA0002338929550000144
Figure BDA0002338929550000144

优选的,上述轨迹跟踪总的收敛时间T≤max(T1,T2)+T3+T4Preferably, the total convergence time of the above-mentioned trajectory tracking is T≤max(T 1 , T 2 )+T 3 +T 4 .

如图5所示,姿态角控制环的结构图,包括状态估计器和控制律,图中:As shown in Figure 5, the structure diagram of the attitude angle control loop, including the state estimator and control law, in the figure:

Figure BDA0002338929550000145
Figure BDA0002338929550000145

Figure BDA0002338929550000146
Figure BDA0002338929550000146

Figure BDA0002338929550000147
Figure BDA0002338929550000147

Figure BDA0002338929550000148
Figure BDA0002338929550000148

各控制律中的控制参数的选取具体可见如下表3,目标轨迹设置为:The selection of control parameters in each control law can be seen in Table 3 below, and the target trajectory is set as:

Figure BDA0002338929550000149
Figure BDA0002338929550000149

Figure BDA00023389295500001410
Figure BDA00023389295500001410

zd(t)=0.25,ψd(t)=0;z d (t)=0.25, ψ d (t)=0;

表3控制参数Table 3 Control parameters

Figure BDA00023389295500001411
Figure BDA00023389295500001411

Figure BDA0002338929550000151
Figure BDA0002338929550000151

为了更好的说明本发明,现证明状态估计器是固定时间收敛的,如下:In order to better illustrate the present invention, it is now proved that the state estimator converges in a fixed time, as follows:

定义状态观测器估计误差

Figure BDA0002338929550000152
对位置速度控制环状态估计器求导,得:
Figure BDA0002338929550000153
Define the state observer estimation error
Figure BDA0002338929550000152
Derivating the position-velocity control loop state estimator, we get:
Figure BDA0002338929550000153

分为以下两种情况,对所述的状态估计器进行分析,得到以下分析结果:Divided into the following two cases, the state estimator is analyzed, and the following analysis results are obtained:

(1)当||Δ1||≠0时,两边同时左乘

Figure BDA0002338929550000154
得:(1) When ||Δ 1 ||≠0, both sides are left-multiplied at the same time
Figure BDA0002338929550000154
have to:

Figure BDA0002338929550000155
所述的状态估计器数学表达式满足:
Figure BDA0002338929550000155
The mathematical expression of the state estimator satisfies:

Figure BDA0002338929550000156
Figure BDA0002338929550000156

令s=||Δ1||,

Figure BDA0002338929550000157
Let s=||Δ 1 ||,
Figure BDA0002338929550000157

构造李雅普诺夫函数

Figure BDA0002338929550000158
求导可得:Construct Lyapunov function
Figure BDA0002338929550000158
Guidance can be obtained:

Figure BDA0002338929550000159
Figure BDA0002338929550000159

所以渐进稳定。So it is gradually stable.

当V>1时,

Figure BDA0002338929550000161
V将在
Figure BDA0002338929550000162
时收敛到1;When V>1,
Figure BDA0002338929550000161
V will be in
Figure BDA0002338929550000162
converges to 1 when

当V≤1时,

Figure BDA0002338929550000163
V将在
Figure BDA0002338929550000164
时收敛到0。When V≤1,
Figure BDA0002338929550000163
V will be in
Figure BDA0002338929550000164
converges to 0.

所以经过时间

Figure BDA0002338929550000165
后,V,s,Δ1都会收敛于0,因为
Figure BDA0002338929550000166
经过t1+t2时间后
Figure BDA0002338929550000167
so over time
Figure BDA0002338929550000165
, V, s, Δ 1 will converge to 0, because
Figure BDA0002338929550000166
After t 1 +t 2 time
Figure BDA0002338929550000167

(2)当||Δ1||=0时,

Figure BDA0002338929550000168
收敛到0的时间
Figure BDA0002338929550000169
其中,
Figure BDA00023389295500001610
经过时间T1,(2) When ||Δ 1 ||=0,
Figure BDA0002338929550000168
time to converge to 0
Figure BDA0002338929550000169
in,
Figure BDA00023389295500001610
After time T 1 ,

Figure BDA00023389295500001611
状态观测器估计值误差
Figure BDA00023389295500001612
收敛到0。
Figure BDA00023389295500001611
State Observer Estimate Error
Figure BDA00023389295500001612
converges to 0.

同理经过总时间T2状态观测器估计值误差

Figure BDA00023389295500001613
收敛到0。Similarly, the estimated value error of the state observer after the total time T 2
Figure BDA00023389295500001613
converges to 0.

Figure BDA00023389295500001614
Figure BDA00023389295500001614

如图6所示,左图对应位置速度控制环,右图对应姿态角控制环,位置速度控制环和姿态角控制环扰动估计量和实际的扰动值,在所设计的状态估计器的作用下,位置和姿态角扰动估计量的每个分量都在固定时间收敛于其对应的扰动值。As shown in Figure 6, the left picture corresponds to the position and velocity control loop, the right picture corresponds to the attitude angle control loop, the position velocity control loop and the attitude angle control loop disturbance estimator and the actual disturbance value, under the action of the designed state estimator , each component of the position and attitude angle perturbation estimators converges to its corresponding perturbation value at a fixed time.

下面证明所设计的控制率

Figure BDA00023389295500001615
可以保证位置速度是固定时间收敛的:The following proves that the designed control rate
Figure BDA00023389295500001615
The position velocity is guaranteed to converge in constant time:

对滑模面S1求导,可得:Taking the derivative of the sliding surface S 1 , we get:

Figure BDA00023389295500001616
Figure BDA00023389295500001616

把动力学和运动学建模模型中

Figure BDA00023389295500001617
的数学表达式和设计的
Figure BDA00023389295500001618
的表达式带入上式,可得:
Figure BDA0002338929550000171
其中
Figure BDA0002338929550000172
是估计误差。Incorporate dynamics and kinematics into models
Figure BDA00023389295500001617
Mathematical expressions and designs of
Figure BDA00023389295500001618
The expression of is brought into the above formula, we can get:
Figure BDA0002338929550000171
in
Figure BDA0002338929550000172
is the estimation error.

根据前述,经过时间T1

Figure BDA0002338929550000173
得:
Figure BDA0002338929550000174
According to the foregoing, elapsed time T 1 ,
Figure BDA0002338929550000173
have to:
Figure BDA0002338929550000174

构造李雅普诺夫函数

Figure BDA0002338929550000175
求导可得:Construct Lyapunov function
Figure BDA0002338929550000175
Guidance can be obtained:

Figure BDA0002338929550000176
Figure BDA0002338929550000176

V1>1时,

Figure BDA0002338929550000177
V1将在
Figure BDA0002338929550000178
后收敛到1。When V 1 > 1,
Figure BDA0002338929550000177
V1 will be in
Figure BDA0002338929550000178
then converges to 1.

V1≤1时,

Figure BDA0002338929550000179
V1将在
Figure BDA00023389295500001710
后收敛到0。When V 1 ≤ 1,
Figure BDA0002338929550000179
V1 will be in
Figure BDA00023389295500001710
then converges to 0.

所以经过时间

Figure BDA00023389295500001711
后,V1,S1都会收敛于0。so over time
Figure BDA00023389295500001711
After that, V 1 , S 1 will converge to 0.

由S1=0,得

Figure BDA00023389295500001712
令ep=p-pd,ev=v-vd,则
Figure BDA00023389295500001713
From S 1 =0, we get
Figure BDA00023389295500001712
Let e p =pp d , e v =vv d , then
Figure BDA00023389295500001713

同理经过时间

Figure BDA00023389295500001714
后,ep和ev都会收敛于0。Similarly elapsed time
Figure BDA00023389295500001714
After that, both e p and e v will converge to 0.

位置速度控制环收敛时间为:The convergence time of the position-velocity control loop is:

Figure BDA00023389295500001715
Figure BDA00023389295500001715

同理姿态角控制环收敛时间为:Similarly, the convergence time of the attitude angle control loop is:

Figure BDA00023389295500001716
Figure BDA00023389295500001716

由于角度、角速度误差先收敛,然后位置和速度误差才会收敛,并且扰动收敛时间T1、T2与控制输入量无关,则所述轨迹跟踪收敛总时间表示为:Since the angle and angular velocity errors converge first, and then the position and velocity errors converge, and the disturbance convergence time T 1 and T 2 are independent of the control input, the total time for the trajectory tracking convergence is expressed as:

T≤max(T1,T2)+T3+T4T≤max(T 1 , T 2 )+T 3 +T 4 .

如图7所示,任务空间中位置和姿态角的跟踪轨迹图,在所设计的基于估计器的固定时间控制器的作用下,任务空间中位置和姿态角都在固定时间(8秒内)收敛于其对应的跟踪目标轨迹。基于图6和图7,得到无人机的控制输入,包括合力控制量和所有力矩控制量,如图8所示,最终得到任务空间中位置和姿态角轨迹跟踪图,如图9所示,图9整体和图7仿真的结果很接近,仅仅因为传感器精度问题造成位置和姿态角跟踪有微小的误差,除去这一因素带来的误差,位置和姿态角都可以在固定时间(8秒内)收敛于其对应的跟踪目标轨迹,其结果可支撑本实施例方法的控制效果。As shown in Figure 7, the tracking trajectory of the position and attitude angle in the task space, under the action of the designed estimator-based fixed-time controller, the position and attitude angle in the task space are both within a fixed time (within 8 seconds) converges to its corresponding tracked target trajectory. Based on Figure 6 and Figure 7, the control input of the UAV is obtained, including the resultant force control amount and all torque control amounts, as shown in Figure 8, and finally the trajectory tracking diagram of the position and attitude angle in the task space is obtained, as shown in Figure 9, Figure 9 as a whole is very close to the simulation results in Figure 7. There is only a small error in the tracking of the position and attitude angle due to the accuracy of the sensor. Excluding the error caused by this factor, the position and attitude angle can be tracked within a fixed time (within 8 seconds). ) converges to its corresponding tracking target trajectory, and the result can support the control effect of the method of this embodiment.

实施例二Embodiment 2

一种存储介质,存储介质中存储有指令,当计算机读取所述指令时,使所述计算机执行上述如实施例一所述的一种四旋翼无人机轨迹跟踪控制方法。A storage medium, where instructions are stored in the storage medium, and when a computer reads the instructions, the computer is made to execute the above-mentioned method for tracking and controlling the trajectory of a quadrotor unmanned aerial vehicle as described in the first embodiment.

相关技术方案同实施例一,在此不再赘述。The related technical solutions are the same as those in the first embodiment, and are not repeated here.

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.

Claims (10)

1.一种四旋翼无人机轨迹跟踪控制方法,其特征在于,包括:1. a four-rotor unmanned aerial vehicle trajectory tracking control method, is characterized in that, comprises: 基于期望位置及其对应的速度和加速度以及实时采集的实际位置及其对应的速度和角度,采用位置速度控制环,实时估计该环路的扰动,并基于该扰动的估计量,计算无人机的合力控制量以及参考第一角度及其对应的角速度和角加速度,其中,所述第一角度为横滚角度和俯仰角度,该环路的扰动估计误差在固定时间内收敛到零;Based on the desired position and its corresponding velocity and acceleration, as well as the actual position collected in real time and its corresponding velocity and angle, a position-velocity control loop is used to estimate the disturbance of the loop in real time, and based on the estimated amount of the disturbance, calculate the UAV The resultant force control amount and the reference first angle and its corresponding angular velocity and angular acceleration, wherein, the first angle is the roll angle and the pitch angle, and the disturbance estimation error of the loop converges to zero within a fixed time; 基于所述参考第一角度及其对应的角速度和角加速度、期望第二角度其对应的角速度和角加速度以及实际角度及其对应的角速度,采用姿态角控制环,实时估计该环路的扰动,并基于该扰动的估计量,分别计算无人机绕机体坐标系x、y、z轴转动的力矩控制量,其中,所述第二角度为偏航角度,该环路的扰动估计误差在固定时间内收敛到零;Based on the reference first angle and its corresponding angular velocity and angular acceleration, the expected second angle and its corresponding angular velocity and angular acceleration, and the actual angle and its corresponding angular velocity, an attitude angle control loop is used to estimate the disturbance of the loop in real time, And based on the estimated amount of the disturbance, the torque control amount of the UAV rotating around the x, y, and z axes of the body coordinate system is calculated respectively, wherein the second angle is the yaw angle, and the disturbance estimation error of the loop is fixed. converges to zero in time; 基于所述合力控制量和所述力矩控制量,控制无人机轨迹跟踪,其中,无人机的角度、角速度误差以及位置、速度误差均在固定时间内收敛到零。Based on the resultant force control amount and the torque control amount, the trajectory tracking of the UAV is controlled, wherein the angle, angular velocity errors, and position and velocity errors of the UAV converge to zero within a fixed time. 2.根据权利要求1所述的一种四旋翼无人机轨迹跟踪控制方法,其特征在于,所述位置速度控制环包括用于使得该环路的扰动估计误差在第一固定时间T1内收敛到零的状态估计器,表示为:2. A kind of quadrotor unmanned aerial vehicle trajectory tracking control method according to claim 1, is characterized in that, described position speed control loop comprises and is used to make the disturbance estimation error of this loop within the first fixed time T 1 A state estimator that converges to zero, expressed as:
Figure FDA0002338929540000011
Figure FDA0002338929540000011
其中,
Figure FDA0002338929540000012
为该环路的实际扰动D1的估计量,在初始时刻t0,该环路的实际扰动量D1为零,L1为该环路的实际扰动各分量变化率的上界;ki,i=1,2,3为控制增益常数;
Figure FDA0002338929540000013
k2>0,k3>4L1,0<μ1<1,λ1>1,v为无人机的实际速度矢量,vd为无人机的期望速度矢量,g为重力加速度,u1为所述合力控制量,ez表示大地坐标系下z轴的单位矢量,m为无人机质量,R∈R3×3为依次以机体坐标系的z、y、x顺序旋转的旋转矩阵,ad为无人机的期望加速度矢量;
in,
Figure FDA0002338929540000012
is the estimator of the actual disturbance D 1 of the loop. At the initial time t 0 , the actual disturbance D 1 of the loop is zero, and L 1 is the upper bound of the rate of change of the actual disturbance components of the loop; k i , i=1,2,3 is the control gain constant;
Figure FDA0002338929540000013
k 2 > 0, k 3 > 4L 1 , 0 < μ 1 <1, λ 1 > 1, v is the actual velocity vector of the drone, v d is the expected velocity vector of the drone, g is the acceleration of gravity, u 1 is the control amount of the resultant force, e z represents the unit vector of the z-axis in the geodetic coordinate system, m is the mass of the drone, R∈R 3×3 is the rotation in the order of z, y, and x of the body coordinate system. matrix, a d is the expected acceleration vector of the UAV;
则所述第一固定时间T1表示为:Then the first fixed time T1 is expressed as:
Figure FDA0002338929540000021
Figure FDA0002338929540000021
3.根据权利要求2所述的一种四旋翼无人机轨迹跟踪控制方法,其特征在于,所述合力控制量u1表示为:3. a kind of quadrotor unmanned aerial vehicle trajectory tracking control method according to claim 2, is characterized in that, described resultant force control quantity u 1 is expressed as:
Figure FDA0002338929540000022
Figure FDA0002338929540000022
Figure FDA0002338929540000023
Figure FDA0002338929540000023
Figure FDA0002338929540000024
Figure FDA0002338929540000024
其中,αi>0,βi>0,0<ni<mi,0<pi<qi,i=1,2,mi,ni,pi,qi均为正奇数;p为无人机的实际位置,pd为无人机的期望位置,ev为无人机的速度误差,S1为该环路的预设滑模面。Wherein, α i >0, β i >0, 0<n i <m i , 0<p i <q i , i=1, 2, and m i , n i , p i , and q i are all positive odd numbers; p is the actual position of the UAV, p d is the desired position of the UAV, e v is the speed error of the UAV, and S 1 is the preset sliding surface of the loop.
4.根据权利要求3所述的一种四旋翼无人机轨迹跟踪控制方法,其特征在于,所述参考第一角度的计算表达式为:4. a kind of quadrotor unmanned aerial vehicle trajectory tracking control method according to claim 3, is characterized in that, described with reference to the calculation expression of the first angle is:
Figure FDA0002338929540000025
Figure FDA0002338929540000025
其中,ψ为大地坐标系下的偏航角度。Among them, ψ is the yaw angle in the geodetic coordinate system.
5.根据权利要求4所述的一种四旋翼无人机轨迹跟踪控制方法,其特征在于,所述位置速度控制环控制的位置和速度误差在第四固定时间T4内收敛于零,表达式为:5. a kind of quadrotor unmanned aerial vehicle trajectory tracking control method according to claim 4, is characterized in that, the position and speed error controlled by described position speed control loop converges to zero in the 4th fixed time T 4 , expression The formula is:
Figure FDA0002338929540000031
Figure FDA0002338929540000031
6.根据权利要求5所述的一种四旋翼无人机轨迹跟踪控制方法,其特征在于,所述姿态角控制环节包括用于使得该环路的扰动估计误差在第二固定时间T2内收敛到零的间状态估计器表示为:6. a kind of quadrotor unmanned aerial vehicle trajectory tracking control method according to claim 5, is characterized in that, described attitude angle control link comprises for making the disturbance estimation error of this loop in the second fixed time T 2 The inter-state estimator that converges to zero is expressed as:
Figure FDA0002338929540000032
Figure FDA0002338929540000032
其中,
Figure FDA0002338929540000033
为WD2的估计量,D2为该环路的实际扰动,L2为该环路的实际扰动各分量变化率的上界,在初始时刻t0,该环路的实际扰动量D2为零,W为坐标系变换矩阵,I为单位矩阵,Ω为机体坐标系下的实际角速度矢量,
Figure FDA0002338929540000034
为在大地坐标系下的无人机的期望角速度矢量,τ'为该环的滑模控制律;ki,i=4,5,6为控制增益常数,
Figure FDA0002338929540000035
k5>0,k6>4L2,0<μ2<1,λ2>1;
in,
Figure FDA0002338929540000033
is the estimator of WD 2 , D 2 is the actual disturbance of the loop, L 2 is the upper bound of the rate of change of each component of the actual disturbance of the loop, and at the initial time t 0 , the actual disturbance of the loop D 2 is zero, W is the coordinate system transformation matrix, I is the unit matrix, Ω is the actual angular velocity vector in the body coordinate system,
Figure FDA0002338929540000034
is the expected angular velocity vector of the UAV in the geodetic coordinate system, τ' is the sliding mode control law of the loop; k i , i=4, 5, 6 are the control gain constants,
Figure FDA0002338929540000035
k 5 >0, k 6 >4L 2 , 0<μ 2 <1, λ 2 >1;
则所述第二固定时间T2表示为:Then the second fixed time T 2 is expressed as:
Figure FDA0002338929540000036
Figure FDA0002338929540000036
7.根据权利要求6所述的一种四旋翼无人机轨迹跟踪控制方法,其特征在于,所述无人机绕机体坐标系x、y、z轴转动的力矩控制量分别为u2、u3、u4,表示为:[u2,u3,u4]T=τ;τ=I- 1Wτ';7. a kind of quadrotor unmanned aerial vehicle trajectory tracking control method according to claim 6, is characterized in that, described unmanned aerial vehicle is rotated around body coordinate system x, y, the moment control amount of z axis is respectively u 2 , u 3 , u 4 , expressed as: [u 2 , u 3 , u 4 ] T = τ; τ = I - 1 Wτ';
Figure FDA0002338929540000037
Figure FDA0002338929540000037
Figure FDA0002338929540000038
Figure FDA0002338929540000038
其中,αi>0,βi>0,0<ni<mi,0<pi<qi,i=3,4,mi,ni,pi,qi均为正奇数;Θ为在大地坐标系下的无人机的实际角度矢量,Θd为在大地坐标系下的无人机的期望角度矢量,
Figure FDA0002338929540000041
为在大地坐标系下的无人机的期望角加速度矢量,
Figure FDA0002338929540000042
为W的导数,
Figure FDA0002338929540000043
S2为该环路的预设滑模面。
Wherein, α i > 0, β i > 0, 0 < n i <m i , 0 < p i <q i , i=3, 4, and m i , n i , p i , and q i are all positive odd numbers; Θ is the actual angle vector of the UAV under the geodetic coordinate system, Θd is the desired angle vector of the UAV under the geodetic coordinate system,
Figure FDA0002338929540000041
is the expected angular acceleration vector of the UAV in the geodetic coordinate system,
Figure FDA0002338929540000042
is the derivative of W,
Figure FDA0002338929540000043
S 2 is the preset sliding surface of the loop.
8.根据权利要求7所述的一种四旋翼无人机轨迹跟踪控制方法,其特征在于,所述姿态角控制环控制的角度、角速度误差在第三固定时间T3内收敛于零,T3的表达式为:8. a kind of quadrotor unmanned aerial vehicle trajectory tracking control method according to claim 7, is characterized in that, the angle that described attitude angle control loop controls, angular velocity error converges to zero in the 3rd fixed time T 3 , T The expression for 3 is:
Figure FDA0002338929540000044
Figure FDA0002338929540000044
9.根据权利要求8所述的一种四旋翼无人机轨迹跟踪控制方法,其特征在于,所述轨迹跟踪总的收敛时间T≤max(T1,T2)+T3+T49 . The trajectory tracking control method for a quadrotor UAV according to claim 8 , wherein the total convergence time of the trajectory tracking is T≦max(T 1 , T 2 )+T 3 +T 4 . 10 . 10.一种存储介质,其特征在于,所述存储介质中存储有指令,当计算机读取所述指令时,使所述计算机执行上述如权利要求1至9任一项所述的一种四旋翼无人机轨迹跟踪控制方法。10. A storage medium, characterized in that, the storage medium stores instructions, and when a computer reads the instructions, the computer is made to execute one of the four methods according to any one of claims 1 to 9. Rotor UAV trajectory tracking control method.
CN201911367910.2A 2019-12-26 2019-12-26 A kind of quadrotor UAV trajectory tracking control method Active CN111026160B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911367910.2A CN111026160B (en) 2019-12-26 2019-12-26 A kind of quadrotor UAV trajectory tracking control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911367910.2A CN111026160B (en) 2019-12-26 2019-12-26 A kind of quadrotor UAV trajectory tracking control method

Publications (2)

Publication Number Publication Date
CN111026160A true CN111026160A (en) 2020-04-17
CN111026160B CN111026160B (en) 2020-12-08

Family

ID=70214743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911367910.2A Active CN111026160B (en) 2019-12-26 2019-12-26 A kind of quadrotor UAV trajectory tracking control method

Country Status (1)

Country Link
CN (1) CN111026160B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650951A (en) * 2020-05-22 2020-09-11 南京航空航天大学 A full-loop composite dynamic inverse tracking control method for complex trajectory of quadrotor UAV
CN111665870A (en) * 2020-06-24 2020-09-15 深圳市道通智能航空技术有限公司 Trajectory tracking method and unmanned aerial vehicle
CN111948935A (en) * 2020-08-03 2020-11-17 曾喆昭 Self-coupling PD control theory method of under-actuated VTOL aircraft
CN112269401A (en) * 2020-09-04 2021-01-26 河南大学 Adaptive Active Sensor Tracking Method Based on Tracking Accuracy and Risk Control
CN112650303A (en) * 2021-01-20 2021-04-13 南京航空航天大学 Unmanned aerial vehicle formation fault-tolerant control method based on fixed time technology
CN114564047A (en) * 2022-04-28 2022-05-31 北京航空航天大学 A constant velocity flight control method for unmanned aerial vehicles considering meteorological conditions

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018572A2 (en) * 2004-11-08 2007-02-15 Bell Helicopter Textron Inc. Flight system with three feedback control loops
CN104865968A (en) * 2015-04-22 2015-08-26 浙江工业大学 Quad-rotor aircraft hovering control method employing cascade auto disturbances rejection control technology
US20170153650A1 (en) * 2015-11-30 2017-06-01 Metal Industries Research & Development Centre Multiple rotors aircraft and control method
CN106933104A (en) * 2017-04-21 2017-07-07 苏州工业职业技术学院 A kind of quadrotor attitude based on DIC PID and the mixing control method of position
CN106970646A (en) * 2017-05-23 2017-07-21 四川理工学院 Quadrotor control method based on Adaptive Integral contragradience
CN107608367A (en) * 2017-09-06 2018-01-19 天津大学 The rotor wing unmanned aerial vehicle track of multivariable interference compensation four and posture cooperative control method
CN108594837A (en) * 2018-02-12 2018-09-28 山东大学 Model-free quadrotor UAV trajectory tracking controller and method based on PD-SMC and RISE
US20190033892A1 (en) * 2017-07-27 2019-01-31 Intel Corporation Trajectory tracking controllers for rotorcraft unmanned aerial vehicles (uavs)
WO2019055025A1 (en) * 2017-09-15 2019-03-21 Sanyal Amit K Integrated guidance and feedback control for autonomous vehicle
CN109597426A (en) * 2018-11-13 2019-04-09 上海无线电设备研究所 Based on L1The four-rotor helicopter Trajectory Tracking Control method of self adaptive control
CN109901606A (en) * 2019-04-11 2019-06-18 大连海事大学 Mixed finite time control method for four-rotor precise trajectory tracking
US20190264864A1 (en) * 2016-02-26 2019-08-29 Sz Dji Osmo Technology Co., Ltd. Method and system for stabilizing a payload
KR20190107422A (en) * 2018-03-12 2019-09-20 광주과학기술원 A device for positioning and tracking control based RF of multi unnamed aerial vehicle
CN110275542A (en) * 2019-06-14 2019-09-24 合肥工业大学 A Control Method of Quadrotor Aircraft Based on Adaptive Finite Time Control
CN110456816A (en) * 2019-07-05 2019-11-15 哈尔滨工程大学 A quadrotor trajectory tracking control method based on continuous terminal sliding mode

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018572A2 (en) * 2004-11-08 2007-02-15 Bell Helicopter Textron Inc. Flight system with three feedback control loops
CN104865968A (en) * 2015-04-22 2015-08-26 浙江工业大学 Quad-rotor aircraft hovering control method employing cascade auto disturbances rejection control technology
US20170153650A1 (en) * 2015-11-30 2017-06-01 Metal Industries Research & Development Centre Multiple rotors aircraft and control method
US20190264864A1 (en) * 2016-02-26 2019-08-29 Sz Dji Osmo Technology Co., Ltd. Method and system for stabilizing a payload
CN106933104A (en) * 2017-04-21 2017-07-07 苏州工业职业技术学院 A kind of quadrotor attitude based on DIC PID and the mixing control method of position
CN106970646A (en) * 2017-05-23 2017-07-21 四川理工学院 Quadrotor control method based on Adaptive Integral contragradience
US20190033892A1 (en) * 2017-07-27 2019-01-31 Intel Corporation Trajectory tracking controllers for rotorcraft unmanned aerial vehicles (uavs)
CN107608367A (en) * 2017-09-06 2018-01-19 天津大学 The rotor wing unmanned aerial vehicle track of multivariable interference compensation four and posture cooperative control method
WO2019055025A1 (en) * 2017-09-15 2019-03-21 Sanyal Amit K Integrated guidance and feedback control for autonomous vehicle
CN108594837A (en) * 2018-02-12 2018-09-28 山东大学 Model-free quadrotor UAV trajectory tracking controller and method based on PD-SMC and RISE
KR20190107422A (en) * 2018-03-12 2019-09-20 광주과학기술원 A device for positioning and tracking control based RF of multi unnamed aerial vehicle
CN109597426A (en) * 2018-11-13 2019-04-09 上海无线电设备研究所 Based on L1The four-rotor helicopter Trajectory Tracking Control method of self adaptive control
CN109901606A (en) * 2019-04-11 2019-06-18 大连海事大学 Mixed finite time control method for four-rotor precise trajectory tracking
CN110275542A (en) * 2019-06-14 2019-09-24 合肥工业大学 A Control Method of Quadrotor Aircraft Based on Adaptive Finite Time Control
CN110456816A (en) * 2019-07-05 2019-11-15 哈尔滨工程大学 A quadrotor trajectory tracking control method based on continuous terminal sliding mode

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
XIAOLIN AI 等: "Fixed-time trajectory tracking for a quadrotor with external disturbances:A flatness-based sliding mode control approach", 《AEROSPACE SCIENCE AND TECHNOLOGY》 *
ZHENG ZHANG 等: "Multivariable sliding mode backstepping controller design for quadrotor UAV based on disturbance observer", 《SCIENCE CHINA INFORMATION SCIENCES》 *
姜明瑞: "四旋翼无人机轨迹跟踪控制系统设计", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
王春阳 等: "四旋翼无人机轨迹跟踪控制系统设计", 《电光与控制》 *
范云生 等: "四旋翼飞行器轨迹跟踪控制器的设计与验证", 《仪器仪表学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650951A (en) * 2020-05-22 2020-09-11 南京航空航天大学 A full-loop composite dynamic inverse tracking control method for complex trajectory of quadrotor UAV
CN111650951B (en) * 2020-05-22 2021-09-17 南京航空航天大学 Full-loop composite dynamic inverse tracking control method for complex track of quad-rotor unmanned aerial vehicle
CN111665870A (en) * 2020-06-24 2020-09-15 深圳市道通智能航空技术有限公司 Trajectory tracking method and unmanned aerial vehicle
CN111948935A (en) * 2020-08-03 2020-11-17 曾喆昭 Self-coupling PD control theory method of under-actuated VTOL aircraft
CN112269401A (en) * 2020-09-04 2021-01-26 河南大学 Adaptive Active Sensor Tracking Method Based on Tracking Accuracy and Risk Control
CN112269401B (en) * 2020-09-04 2021-07-20 河南大学 Adaptive Active Sensor Tracking Method Based on Tracking Accuracy and Risk Control
CN112650303A (en) * 2021-01-20 2021-04-13 南京航空航天大学 Unmanned aerial vehicle formation fault-tolerant control method based on fixed time technology
CN114564047A (en) * 2022-04-28 2022-05-31 北京航空航天大学 A constant velocity flight control method for unmanned aerial vehicles considering meteorological conditions
CN114564047B (en) * 2022-04-28 2022-08-16 北京航空航天大学 A constant velocity flight control method for unmanned aerial vehicles considering meteorological conditions

Also Published As

Publication number Publication date
CN111026160B (en) 2020-12-08

Similar Documents

Publication Publication Date Title
CN111026160B (en) A kind of quadrotor UAV trajectory tracking control method
Chen et al. A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer
CN107479567B (en) Attitude controller and method for quad-rotor unmanned aerial vehicle with unknown dynamic characteristics
CN111984024B (en) Disturbance and uncertainty control method based on operation type flying robot
Omari et al. Hardware and software architecture for nonlinear control of multirotor helicopters
CN105759832A (en) Four-rotor aircraft sliding mode variable structure control method based on inversion method
CN108638068B (en) A design method of a flying robot control system carrying a redundant manipulator
CN108594837A (en) Model-free quadrotor UAV trajectory tracking controller and method based on PD-SMC and RISE
CN106707749B (en) A kind of control method for bionic flapping-wing flying robot
CN112558621A (en) Decoupling control-based flying mechanical arm system
CN106802570B (en) Method and device for tracking position of unmanned helicopter
Fang et al. Adaptive backstepping control of an indoor micro-quadrotor
CN110703603B (en) A control method of multi-layer recursive convergent neural network controller for unmanned aerial vehicle
Yan et al. Adaptive tracking flight control for unmanned autonomous helicopter with full state constraints and actuator faults
CN104536448B (en) Backstepping based control method for unmanned-plane attitude system
CN110377044B (en) Finite time height and attitude tracking control method of unmanned helicopter
CN117742156B (en) Four-rotor unmanned aerial vehicle control method and system based on RBF neural network
CN111506099A (en) Intelligent control system and method for height of unmanned aerial vehicle
Basri et al. Stabilization and trajectory tracking control for underactuated quadrotor helicopter subject to wind-gust disturbance
Brahim et al. Finite time adaptive smc for uav trajectory tracking under unknown disturbances and actuators constraints
CN111007877A (en) Global robust self-adaptive trajectory tracking control method of four-rotor aircraft
CN107247464B (en) A state-limited control method and system for a quadrotor unmanned aerial vehicle
CN110275542B (en) Four-rotor aircraft control method based on self-adaptive finite time control
CN118444578B (en) Adaptive UAV control method and system based on back propagation neural network
Mancinelli et al. Unified incremental nonlinear controller for the transition control of a hybrid dual-axis tilting rotor quad-plane

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant