CN111001699A - 采用3d打印和热气压胀形制造薄壁金属构件的方法 - Google Patents

采用3d打印和热气压胀形制造薄壁金属构件的方法 Download PDF

Info

Publication number
CN111001699A
CN111001699A CN201911365925.5A CN201911365925A CN111001699A CN 111001699 A CN111001699 A CN 111001699A CN 201911365925 A CN201911365925 A CN 201911365925A CN 111001699 A CN111001699 A CN 111001699A
Authority
CN
China
Prior art keywords
printing
thin
hot air
air pressure
bulging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911365925.5A
Other languages
English (en)
Other versions
CN111001699B (zh
Inventor
何祝斌
徐怡
梁江凯
杜巍
林鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201911365925.5A priority Critical patent/CN111001699B/zh
Publication of CN111001699A publication Critical patent/CN111001699A/zh
Priority to US16/863,199 priority patent/US11292057B2/en
Application granted granted Critical
Publication of CN111001699B publication Critical patent/CN111001699B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/021Deforming sheet bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/021Deforming sheet bodies
    • B21D26/027Means for controlling fluid parameters, e.g. pressure or temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/021Deforming sheet bodies
    • B21D26/031Mould construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/041Means for controlling fluid parameters, e.g. pressure or temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/047Mould construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/049Deforming bodies having a closed end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/053Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure characterised by the material of the blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/11Use of irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开一种采用3D打印和热气压胀形制造薄壁金属构件的方法,采用3D打印获得复杂的薄壁预制坯,减小后续热气压胀形时的变形量,避免出现局部胀形减薄开裂、合模过程在分模处咬边、各截面材料分配不均出现起皱等缺陷;热气压胀形可以获得很高的形状尺寸精度,热气压胀形获得需要的形状后,在保持模具闭合状态下使构件在高温和高压下停留一段时间,使材料的晶粒和相发生转变以获得需要的微观组织,高压气体对材料产生厚度方向的压实作用,可以消除原始3D打印时存在的微小孔洞,提高材料的致密度和组织性能均匀性,还可以使3D打印坯料外表面存在的微小粉粒受到挤压并填充到邻近的微小凹坑,可提高零件外表面的平整度和光洁度。

Description

采用3D打印和热气压胀形制造薄壁金属构件的方法
技术领域
本发明涉及薄壁金属构件制造技术领域,特别是涉及一种采用3D打印和热气压胀形制造薄壁金属构件的方法。
背景技术
在航空、航天、汽车等工业领域,存在数量众多的薄壁金属构件。由于要满足不同的使用条件,因此薄壁金属构件的形状尺寸、壁厚、材料种类、力学性能等都存在较大差异,其制造方法也各不相同。例如,在运载火箭上,存在数量众多的曲面薄壁筋板。此类曲面薄壁筋板通常采用辊弯或压弯的方法制造。为了减轻构件重量,需要采用切削加工方法将中心部位的多个区域的材料去除,只保留壁厚为3~5mm厚的腹板和与之相连的纵横交叉的加强筋。但是,由于曲面薄壁筋板的整体刚度很小,在切削加工中心部位的局部区域时,极易出现薄壁腹板发生畸变、局部加工过量、加强筋失稳变形等缺陷。因此,此类曲面薄壁筋板的制造一直是火箭结构制造中的关键。
又如,在先进战机的进气和排气系统中,存在形状复杂、壁厚超薄、精度要求极高的薄壁金属构件。如进气系统中的进气道、排气系统中的排气道,为了满足特定的气动性能、隐身性能,都具有复杂多变的截面形状和弯曲轴线。此类构件多采用高强铝合金、钛合金或者高温合金等薄壁板坯,先分块冲压成形然后再拼焊的方法制造。之所以采用分块冲压成形然后拼焊的工艺,最主要的原因是传统的刚性模具冲压成形无法对坯料上各处施加有效合理的成形载荷,特别是对于具有负曲率的构件或者具有封闭截面的构件更是如此。
为了解决直接切削加工以及冲压拼焊工艺在制造大尺寸薄壁金属构件时存在的问题,人们尝试采用热气压胀形方法和3D打印的方法。
方法1:热气压胀形,其基本原理是:将薄壁坯料和模具加热到设定的温度,然后利用高压气体对坯料进行加压胀形。由于气体具有极好的流动特性,而且金属材料在热态下的塑性得到明显提高,因此可以实现复杂薄壁金属构件特别是具有局部小特征构件的成形,如高档自行车用铝合金异形管件、火箭整流罩铝合金曲面蒙皮等。但是,对于大尺寸薄壁金属构件,如新一代飞机的复杂整体进气道和排气道、火箭燃料储箱的整体筒段和整体箱底,难以采用薄壁管坯或板坯通过热气压胀形方法来成形制造。其中最主要的原因是大幅面的薄壁金属板材和管材难以获得。为了制备大尺寸坯料或者为了将分块成形的零件组焊成整体零件,都将产生与母材性能有很大差异的焊缝。如何在构件成形和使用过程中合理调控和协调母材与焊缝,已成为热气压胀形技术领域的一个非常重要的难题。此外,直接利用薄壁金属管坯或板坯进行热气压胀形,即使能够获得所需要的外形形状,但是因为采用原始管坯或板坯所能制备的预制坯的形状必然与最终的复杂构件存在较大差异,在胀形时必然有局部区域发生较大的胀形变形,因此在最终构件上将存在局部减薄区,难以满足壁厚分布的设计要求。
方法2:3D打印,其基本原理是:采用微小粉末或颗粒或液滴等,通过连续叠加的方式,逐步形成所需要的复杂构件。3D打印可制造的构件,既可以是金属材料也可以是非金属材料,既可以是展示模型也可以用于实际服役。从结构形式上分,3D打印的构件主要包括实体构件和薄壁构件。采用3D打印技术制造金属构件时,因为整个过程中存在复杂的加热和冷却过程,构件的形状尺寸精度很难保证;因为微观组织存在一定程度的缺陷,力学性能不足,而且疲劳寿命低;因为内外表面光洁度差且存在粘接不牢的微小粉末或颗粒,表面质量无法满足要求。虽然3D打印金属构件的微观组织和力学性能要优于传统的铸件,但是由于构件内部存在一定的微小孔洞或不均匀特性,其综合性能要比锻件差。
目前,对于实体构件,3D打印的大尺寸构件已成功用于航空航天等领域,如飞机发动机的钛合金隔框、飞机起落架等。但是,对于薄壁构件,特别是尺寸大、壁厚薄的金属管状或板状构件,由于在薄壁结构的整体刚度和结构稳定性差,无法与3D打印同步进行切削或锻造等工序来提高其组织性能。目前,采用3D打印技术仍无法制造形状尺寸和组织性能等都满足要求的大尺寸薄壁金属构件。
因此,如何改变现有技术中,通过热气压胀形或3D打印制造大尺寸薄壁金属构件无法满足构件性能要求的现状,成为了本领域技术人员亟待解决的技术问题。
发明内容
本发明的目的是提供一种采用3D打印和热气压胀形制造薄壁金属构件的方法,以解决上述现有技术存在的问题,降低大尺寸薄壁金属构件的成形难度,提高大尺寸薄壁金属构件的成形质量和成形精度。
为实现上述目的,本发明提供了如下方案,本发明提供一种采用3D打印和热气压胀形制造薄壁金属构件的方法,包括如下步骤:
步骤一、设计预制坯
对大尺寸薄壁构件进行特征分析,确定所需的薄壁预制坯的形状;
步骤二、打印预制坯
采用3D打印制备需要的薄壁预制坯;
步骤三、模具加热
加热热气压胀形模具,使模具的温度达到设定条件;
步骤四、放件合模
将预处理后的预制坯放置于胀形模具中,合模;
步骤五、充气胀形
向预制坯内部或表面充入高压气体,使预制坯胀形为需要的零件;
步骤六、保温保压
令模具保持闭合状态,使成形后零件在高温高压条件下停留一定时间;
步骤七、排气降温
降低零件内部或表面的气体压力至设定值,并使模具温度降低至设定值;
步骤八、开模取件
开模,取出成形后的零件。
优选地,在完成步骤二的打印预制坯后,对获得的薄壁预制坯的端部或表面进行预处理,预处理为切割或打磨。
优选地,在完成步骤八的开模取件后,对成形后零件的端部或表面进行处理。
优选地,步骤二中,采用钛合金、高温合金、铝合金或钛合金粉末通过3D打印制备需要的薄壁预制坯。
优选地,步骤二中,采用的3D打印为激光选区融化成形,热源为激光、离子束或电弧,原材料为高温合金、铝合金或钛合金粉末或丝材。
优选地,步骤三中,采用高频感应加热设备对模具进行加热,当预制坯为铝合金时,将模具加热到350-450℃;当预制坯为高温合金时,将模具加热到850-950℃;当预制坯为钛合金时,将模具加热到650-850℃。
优选地,在步骤五中,向预制坯内部或表面通入3-6.5MPa的氮气进行热气压胀形,使预制坯在10-50s的时间内发生胀形贴靠模具型腔,得到所需要的外形轮廓。
优选地,在步骤六中,将成形后零件留在模具中并令模具保持闭合状态,将模具加热到520-770℃,加压到10-20MPa,保温保压时间为1h。
本发明相对于现有技术取得了以下技术效果:本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法,采用3D打印获得复杂的薄壁预制坯,减小后续热气压胀形时的变形量,避免出现局部胀形减薄开裂、合模过程在分模处咬边、各截面材料分配不均出现起皱等缺陷;热气压胀形可以获得很高的形状尺寸精度,热气压胀形获得需要的形状后,在高温和高压下保持一段时间,使材料的晶粒和相发生转变以获得需要的微观组织,高压气体对材料产生厚度方向的压实作用,可以消除3D打印时存在的微小孔洞,提高材料的致密度和组织性能均匀性,还可以使原始3D打印坯料外表面存在的微小粉粒受到挤压并填充到邻近的微小凹坑,可提高零件外表面的平整度和光洁度。同时,也可避免内外表面的微小粉粒掉落而影响零件在高真空、高清洁度空间的使用,提高大尺寸薄壁金属构件的成形质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法的流程图;
图2为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属板件时预制坯的示意图;
图3为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属板件时模具的示意图;
图4为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属板件时步骤四的示意图;
图5为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属板件时步骤五的示意图;
图6为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属板件时步骤六的示意图;
图7为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属板件时成形零件的示意图;
图8为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属管件时预制坯的示意图;
图9为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属管件时步骤五的示意图;
图10为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属管件时成形管件的示意图。
其中,1为金属板件预制坯,2为制备金属板件的热胀形模具,3为金属板件成形件,4为金属管件预制坯,5为制备金属管件的热胀形模具,6为金属管件成形件。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种采用3D打印和热气压胀形制造薄壁金属构件的方法,以解决上述现有技术存在的问题,降低大尺寸薄壁金属构件的成形难度,提高大尺寸薄壁金属构件的成形质量和成形精度。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
请参考图1-10,其中,图1为本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法的流程图,图2为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属板件时预制坯的示意图,图3为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属板件时模具的示意图,图4为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属板件时步骤四的示意图,图5为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属板件时步骤五的示意图,图6为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属板件时步骤六的示意图,图7为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属板件时成形零件的示意图,图8为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属管件时预制坯的示意图,图9为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属管件时步骤五的示意图,图10为采用本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法制备金属管件时成形管件的示意图。
本发明提供一种采用3D打印和热气压胀形制造薄壁金属构件的方法,包括如下步骤:
步骤一、设计预制坯
对大尺寸薄壁构件进行特征分析,确定所需的薄壁预制坯的形状;
步骤二、打印预制坯
采用3D打印制备需要的薄壁预制坯;
步骤三、模具加热
加热热气压胀形模具,使模具的温度达到设定条件;
步骤四、放件合模
将预处理后的预制坯放置于胀形模具中,合模;
步骤五、充气胀形
向预制坯内部或表面充入高压气体,使预制坯胀形为需要的零件;
步骤六、保温保压
令模具保持闭合状态,使成形后零件在高温高压条件下停留一定时间;
步骤七、排气降温
降低零件内部或表面的气体压力至设定值,并使模具温度降低至设定值;
步骤八、开模取件
开模,取出成形后的零件。
本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法,采用3D打印获得复杂的薄壁预制坯,减小后续热气压胀形时的变形量,避免出现局部胀形减薄开裂、合模过程在分模处咬边、各截面材料分配不均出现起皱等缺陷;热气压胀形可以获得很高的形状尺寸精度,热气压胀形获得需要的形状后,在高温和高压下保持一段时间,使材料的晶粒和相发生转变以获得需要的微观组织,高压气体对材料产生厚度方向的压实作用,可以消除原始3D打印时存在的微小孔洞,提高材料的致密度和组织性能均匀性,还可以使原始3D打印坯料外表面存在的微小粉粒受到挤压并填充到邻近的微小凹坑,可提高零件外表面的平整度和光洁度。同时,也可避免内外表面的微小粉粒掉落而影响零件在高真空、高清洁度空间的使用,提高大尺寸薄壁金属构件的成形质量。
在完成步骤二的打印预制坯后,对获得的薄壁预制坯的端部或表面进行预处理,预处理为切割或打磨,为后续热胀形顺利进行提供保障,提高金属构件的成形质量。同样地,在完成步骤八的开模取件后,对成形后零件的端部或表面进行处理,保证大尺寸薄壁金属构件的成形精度。
其中,步骤二中,采用钛合金、高温合金、铝合金或钛合金粉末制备需要的薄壁预制坯。钛合金是3D打印中广泛应用的金属材料,具有密度小、比强度高、耐热性好、耐腐蚀性优异、生物相容性好、导热系数小、耐高温、无毒性、低温性能好、无磁性以及抗拉强度高等特点,因此适合用于金属3D打印领域,尤其适用于航空航天制作飞机发动机部件。
另外,步骤二中,采用的3D打印为激光选区融化成形,热源为激光、离子束或电弧,金属材料为高温合金、铝合金、钛合金的粉末或丝材。3D打印使得成形的构件具有精确的外形、较高的尺寸精度、形位精度和较好的表面粗糙度,可以实现金属零件的无模制造,节约成本,缩短生产周期。同时该技术解决了复杂曲面零部件在现有制造工艺中存在的切削加工困难、材料去除量大、刀具磨损严重等一系列问题。而且3D打印技术成形得到的零件组织致密,力学性能很高,并可实现非均质和梯度材料零件的制造。以高温合金、铝合金、钛及钛合金粉末为原材料的激光选区熔化(SLM),电子束选区熔化(EBM)技术可以获得较高的尺寸精度,较好的表面质量以及较高的致密度。钛合金,高温合金等原材料成本价格高,采用丝材进行增材制造可以充分利用原材料,从而大大降低生产成本。
步骤三中,采用高频感应加热设备对模具进行加热,当预制坯为铝合金时,将模具加热到350-450℃;当预制坯为高温合金时,将模具加热到850-950℃;当预制坯为钛合金时,将模具加热到650-850℃。本具体实施方式中大尺寸薄壁金属构件以金属板件和金属管件为例,在制备金属板件时,将钛合金板坯在短时间内加热到600℃左右,此温度在消除应力范围内,提高了板坯的塑性,使材料的变形能力提高,同时变形抗力显著降低;在制备金属管件时,对模具加热后,改变了预制坯的胀形温度,高温作用使预制坯软化,从而降低了成形所需的最高压力。
在步骤五中,向预制坯内部或表面通入3-6.5MPa的氮气进行热气压胀形,使预制坯在10-50s的时间内发生胀形贴靠模具型腔,得到所需要的外形轮廓。由于气体具有极好的流动特性,而且金属材料在热态下的塑性得到明显提高,因此可以实现复杂薄壁金属构件特别是具有局部小特征构件的成形,采用气体对板坯胀形,可以使板坯各表面受力比较均匀,利用高压气体的压力使板坯发生变形,可以在较大的温度区间内快速成形,使胀形件与模具更好地贴合。在制备金属管件时,通过左右冲头向预制坯中冲入高压气体,使预制坯发生变形,实现贴模获得所需要的形状,具体压力根据所成形的管件材料以及其最小圆角确定。采用气体进行胀形可以在管坯内部各处施加均布的压力,并且气体压力随管坯形状的变化很小,使其内部的压力控制更为准确。所需的高压气源通过高压泵站吸收空气进行加压即可,所以容易获得,成本低廉。
在步骤六中,将成形后零件留在模具中并令模具保持闭合状态,将模具加热到520-770℃,将气体压力增加到10-20MPa,保温保压时间为1h。在制备金属管件时,利用压力控制系统以及温度控制系统,降低管件周围环境温度,进行适当的热处理。将金属材料在合适的温度下进行热处理,可以减少甚至消除残余力,稳定工件的组织结构以及尺寸形状。
本发明的采用3D打印和热气压胀形制造薄壁金属构件的方法,采用3D打印获得复杂的薄壁预制坯,减小后续热气压胀形时的变形量,避免出现局部胀形减薄开裂、合模过程在分模处咬边、各截面材料分配不均出现起皱等缺陷;热气压胀形可以获得很高的形状尺寸精度,热气压胀形获得需要的形状后,在高温和高压下保持一段时间,使材料的晶粒和相发生转变以获得需要的微观组织,高压气体对材料产生厚度方向的压实作用,可以消除原始3D打印时存在的微小孔洞,提高材料的致密度,提高材料组织性能的均匀性,还可以使原始3D打印坯料外表面存在的微小粉粒受到挤压并填充到邻近的微小凹坑,可提高零件外表面的平整度和光洁度。同时,能够避免内外表面的微小粉粒掉落而影响零件在高真空、高清洁度空间的使用,提高大尺寸薄壁金属构件的成形质量。
本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

1.一种采用3D打印和热气压胀形制造薄壁金属构件的方法,其特征在于,包括如下步骤:
步骤一、设计预制坯
对大尺寸薄壁构件进行特征分析,确定所需的薄壁预制坯的形状;
步骤二、打印预制坯
采用3D打印制备需要的薄壁预制坯;
步骤三、模具加热
加热热气压胀形模具,使模具的温度达到设定条件;
步骤四、放件合模
将预处理后的预制坯放置于胀形模具中,合模;
步骤五、充气胀形
向预制坯内部或表面充入高压气体,使预制坯胀形为需要的零件;
步骤六、保温保压
令模具保持闭合状态,使成形后零件在高温高压条件下停留一定时间;
步骤七、排气降温
降低零件内部或表面的气体压力至设定值,并使模具温度降低至设定值;
步骤八、开模取件
开模,取出成形后的零件。
2.根据权利要求1所述的采用3D打印和热气压胀形制造薄壁金属构件的方法,其特征在于:在完成步骤二的打印预制坯后,对获得的薄壁预制坯的端部或表面进行预处理,预处理为切割或打磨。
3.根据权利要求2所述的采用3D打印和热气压胀形制造薄壁金属构件的方法,其特征在于:在完成步骤八的开模取件后,对成形后零件的端部或表面进行处理。
4.根据权利要求1所述的采用3D打印和热气压胀形制造薄壁金属构件的方法,其特征在于:步骤二中,采用钛合金、高温合金、铝合金或钛合金粉末通过3D打印制备需要的薄壁预制坯。
5.根据权利要求4所述的采用3D打印和热气压胀形制造薄壁金属构件的方法,其特征在于:步骤二中,采用的3D打印为激光选区融化成形,热源为激光、离子束或电弧,原材料为高温合金、铝合金或钛合金粉末或丝材。
6.根据权利要求5所述的采用3D打印和热气压胀形制造薄壁金属构件的方法,其特征在于:步骤三中,采用高频感应加热设备对模具进行加热,当预制坯为铝合金时,将模具加热到350-450℃;当预制坯为高温合金时,将模具加热到850-950℃;当预制坯为钛合金时,将模具加热到650-850℃。
7.根据权利要求1所述的采用3D打印和热气压胀形制造薄壁金属构件的方法,其特征在于:在步骤五中,向预制坯内部或表面通入3-6.5MPa的氮气进行热气压胀形,使预制坯在10-50s的时间内发生胀形贴靠模具型腔,得到所需要的外形轮廓。
8.根据权利要求1所述的采用3D打印和热气压胀形制造薄壁金属构件的方法,其特征在于:在步骤六中,将成形后零件留在模具中并令模具保持闭合状态,将模具加热到520-770℃,加压到10-20MPa,保温保压时间为1h。
CN201911365925.5A 2019-12-26 2019-12-26 采用3d打印和热气压胀形制造薄壁金属构件的方法 Active CN111001699B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911365925.5A CN111001699B (zh) 2019-12-26 2019-12-26 采用3d打印和热气压胀形制造薄壁金属构件的方法
US16/863,199 US11292057B2 (en) 2019-12-26 2020-04-30 Method for manufacturing thin-walled metal component by three- dimensional printing and hot gas bulging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911365925.5A CN111001699B (zh) 2019-12-26 2019-12-26 采用3d打印和热气压胀形制造薄壁金属构件的方法

Publications (2)

Publication Number Publication Date
CN111001699A true CN111001699A (zh) 2020-04-14
CN111001699B CN111001699B (zh) 2021-06-25

Family

ID=70117993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911365925.5A Active CN111001699B (zh) 2019-12-26 2019-12-26 采用3d打印和热气压胀形制造薄壁金属构件的方法

Country Status (2)

Country Link
US (1) US11292057B2 (zh)
CN (1) CN111001699B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425579A (zh) * 2022-01-27 2022-05-03 东北林业大学 一种强化增材制造空心构件力学性能的校形装置与方法
CN114713699A (zh) * 2022-06-09 2022-07-08 太原理工大学 一种基于脉冲电流辅助的金属双极板气胀成形装置及工艺
CN117600464A (zh) * 2024-01-23 2024-02-27 烟台大学 一种高温合金薄壁热挤压装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114131921B (zh) * 2021-11-17 2022-10-25 西安交通大学 一种薄壁异质结构的曲面共形4d打印方法及异质结构
CN114985762A (zh) * 2022-05-25 2022-09-02 合肥中科重明科技有限公司 一种薄壁螺旋曲面AlMg10合金零件的成形工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103769820A (zh) * 2013-10-22 2014-05-07 北京航星机器制造有限公司 一种钛合金薄壁异型封闭零件的整体超塑成形方法
CN104550954A (zh) * 2014-12-19 2015-04-29 机械科学研究总院先进制造技术研究中心 一种3d打印复合铣削的金属件成形方法
CN106457399A (zh) * 2014-04-02 2017-02-22 山特维克知识产权股份有限公司 用于通过预制本体制造金属部件的方法
CN106583544A (zh) * 2016-12-26 2017-04-26 南京工程学院 一种马氏体钢非对称复杂回转体的多工步成形方法
FR3074707A1 (fr) * 2017-12-13 2019-06-14 Manoir Industries Procede de fabrication d’une piece metallurgique
CN110465575A (zh) * 2019-09-10 2019-11-19 哈尔滨工业大学 一种钛合金薄壁件热处理与气压成形一体化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269058A (en) * 1992-12-16 1993-12-14 General Electric Company Design and processing method for manufacturing hollow airfoils
FR3020291B1 (fr) * 2014-04-29 2017-04-21 Saint Jean Ind Procede de fabrication de pieces metalliques ou en composite a matrice metallique issues de fabrication additive suivie d'une operation de forgeage desdites pieces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103769820A (zh) * 2013-10-22 2014-05-07 北京航星机器制造有限公司 一种钛合金薄壁异型封闭零件的整体超塑成形方法
CN106457399A (zh) * 2014-04-02 2017-02-22 山特维克知识产权股份有限公司 用于通过预制本体制造金属部件的方法
CN104550954A (zh) * 2014-12-19 2015-04-29 机械科学研究总院先进制造技术研究中心 一种3d打印复合铣削的金属件成形方法
CN106583544A (zh) * 2016-12-26 2017-04-26 南京工程学院 一种马氏体钢非对称复杂回转体的多工步成形方法
FR3074707A1 (fr) * 2017-12-13 2019-06-14 Manoir Industries Procede de fabrication d’une piece metallurgique
CN110465575A (zh) * 2019-09-10 2019-11-19 哈尔滨工业大学 一种钛合金薄壁件热处理与气压成形一体化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
光凯惠 等: "《 硬铝合金半球形零件的渐进成形工艺研究》", 《精密成形工程》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425579A (zh) * 2022-01-27 2022-05-03 东北林业大学 一种强化增材制造空心构件力学性能的校形装置与方法
CN114713699A (zh) * 2022-06-09 2022-07-08 太原理工大学 一种基于脉冲电流辅助的金属双极板气胀成形装置及工艺
CN117600464A (zh) * 2024-01-23 2024-02-27 烟台大学 一种高温合金薄壁热挤压装置及方法
CN117600464B (zh) * 2024-01-23 2024-03-22 烟台大学 一种高温合金薄壁热挤压装置及方法

Also Published As

Publication number Publication date
US20210197261A1 (en) 2021-07-01
US11292057B2 (en) 2022-04-05
CN111001699B (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
CN111001699B (zh) 采用3d打印和热气压胀形制造薄壁金属构件的方法
Yuan et al. Developments and perspectives on the precision forming processes for ultra-large size integrated components
CN104785621B (zh) 一种大型薄壁件的拉形和电磁复合渐进成形方法及装置
CN104588982B (zh) 大曲率复杂型面钛合金零件的超塑成形/扩散连接成形方法
US11207732B2 (en) Integrated method for manufacturing high-temperature resistant thin-walled component by preforming by laying metal foil strip
CN110560507B (zh) 一种大直径异形截面薄壁管件的成形方法
CN112974614B (zh) 一种钛合金薄壁无缝内衬直筒段超塑成形壁厚均匀性控制方法
Cui et al. Incremental electromagnetic-assisted stamping (IEMAS) with radial magnetic pressure: a novel deep drawing method for forming aluminum alloy sheets
CN104190777B (zh) 一种基于热压罐的无时效强化铝合金整体壁板一次成形方法
CN110539138B (zh) 一种铝合金轻量化主动冷却结构蒙皮制备方法
CN101780624A (zh) 一种钛合金蜗壳件成型方法
Deng et al. Precision forging technology for aluminum alloy
CN103658292A (zh) 常温或热态流体可重构模具胀形系统及胀形方法
Zhou et al. Forming-based geometric correction methods for thin-walled metallic components: a selective review
Fan et al. Deformation and strengthening analysis of Al-Mg-Si alloy sheet during hot gas forming with synchronous die quenching
CN110834047B (zh) 一种大尺寸薄壁管件气液混合流体内压成形方法
CN202877315U (zh) 常温或热态流体可重构模具胀形装置
Zhang et al. Recent research and development on forming for large magnesium alloy components with high mechanical properties
CN107866458B (zh) 一种变摩擦系数实现高温胀形自补料的成形方法
CN105149391B (zh) 一种钛合金波纹加强筒形零件成形装置及成形方法
Wei et al. Welded double sheet hydroforming of complex hollow component
Guo et al. Research on multi-pass hot spinning based on finite element simulation and experiment for aluminum alloy component
CN111940582B (zh) 一种轻质合金薄壁曲面件分区模压成形方法
CN107971383B (zh) 一种实现工业态板材超塑成形的坯料确定方法
Han et al. Reduction of friction and calibration pressure by section preform during hydroforming of tubular automotive structural components

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant