CN111019975B - 一种厌氧转化剩余污泥为甲烷和有机酸的方法 - Google Patents

一种厌氧转化剩余污泥为甲烷和有机酸的方法 Download PDF

Info

Publication number
CN111019975B
CN111019975B CN201911291085.2A CN201911291085A CN111019975B CN 111019975 B CN111019975 B CN 111019975B CN 201911291085 A CN201911291085 A CN 201911291085A CN 111019975 B CN111019975 B CN 111019975B
Authority
CN
China
Prior art keywords
sludge
organic acid
excess sludge
culture medium
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911291085.2A
Other languages
English (en)
Other versions
CN111019975A (zh
Inventor
张放
曾建雄
张伟
戴昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Agriculture and Forestry University
Original Assignee
Fujian Agriculture and Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Agriculture and Forestry University filed Critical Fujian Agriculture and Forestry University
Priority to CN201911291085.2A priority Critical patent/CN111019975B/zh
Publication of CN111019975A publication Critical patent/CN111019975A/zh
Application granted granted Critical
Publication of CN111019975B publication Critical patent/CN111019975B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/52Propionic acid; Butyric acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/54Acetic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

本发明提供了一种厌氧转化剩余污泥为甲烷和有机酸的方法,包括以下步骤:S1:取污泥,过铁筛,用培养基悬浮,振荡混合均匀,离心去上清,重复以上操作若干次;S2:将步骤S1得到的污泥接种于培养瓶中,加入培养基,并在培养基中加入海藻酸钠,通入过量的氮气和二氧化碳的混合气体,密封培养瓶,在温度为34~36℃的条件下连续培养280~320天,进行污泥多糖水解菌群富集;S3:将步骤S2富集的污泥多糖水解菌群接种于厌氧反应器中,以剩余污泥为底物,接种量为80~125mL/L,通入过量的氮气和二氧化碳的混合气体,将厌氧反应器密封,在温度为34~36℃的条件下培养2~7天,得到代谢产物甲烷和有机酸。该方法条件温和、成本低。

Description

一种厌氧转化剩余污泥为甲烷和有机酸的方法
技术领域
本发明涉及一种厌氧转化剩余污泥为甲烷和有机酸的方法,属于微生 物技术领域。
背景技术
剩余污泥(excess activated sludge),是指活性污泥系统中从二次沉淀池(或沉淀区)排出系统外的活性污泥。剩余污泥处置是我国环境治理领域面临的 重要问题之一,据估算2018年剩余污泥(80%含水率)的产生量超过1亿吨。 国家《生态环境保护规划》要求大力推进污泥稳定化、无害化和资源化处理 处置,地级及以上城市污泥无害化处理率达到90%。但是,目前污泥的处理 以堆埋、焚烧、农业堆肥和自然干化为主,所需费用较高(占污水处理厂总运 行费用的50-60%)。
剩余污泥的有机成分复杂,包括细胞,胞外聚合物(EPS)和少量纤维素 等。其中EPS占污泥有机质干重的50-80%,具有维持微生物聚集体结构和 保持其功能的完整性的作用。EPS的主要成分是胞外多糖(PS,10-30%)与蛋 白质(PN,40%-60%),并且,PS含有中含有海藻酸钠和黄原胶等多糖成分。
生物处理方法,比如混菌发酵的方法具有针对性强和成本较低等优 势,但是,现有技术中还没有成熟的应用于剩余污泥的混菌发酵的方法。
发明内容
本发明提供了一种厌氧转化剩余污泥为甲烷和有机酸的方法,可以有 效解决上述问题。
本发明是这样实现的:
一种厌氧转化剩余污泥为甲烷和有机酸的方法,包括以下步骤:
S1:取污泥,过铁筛,用培养基悬浮,振荡混合均匀,离心去上清, 重复以上操作若干次;
S2:将步骤S1得到的污泥接种于培养瓶中,加入培养基,并在培养基 中加入海藻酸钠,通入过量的氮气和二氧化碳的混合气体,密封培养瓶, 在温度为34~36℃的条件下连续培养280~320天,进行污泥多糖水解菌群富 集;
S3:将步骤S2富集的污泥多糖水解菌群接种于厌氧反应器中,以剩余 污泥为底物,接种量为80~125mL/L,通入过量的氮气和二氧化碳的混合气 体,将厌氧反应器密封,在温度为34~36℃的条件下培养2~7天,得到代谢 产物甲烷和有机酸。
作为进一步改进的,在步骤S1中,所述污泥为剩余污泥。
作为进一步改进的,在步骤S1中,所述铁筛为200目铁筛。
作为进一步改进的,在步骤S1中,所述离心为5500~6500rpm离心 4~6min。
作为进一步改进的,所述培养基的配方为NH4Cl 450~550mg/L; KH2PO4 180~220mg/L;Na2SO4 45~55mg/L;KCl 45~55mg/L;CaCl2 8~12 mg/L;MgCl2 .6H2O 65~75mg/L;MnCl2 .4H2O 0.6~1mg/L;CoCl2 .2H2O 1.0~1.4 mg/L;FeSO4 .7H2O 3.0~3.4mg/L;AlCl30.4~0.6mg/L;NaMO4 .2H2O 0.05~0.15 mg/L;H3BO3 0.1~0.25mg/L;NiCl2 .6H2O 0.4~0.6mg/L;CuCl2 .2H2O 1.0~1.2 mg/L;ZnSO4 .2H2O 3.0~3.5mg/L;EDTA-2Na 2.8~3.2mg/L。
作为进一步改进的,所述培养基通过酸或碱调节pH为7.0~7.4。
作为进一步改进的,所述海藻酸钠的在培养基中的浓度为1~3g/L。
作为进一步改进的,所述氮气和二氧化碳的混合气体中氮气和二氧化 碳的体积比70~85%:15~25%。
作为进一步改进的,所述有机酸为乙酸、丙酸、丁酸或己酸中的一种 或多种。
本发明的有益效果是:
本发明厌氧转化剩余污泥为甲烷和有机酸的方法能够快速水解转化剩 余污泥。
本发明厌氧转化剩余污泥为甲烷和有机酸的方法能够转化剩余污泥为 烷,氢气,乙酸,丙酸,丁酸,己酸,乙醇和丁醇等产品,能够变废为宝。
本发明厌氧转化剩余污泥为甲烷和有机酸的方法相对于碱处理、高温 处理等常规剩余污泥预处理方式,具有运行条件温和运行成本低等优势。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中 所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的 某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员 来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关 的附图。
图1是本发明实施例的污泥多糖水解菌群SPHB降解剩余污泥的厌氧 反应器装置图。
图2本发明实施例的污泥多糖水解菌群SPHB的扫描电镜照片。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合 本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完 整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全 部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范 围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基 于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施方式,如改变污泥来源、反应器运行模式(UASB、 SBR和EGSB等)都属于本发明保护的范围。
实施例1
污泥接种自福州金山污水处理厂的剩余污泥(20mL),将污泥过200 目铁筛以去除非生物杂质,并利用50mL无机盐厌氧培养基(pH值为7.2, 其组成为NH4Cl 500mg/L;KH2PO4200mg/L;Na2SO4 50mg/L;KCl 50mg/L; CaCl2 10mg/L;MgCl2.6H2O 70mg/L;MnCl2.4H2O0.8mg/L;CoCl2.2H2O 1.2 mg/L;FeSO4.7H2O 3.2mg/L;AlCl3 0.5mg/L;NaMO4.2H2O 0.1mg/L;H3BO3 0.2mg/L;NiCl2.6H2O 0.5mg/L;CuCl2.2H2O 1.1mg/L;ZnSO4.2H2O 3.2mg/L; EDTA-2Na 3.0mg/L)悬浮污泥,涡流振荡混合均匀,放置离心机6000rpm, 5分钟离心,去除上清液;上述步骤重复3次,确保有机质以及其他干扰结 果因素去除。
之后,将清洗过后的污泥接种于1L的厌氧反应器中,并加入0.5g海藻 酸钠和250mL上述厌氧培养基,确保加入的微生物量在1.5-2g/L左右。通 入50L(氮气/二氧化碳=80%/20%)混合气,排除反应器中原有的空气。 将上述厌氧反应器用丁基橡胶塞和铝帽密封,并维持温度为35℃。每隔2 天分析主要代谢产物,包括甲烷和氢气采用气相色谱仪(SP6890,山东鲁南 瑞虹化工仪器有限公司)分析。乙酸,丙酸,丁酸,己酸,乙醇和丁醇等采用气相色谱仪(GC7890,安捷伦科技(中国)有限公司)分析。连续培养 300天,得到SPHB菌群。
在如图1所示的厌氧反应器中,接种上述富集得到的SPHB菌群5mL, 以福州金山污水处理厂的二沉池剩余污泥(55mL)为底物,通入过量的氮 气和二氧化碳的混合气体(氮气/二氧化碳=80%/20%),将厌氧反应器密 封,培养3天。经检测,主要代谢产物包括甲烷(1.2mM),中间代谢产物 包括氢气(0.8mM)和乙酸(186mg/L)等产品;而当加入2-溴乙基磺酸 钠抑制产甲烷菌活性后,代谢产物中不含有甲烷,主要包括氢气(1.56mM), 乙酸(250mg/L),丙酸(280mg/L),丁酸(440mg/L),己酸(17mg/L), 乙醇(80mg/L)和丁醇(60mg/L)等产品。
所述甲烷和氢气采用气相色谱仪(SP6890,山东鲁南瑞虹化工仪器有限 公司)检测。该仪器主要仪器参数如下:包括双路热导池的检测器和两根 长度为2m填充
Figure BDA0002319115980000051
分子筛的不锈钢气相色谱分离柱。氢气的测定条件为: 进样口、柱温箱和热导池温度分别为60、80和100℃;用氮气气作为载气; 气体的进样量为1mL。气相中甲烷的测定条件改为:进样口、柱温箱和热 导池温度分别为120、120和130℃;用氢气作为载气;气体的进样量为1 mL。乙酸,丙酸,丁酸,己酸,乙醇和丁醇等采用气相色谱仪(GC7890,安 捷伦科技(中国)有限公司)进行检测。该仪器主要包括火焰离子化检测器、 自动进样系统和色谱柱(30m×0.25mm×0.25μm的熔融硅胶毛细管色谱柱(DB-FFAP))。测定条件简述如下:采用程序升温方式控制柱温箱温度,初 温为70℃并保持3分钟,然后以20℃/分钟的速度升高到180℃,并保持3分钟;进样口和检测器的温度分别设定为250和300℃;载气是高纯N2 (>99.99%)。液相样品测定之前先用0.45μm微滤膜过滤,然后用3%的甲 酸溶液稀释和酸化。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对 于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的 精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发 明的保护范围之内。

Claims (6)

1.一种厌氧转化剩余污泥为有机酸的方法,其特征在于: 包括以下步骤:
S1:取污泥,过铁筛,用培养基悬浮,振荡混合均匀,离心去上清,重复以上操作若干次;
S2:将步骤S1得到的污泥接种于培养瓶中,加入培养基,并在培养基中加入海藻酸钠,通入过量的氮气和二氧化碳的混合气体,密封培养瓶,在温度为34~36℃的条件下连续培养280~320天,进行污泥多糖水解菌群富集;所述培养基的配方为NH4Cl 450~550 mg/L;KH2PO180~220 mg/L; Na2SO4 45~55 mg/L; KCl 45~55 mg/L; CaCl2 8~12 mg/L;MgCl2 .6H2O 65~75 mg/L; MnCl2 .4H2O 0.6~1 mg/L; CoCl2 .2H2O 1.0~1.4 mg/L; FeSO4 .7H2O3.0~3.4 mg/L; AlCl3 0.4~0.6 mg/L; NaMO4 .2H2O 0.05~0.15 mg/L; H3BO3 0.1~0.25 mg/L; NiCl2 .6H2O 0.4~0.6 mg/L; CuCl2 .2H2O 1.0~1.2 mg/L; ZnSO4 .2H2O 3.0~3.5 mg/L;EDTA-2Na 2.8~3.2 mg/L;
S3:将步骤S2富集的污泥多糖水解菌群接种于厌氧反应器中,以剩余污泥为底物,接种量为80~125 mL/L,通入过量的氮气和二氧化碳的混合气体,加入2-溴乙基磺酸钠,将厌氧反应器密封,在温度为34~36℃的条件下培养2~7天,得到代谢产物为有机酸;所述有机酸为丙酸、丁酸中的一种或多种;
所述氮气和二氧化碳的混合气体中氮气和二氧化碳的体积比70%~85%:15%~25%。
2.根据权利要求1所述的厌氧转化剩余污泥为有机酸的方法,其特征在于:在步骤S1中,所述污泥为剩余污泥。
3.根据权利要求1所述的厌氧转化剩余污泥为甲烷和有机酸的方法,其特征在于:在步骤S1中,所述铁筛为200目铁筛。
4.根据权利要求1所述的厌氧转化剩余污泥为甲烷和有机酸的方法,其特征在于:在步骤S1中,所述离心为5500~6500 rpm离心4~6min。
5.根据权利要求1所述的厌氧转化剩余污泥为有机酸的方法,其特征在于:所述培养基通过酸或碱调节pH为7.0~7.4。
6.根据权利要求1所述的厌氧转化剩余污泥为有机酸的方法,其特征在于:所述海藻酸钠的在培养基中的浓度为1~3g/L。
CN201911291085.2A 2019-12-16 2019-12-16 一种厌氧转化剩余污泥为甲烷和有机酸的方法 Active CN111019975B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911291085.2A CN111019975B (zh) 2019-12-16 2019-12-16 一种厌氧转化剩余污泥为甲烷和有机酸的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911291085.2A CN111019975B (zh) 2019-12-16 2019-12-16 一种厌氧转化剩余污泥为甲烷和有机酸的方法

Publications (2)

Publication Number Publication Date
CN111019975A CN111019975A (zh) 2020-04-17
CN111019975B true CN111019975B (zh) 2023-05-09

Family

ID=70211052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911291085.2A Active CN111019975B (zh) 2019-12-16 2019-12-16 一种厌氧转化剩余污泥为甲烷和有机酸的方法

Country Status (1)

Country Link
CN (1) CN111019975B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939393B (zh) * 2021-03-05 2023-10-03 太原理工大学 一种无电子供体实现污泥电发酵产己酸并同步分离的装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058478A (zh) * 2013-01-08 2013-04-24 同济大学 一种利用功能菌改善污泥厌氧消化性能并同步扩培的方法
CN111422979A (zh) * 2020-01-13 2020-07-17 福建农林大学 一种缓解厌氧膜生物反应器膜污染的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130137153A1 (en) * 2011-11-30 2013-05-30 University Of Western Ontario Method and apparatus for anaerobically digesting organic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058478A (zh) * 2013-01-08 2013-04-24 同济大学 一种利用功能菌改善污泥厌氧消化性能并同步扩培的方法
CN111422979A (zh) * 2020-01-13 2020-07-17 福建农林大学 一种缓解厌氧膜生物反应器膜污染的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Enhanced Methane Recovery from Waste-Activated Sludge by Alginate-Degrading Consortia: The Overlooked Role of Alginate in Extracellular Polymeric Substances;Fang Zhang;《American Chemical Society》;20201124;第8卷;第86-91页 *
Synergetic alginate conversion by a microbial consortium of hydrolytic bacteria and methanogens;Fang Zhang;《Water Research》;20190720;第163卷;摘要、第2.1节、第3.1节 *
海藻酸钠裂解酶产生菌的筛选及酶活性研究;武玉永;《安徽农业科学》;20101231;第38卷(第3期);第1126-1128页 *
结构性胞外聚合物的生物降解与强化污泥产甲烷机制;钱定康;《2021 年全国有机固废处理与资源化利用高峰论坛》;20210515;第74-76页 *
藻酸盐降解菌群强化剩余污泥厌氧发酵产酸;胡之弈;《环境工程学报》;20220127;第16卷(第1期);第245-252页 *

Also Published As

Publication number Publication date
CN111019975A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
Giwa et al. Effect of biochar on reactor performance and methane generation during the anaerobic digestion of food waste treatment at long-run operations
Chen et al. Hydrothermal conversion of sewage sludge: focusing on the characterization of liquid products and their methane yields
Luo et al. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture
EP2032709B1 (en) System for the production of methane from co2
EP2771472B1 (en) Method for in situ hydrogen based biogas upgrading
Leite et al. Application of an anaerobic packed-bed bioreactor for the production of hydrogen and organic acids
CN111424056B (zh) 一种提升餐厨垃圾厌氧消化产沼效率的方法
Cheng et al. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed
Hwu et al. Physicochemical and biological performance of expanded granular sludge bed reactors treating long-chain fatty acids
CN104099374B (zh) 一种稻草秸秆碱处理与剩余污泥混合消化产沼气的方法
Jiang et al. Enhancing the performance of thermophilic anaerobic digestion of food waste by introducing a hybrid anaerobic membrane bioreactor
KR20210086643A (ko) 메탄 농축 가스 조성물의 생산을 위한 산업용 co2 함유 가스의 사용 방법
CN111019975B (zh) 一种厌氧转化剩余污泥为甲烷和有机酸的方法
Kumar et al. Improved hydrogen production from galactose via immobilized mixed consortia
Zhu et al. Performance evaluation of bio-hydrogen and bio-methane cogeneration from corn stover over a range of initial pH and temperature
Wang et al. Chemical modification of straw hydrochar as additive to improve the anaerobic digestion performance of sludge hydrothermal carbonization wastewater
CN111422979A (zh) 一种缓解厌氧膜生物反应器膜污染的方法
Zheng et al. Influence of NaCl on hydrogen production from glucose by anaerobic cultures
Li et al. Investigation into the effects of different recycled magnetic additives on anaerobic co-digestion of sludge and straw
CN111424055B (zh) 一种厌氧转化海藻酸钠生产废水为甲烷和有机酸的方法
CN110746063A (zh) 一种油泥砂无害化处理的方法
Maurice et al. Preliminary studies on the performance of vacuum black water with biochar additives in anaerobic digestion process
US11773367B2 (en) Method of enhancing continuous directional high-value biological conversion of urban wet garbage open system
Drapoi et al. Hydrogen production from cellulosic materials by natural microbial association from soil enriched by Clostridium and Bacillus microorganisms
Kita et al. High-rate fermentation of acetate to methane under saline condition by aceticlastic methanogens immobilized in marine sediment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant