CN111016162A - 3D prints quick melting device - Google Patents

3D prints quick melting device Download PDF

Info

Publication number
CN111016162A
CN111016162A CN201911361763.8A CN201911361763A CN111016162A CN 111016162 A CN111016162 A CN 111016162A CN 201911361763 A CN201911361763 A CN 201911361763A CN 111016162 A CN111016162 A CN 111016162A
Authority
CN
China
Prior art keywords
extrusion head
heat dissipation
support
insulating cover
feeding pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911361763.8A
Other languages
Chinese (zh)
Inventor
刘冉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Geeetech Technology Co ltd
Original Assignee
Shenzhen Geeetech Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Geeetech Technology Co ltd filed Critical Shenzhen Geeetech Technology Co ltd
Priority to CN201911361763.8A priority Critical patent/CN111016162A/en
Publication of CN111016162A publication Critical patent/CN111016162A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

The invention relates to the technical field of 3D printing devices, in particular to a 3D printing rapid melting device; the device comprises a support, a feeding pipe and an extrusion head, wherein the feeding pipe and the extrusion head are respectively and fixedly connected to the support, the feeding pipe is communicated with the extrusion head, and a heating device is arranged on the extrusion head; the heating device comprises a heat conduction block, an electric heating wire, an insulating cover and a shell, wherein the heat conduction block is arranged in an inner cavity of the shell, the insulating cover is coated on the outer edge surface of the heat conduction block, and the electric heating wire is wound on the outer edge surface of the insulating cover; the extrusion head is arranged in the central through hole of the heat conducting block in a penetrating way; the heating device is reasonable in structure, the heat conducting block is heated well in balance by the annular heating wire, and consumables are extruded after being changed into a molten state in the heating module; the heat dissipation sleeve ensures sufficient extrusion thrust; the temperature sensing resistor can control the switch and the rotating speed of the fan, so that consumable materials are ensured to be in a proper temperature; more melt can be stored in the extrusion head effectively increasing the printing speed.

Description

3D prints quick melting device
Technical Field
The invention relates to the technical field of 3D printing devices, in particular to a 3D printing rapid melting device.
Background
3D printing (3DP), one of the rapid prototyping technologies, is a technology that constructs an object by printing layer by layer using an adhesive material such as powdered metal or plastic based on a digital model file. 3D printing is typically achieved using digital technology material printers; the method is often used for manufacturing models in the fields of mold manufacturing, industrial design and the like, and is gradually used for directly manufacturing some products, and parts printed by the technology are already available.
The 3D printer is printing the in-process, and the material need be through processes such as rapid heating, design and quick cooling, and the first heating element of extrusion of current 3D printer generally is small-size heating rod, extrudes the head and all wears to locate two types on the metal block with the heating rod downthehole, extrudes the material in the head through the heat-conduction melting of metal block. While the two holes are generally on the gauge side of the block, it takes time for the entire block to reach the same temperature. When larger metal blocks are used, the temperature is less likely to equilibrate rapidly, or more powerful heating rods are required. This results in a low melting speed of the consumable and a printing speed that is not too high.
Accordingly, the prior art is yet to be improved and developed.
Disclosure of Invention
The invention aims to provide a 3D printing fast melting device which is reasonable in structure, balanced in heating and large in feeding flux and can improve the printing efficiency aiming at the defects and the defects in the prior art.
In order to achieve the purpose, the invention adopts the following technical scheme:
the 3D printing rapid melting device comprises a support, a feeding pipe and an extrusion head, wherein the feeding pipe and the extrusion head are respectively and fixedly connected to the support, the feeding pipe is communicated with the extrusion head, and a heating device is arranged on the extrusion head; the heating device comprises a heat conduction block, an electric heating wire, an insulating cover and a shell, wherein the heat conduction block is arranged in an inner cavity of the shell, the insulating cover is coated on the outer edge surface of the heat conduction block, and the electric heating wire is wound on the outer edge surface of the insulating cover; the extrusion head is arranged in the central through hole of the heat conduction block in a penetrating mode.
According to the scheme, the outer edge surface of the insulating cover is provided with an annular spacing groove, and the heating wire is wound in the spacing groove.
According to the scheme, the heat conducting block is provided with a temperature sensing hole, and a temperature sensing resistor is arranged in the temperature sensing hole.
According to the scheme, the heat dissipation sleeve is arranged on the support, and one end of the feeding pipe penetrates through the heat dissipation sleeve and the support to be connected with the extrusion head in a penetrating mode.
According to the scheme, one side of the heat dissipation sleeve is provided with the fan, and the fan is fixedly connected with the support.
According to the scheme, the support is provided with the connecting pipe, the lower end of the connecting pipe is arranged in the heat conducting block in a penetrating mode and is fixedly connected with the shell, the upper end of the connecting pipe is arranged in the heat dissipation sleeve in a penetrating mode, and the marble lock is arranged between the heat dissipation sleeve and the connecting pipe; the feeding pipe penetrates through the heat dissipation sleeve and the connecting pipe in sequence and then is connected with the extrusion head in a through mode.
The invention has the beneficial effects that: the heating device is reasonable in structure, the heat conducting block is heated well in balance through the annular heating wire, and the temperature of the heat conducting block is controlled through the temperature sensing resistor, so that consumable materials are extruded after being changed into a molten state in the heating module; the heat dissipation sleeve ensures that the consumable materials cannot be melted before the heating device so as to generate enough extrusion thrust; the temperature sensing resistor can control the switch and the rotating speed of the fan, so that consumable materials are ensured to be in a proper temperature; more melt can be stored in the extrusion head effectively increasing the printing speed.
Drawings
FIG. 1 is a schematic view of the overall structure of the present invention;
fig. 2 is a schematic cross-sectional structure of the present invention.
In the figure:
1. a support; 2. a heat conducting block; 3. a heat dissipation sleeve; 11. a feed pipe; 12. an extrusion head; 13. a connecting pipe; 14. a ball lock; 21. an electric heating wire; 22. an insulating cover; 23. a housing; 24. a spacing groove; 25. a temperature sensing hole; 26. a temperature sensing resistor; 31. a fan.
Detailed Description
The technical solution of the present invention is described below with reference to the accompanying drawings and examples.
As shown in fig. 1-2, the 3D printing fast melting device according to the present invention includes a support 1, a feeding pipe 11 and an extrusion head 12, wherein the feeding pipe 11 and the extrusion head 12 are respectively and fixedly connected to the support 1, the feeding pipe 11 is connected to the extrusion head 12 in a penetrating manner, and the extrusion head 12 is provided with a heating device; the heating device comprises a heat conduction block 2, a heating wire 21, an insulating cover 22 and a shell 23, wherein the heat conduction block 2 is arranged in an inner cavity of the shell 23, the insulating cover 22 is coated on the outer edge surface of the heat conduction block 2, and the heating wire 21 is wound on the outer edge surface of the insulating cover 22; the extrusion head 12 is arranged in the central through hole of the heat conducting block 2 in a penetrating way; the feeding pipe 11 conveys the consumables to the extrusion head 12 through thrust under the action of the feeding mechanism, the annularly wound heating wire 21 can uniformly heat the heat conducting block 2 to enable the heat distribution of the heat conducting block to be uniform, and the rapid heating of the consumables ensures the temperature consistency to enable the consumables to be molten.
The outer edge surface of the insulating cover 22 is provided with an annular spacing groove 24, the heating wire 21 is wound in the spacing groove 24, and the spacing groove 24 is used for winding the annular heating wire 21 and enabling the annular heating wire 21 to be spaced from the shell 24, so that the insulation property of the heating device is ensured, meanwhile, excessive heat is prevented from being emitted through the shell 23, and the power consumption of the heating device is reduced.
The heat conduction block 2 is provided with a temperature sensing hole 25, a temperature sensing resistor 26 is arranged in the temperature sensing hole 25, the temperature sensing resistor 26 is connected to a control circuit of the heating device, and the temperature sensing resistor 26 senses the temperature of the heat conduction block 2 to ensure the melting state of the consumable and control the consumable in a proper temperature range.
The support 1 is provided with a heat dissipation sleeve 3, and one end of a feeding pipe 11 penetrates through the heat dissipation sleeve 3 and the support 1 to be communicated with an extrusion head 12; the heat dissipation sleeve 3 is as heating device's leading equipment, and the consumptive material should be in the temperature below the melting value in the feeder pipe 11, in order to reduce heating device's the heat conduction effect to feeder pipe 11, cools down the processing through heat dissipation sleeve 3 to the consumptive material to guarantee that feeder's thrust is enough to promote the consumptive material to extrude in the head 12.
One side of the heat dissipation sleeve 3 is provided with a fan 31, the fan 31 is fixedly connected with the support 1, the fan 31 is controlled by the temperature sensing resistor 26, when the heat conduction block 2 is overheated, the fan 31 can perform forced air cooling on the heat dissipation sleeve 3, and the heat dissipation efficiency is improved to control the temperature of consumables in the heat conduction block 2.
The bracket 1 is provided with a connecting pipe 13, the lower end of the connecting pipe 13 is arranged in the heat conducting block 2 in a penetrating way and is fixedly connected with the shell 23, the upper end of the connecting pipe 13 is arranged in the heat dissipation sleeve 3 in a penetrating way, and a marble lock 14 is arranged between the heat dissipation sleeve 3 and the connecting pipe 13; the feeding pipe 11 sequentially penetrates through the heat dissipation sleeve 3 and the connecting pipe 13 and then is communicated with the extrusion head 12; the connecting pipe 13 is used for constructing a connecting channel between the heat dissipation sleeve 3 and the heating device, so that the connecting end of the feeding pipe 11 and the extrusion head 12 is in structural protection, and meanwhile, structural gaps between the feeding pipe 11 and the heat dissipation sleeve 3 and between the feeding pipe 11 and the heat conduction block 2 are corrected, so that the heat conduction tightness between the structures is ensured, the heating or heat dissipation efficiency is improved, and consumables in the extrusion head 12 are controlled to be in a proper temperature range.
The above description is only a preferred embodiment of the present invention, and all equivalent changes or modifications of the structure, characteristics and principles described in the present invention are included in the scope of the present invention.

Claims (6)

1. The utility model provides a 3D prints fast melting device, includes support (1), feeder pipe (11) and extrudes head (12), its characterized in that: the feeding pipe (11) and the extrusion head (12) are respectively and fixedly connected to the support (1), the feeding pipe (11) is communicated with the extrusion head (12), and the extrusion head (12) is provided with a heating device; the heating device comprises a heat conduction block (2), an electric heating wire (21), an insulating cover (22) and a shell (23), the heat conduction block (2) is arranged in an inner cavity of the shell (23), the insulating cover (22) is coated on the outer edge surface of the heat conduction block (2), and the electric heating wire (21) is wound on the outer edge surface of the insulating cover (22); the extrusion head (12) is arranged in the central through hole of the heat conduction block (2) in a penetrating mode.
2. The 3D printing rapid fusing device of claim 1, wherein: the outer edge surface of the insulating cover (22) is provided with an annular spacing groove (24), and the electric heating wire (21) is wound in the spacing groove (24).
3. The 3D printing rapid fusing device of claim 1, wherein: the heat conducting block (2) is provided with a temperature sensing hole (25), and a temperature sensing resistor (26) is arranged in the temperature sensing hole (25).
4. The 3D printing rapid fusing device of claim 1, wherein: the support (1) is provided with a heat dissipation sleeve (3), and one end of the feeding pipe (11) penetrates through the heat dissipation sleeve (3) and the support (1) to be connected with the extrusion head (12) in a penetrating manner.
5. The 3D printing rapid fusing device of claim 4, wherein: and a fan (31) is arranged on one side of the heat dissipation sleeve (3), and the fan (31) is fixedly connected with the support (1).
6. The 3D printing rapid fusing device of claim 4, wherein: the support (1) is provided with a connecting pipe (13), the lower end of the connecting pipe (13) is arranged in the heat conducting block (2) in a penetrating way and is fixedly connected with the shell (23), the upper end of the connecting pipe (13) is arranged in the heat dissipation sleeve (3) in a penetrating way, and a marble lock (14) is arranged between the heat dissipation sleeve (3) and the connecting pipe (13); the feeding pipe (11) penetrates through the heat dissipation sleeve (3) and the connecting pipe (13) in sequence and then is communicated with the extrusion head (12).
CN201911361763.8A 2019-12-26 2019-12-26 3D prints quick melting device Pending CN111016162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911361763.8A CN111016162A (en) 2019-12-26 2019-12-26 3D prints quick melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911361763.8A CN111016162A (en) 2019-12-26 2019-12-26 3D prints quick melting device

Publications (1)

Publication Number Publication Date
CN111016162A true CN111016162A (en) 2020-04-17

Family

ID=70214431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911361763.8A Pending CN111016162A (en) 2019-12-26 2019-12-26 3D prints quick melting device

Country Status (1)

Country Link
CN (1) CN111016162A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111646803A (en) * 2020-06-16 2020-09-11 中南大学 Molten 3D direct-writing printing slurry and preparation method and application thereof
CN115026314A (en) * 2022-06-28 2022-09-09 郑州轻工业大学 A two storehouses add hot type 3D print head structure and printer for liquid metal
CN115195111A (en) * 2022-06-24 2022-10-18 安徽省春谷3D打印智能装备产业技术研究院有限公司 Diameter-variable wire extruding structure for desktop printer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111646803A (en) * 2020-06-16 2020-09-11 中南大学 Molten 3D direct-writing printing slurry and preparation method and application thereof
CN111646803B (en) * 2020-06-16 2021-04-13 中南大学 Molten 3D direct-writing printing slurry and preparation method and application thereof
CN115195111A (en) * 2022-06-24 2022-10-18 安徽省春谷3D打印智能装备产业技术研究院有限公司 Diameter-variable wire extruding structure for desktop printer
CN115195111B (en) * 2022-06-24 2023-10-27 安徽省春谷3D打印智能装备产业技术研究院有限公司 Reducing wire extrusion structure for desktop level printer
CN115026314A (en) * 2022-06-28 2022-09-09 郑州轻工业大学 A two storehouses add hot type 3D print head structure and printer for liquid metal

Similar Documents

Publication Publication Date Title
CN111016162A (en) 3D prints quick melting device
CN104338933B (en) A kind of 3D printhead for metal melting extrusion molding
CN105216334A (en) A kind of induction heater, 3D printer extruder
US11305489B2 (en) 3D printing system for printing high melting temperature materials
JP5200044B2 (en) Heated melt molding equipment
CN108621430A (en) A kind of heated type 3D printer extrusion nozzle
CN105946238B (en) FDM3D printer consumable connection device and use method thereof
EP3476566A1 (en) Extrusion assembly for an additive manufacturing system and method for manufacturing the same
CN211683492U (en) 3D prints quick melting device
CN106028493A (en) 3D printer extrusion device and heating device thereof
JP2005324483A (en) Injection molding nozzle
JP6566535B1 (en) Hot end of modeling material for 3D modeling equipment
CN202388781U (en) Embedded type heating device of plastic machine
JP6181451B2 (en) Injection molding machine
JP4698353B2 (en) Hot water heater
CN103481495A (en) Heating device and plastifying device used for improving cable inner end plastifying quality
CN109878084B (en) 3D printing head structure with composite graphene preheating and friction heat generation deposition
CN207724855U (en) A color head device is changed in a kind of free advance and retreat silk heating
CN203622915U (en) Heating device and plastifying device used for improving cable inner end plastifying quality
CN205921772U (en) 3D printer extrusion device and heating device thereof
CN104816475A (en) Miniature extruder and preparation method of 3D printing material
CN204505859U (en) Icroextrusion machine
TWI656015B (en) Fuse deposition molding device
CN204547032U (en) A kind of plastic extruder heating system
CN212072878U (en) Plastic extruder for preparing cable sheath

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination