CN110997062B - 用于电穿孔的消融检查脉冲例程以及集成 - Google Patents

用于电穿孔的消融检查脉冲例程以及集成 Download PDF

Info

Publication number
CN110997062B
CN110997062B CN201880050270.XA CN201880050270A CN110997062B CN 110997062 B CN110997062 B CN 110997062B CN 201880050270 A CN201880050270 A CN 201880050270A CN 110997062 B CN110997062 B CN 110997062B
Authority
CN
China
Prior art keywords
routine
target tissue
region
treatment
low voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880050270.XA
Other languages
English (en)
Other versions
CN110997062A (zh
Inventor
B·T·霍华德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of CN110997062A publication Critical patent/CN110997062A/zh
Application granted granted Critical
Publication of CN110997062B publication Critical patent/CN110997062B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/0016Energy applicators arranged in a two- or three dimensional array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00613Irreversible electroporation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00738Depth, e.g. depth of ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00767Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/144Wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N7/022Localised ultrasound hyperthermia intracavitary

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Cardiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Electrotherapy Devices (AREA)
  • Neurology (AREA)

Abstract

涉及用于评估非目标组织从能量(诸如,向目标组织的区域的电穿孔能量)的递送受到损害的可能性的低电压治疗前脉冲例程的系统。在一个实施例中,医疗系统包括:医疗设备,该医疗设备具有治疗元件;以及控制单元,该控制单元与医疗设备通信,控制单元被配置成:通过治疗元件向目标组织的区域递送低电压、治疗前脉冲例程;确定低电压、治疗前脉冲例程是否对非目标组织的区域具有刺激效果;以及当控制单元确定低电压、治疗前脉冲例程对非目标组织的区域不具有刺激效果时,通过治疗元件向目标组织的区域递送消融能量例程。

Description

用于电穿孔的消融检查脉冲例程以及集成
技术领域
本文描述的设备、系统以及方法涉及用于评估非目标组织从能量的递送(诸如,向目标组织的区域的电穿孔能量的递送)受到损害的可能性的低电压、治疗前脉冲例程。
背景技术
当通过例如热能量交互等治疗组织的特定区域时,可能难以引导或控制热量传递的深度以及强度。热能量或其他治疗模态(诸如,射频或冷冻应用)的递送可能不一定被控制到治疗所期望的精确区或深度,因为组织可能具有由周围生理环境影响的不同的利于治疗(therapy-conduvice)的属性。无法将热治疗或暴露限制为仅针对目标组织可能以其他方式负面地并且不利地影响敏感并且易受到不期望的损害的周围组织结构或器官。
例如,当尝试治疗心脏组织时,敏感的组织结构大量存在,可能会不利地对热应用进行反应。具体而言,当热治疗或消融心脏中或心脏周围的组织时,诸如膈神经这样的关键生理结构在此类消融治疗期间不被意外地损害是必要的。膈神经损伤(PNI)是一种众所周知的心脏消融风险,由于膈神经的关键功能,因此膈神经损伤可能具有严重的后果;并且膈神经损伤也是一项常见风险,因为神经的解剖位置以及无法更准确地评估消融治疗到神经的接近度(proximity)。膈神经主要由运动神经纤维组成,运动神经纤维产生膈膜的收缩并且由此影响呼吸以及呼吸模式和状况。此外,膈神经为纵膈和胸膜以及上腹部(尤其是肝脏和胆囊)的许多组分提供感觉神经支配。
右膈神经以及左膈神经两者均非常紧密接近心脏延伸。两条膈神经均从C3、C4以及C5椎骨沿着前斜角肌延伸深入至颈动脉鞘。右膈神经在头臂动脉之上、在锁骨下静脉后穿行,并且随后在前部越过(cross)右肺的根部,并且随后通过穿行通过在T8水平处的在膈膜中的腔静脉裂孔开口离开胸腔。右膈神经在右心房上方穿行。左膈神经在左心室的心包膜上方穿行并且单独地刺穿膈膜。
正常解剖中的膈神经段紧邻右心房、左心房以及左心室定位,这些心脏区可能是心脏心律失常或其他生理疾病的位置或来源,并且因此被作为组织消融的目标,以便于移除或以其它方式治愈异常电生理发生。在热治疗或消融选定的心脏区时,膈神经可处于被相似地但意外地被消融的风险。这可能严重地影响患者的正常呼吸功能。此类损伤可表现为一过性隔功能阻滞、一过性膈神经麻痹(PNP)或长期膈神经损伤(PNI)。这些损伤减退呼吸功能并且可能需要许多周或许多月来解决。在最坏情况下,减退的功能需要机械通气协助来维持呼吸。由此,热能量对这个以及其他粗略结构的此类意外并且不期望的损坏或应用促生了监测或以其它方式检测治疗期间潜在损害性后果的期望。
当前使用的在消融之前确定对膈神经或其他敏感结构的风险的方法涉及建立消融设备的通过在消融设备的每一个放置时激活膈神经来导致对膈膜的刺激的能力。该方法不仅使用了当前非常有限的本应用于心脏起搏的起搏例程,而且该方法也较为费时,并且对治疗或损伤可能性没有特异性。因此,热消融进程期间仍需要额外的监测。然而,需要特别注意的是,新型相对快的取决于具体实现的消融模态(诸如,电穿孔)可能甚至没有允许此类评估所需的时间,由此使得在治疗之前作出对治疗风险的确定甚至更为重要。此外,当受制于所建立的过程时,此类消融模态的快速性受到很大阻碍,该过程包括多个系统,每一个系统的放置均用于实现对敏感结构接近度的最基本的指示。
通常使用以下的使用膈神经的连续起搏的两个方法中的一个来执行消融期间所使用的此类标准监测技术:1)消融期间使用连续荧光检查以可视化持续的膈膜响应;或2)进行腹部触诊以确认膈膜移动。两种方法均需要操作员一方的警觉,并且可能让医师从手头的诊断或治疗进程的主要焦点分心。进一步地,在荧光监测的情况中,患者被暴露于增加的x光辐射。因为由热消融方法诱发的PNI的潜在缓慢机制,所以此类监测是当前接受的实践并且是有用的。
进一步地,尽管这些方法可被用于检测当使用诸如射频(RF)能量递送以及冷冻治疗之类的治疗能量模态时对膈神经的潜在影响,但没有很好地建立如何检测当递送脉冲场能量和/或不可逆电穿孔能量时针对膈神经或其他神经或肌肉非目标组织的潜在危险消融区。此类能量模态与增加的频率一同使用,因为其不太可能导致RF或冷冻治疗常见的副作用,诸如狭窄以及瘘。
此外,还存在可在身体各处被标识用于其他此类消融损伤缓解的其他此类神经支配或活跃肌肉群。进一步地,使用任何能量模态(诸如出于治疗癌症的目的的能量模态)的消融之前的刺激可以是有益的。
发明内容
本文描述的设备、系统以及方法涉及用于评估非目标组织从能量(诸如,向目标组织的区域的电穿孔能量)的递送受到损害的可能性的低电压、治疗前脉冲例程。在一个实施例中,医疗系统包括:医疗设备,该医疗设备具有治疗元件;以及控制单元,该控制单元与医疗设备通信,控制单元被配置成:通过治疗元件向目标组织的区域递送低电压、治疗前脉冲例程,该低电压、治疗前脉冲例程被配置成当非目标组织在距离目标组织的区域的预先确定的距离内时在非目标组织的区域内具有刺激效果并且当非目标组织的区域在距离目标组织的区域的预先确定的距离外时在非目标组织的区域内不具有刺激效果;并且当该低电压、治疗前脉冲例程对非目标组织的区域不具有刺激效果时通过治疗元件向目标组织的区域递送消融能量例程。
在该实施例的一个方面中,消融能量例程的递送包括不可逆电穿孔、射频消融、冷冻消融以及高强度聚焦超声中的至少一个的使用。
在该实施例的一个方面中,系统进一步包括刺激监测设备,该刺激监测设备与控制单元通信。在该实施例的一个方面中,刺激监测设备包括加速度计以及肌电图设备中的至少一个。
在该实施例的一个方面中,控制单元被配置成基于由控制单元从刺激监测设备接收的信号确定低电压、治疗前脉冲例程是否对非目标组织的区域具有刺激效果。
在该实施例的一个方面中,控制单元被进一步配置成基于消融能量例程选择低电压、治疗前脉冲例程,并且当低电压、治疗前脉冲例程对非目标组织的区域具有刺激效果时调整消融能量例程。
在该实施例的一个方面中,控制单元被进一步配置成基于距离治疗元件的最大刺激距离的确定,在消融能量例程的发起之前自动地调整消融能量例程的电压以及脉冲宽度中的至少一个。
在该实施例的一个方面中,低电压、治疗前脉冲例程包括具有在0.1V和100V之间的电压的能量的递送。
在该实施例的一个方面中,低电压、治疗前脉冲例程包括具有40V的电压以及10μs的脉冲宽度的能量的递送。
在该实施例的一个方面中,低电压、治疗前脉冲例程包括单相脉冲的递送。
在该实施例的一个方面中,低电压、治疗前脉冲例程包括多个单相脉冲的递送。
在该实施例的一个方面中,低电压、治疗前脉冲例程包括至少一个双相脉冲的递送。
在该实施例的一个方面中,低电压、治疗前脉冲例程包括具有正弦波形的至少一个脉冲的递送。
在该实施例的一个方面中,控制单元包括用户输入设备,该用户输入设备用于低电压、治疗前脉冲例程的用户选择以及低电压、治疗前脉冲例程的用户发起中的至少一者。
在该实施例的一个方面中,控制单元被进一步配置成:当控制单元确定低电压、治疗前脉冲例程对非目标组织的区域不具有刺激效果时,通过多个电极向目标组织的区域自动地递送消融能量例程。
在该实施例的一个方面中,控制单元被进一步配置成:当用户确定低电压、治疗前脉冲例程对非目标组织的区域不具有刺激效果时,接受用户输入以用于通过多个电极向目标组织的区域递送消融能量例程的发起。
在一个实施例中,医疗系统包括:医疗设备,该医疗设备具有治疗元件,该治疗元件具有多个电极;刺激监测设备;以及控制单元,该控制单元与医疗设备以及激监测设备通信,该控制单元包括消融能量源,该消融能量源被配置成:确定消融能量例程;基于消融能量例程确定低电压、治疗前脉冲例程,该低电压、治疗前脉冲例程包括具有在0.1V和100V之间的电压的能量的递送;通过治疗元件向目标组织的区域递送低电压、治疗前脉冲例程;确定低电压、治疗前脉冲例程是否对非目标组织的区域具有刺激效果;基于低电压、治疗前脉冲例程对非目标组织的区域具有刺激效果,在发起向目标组织的区域的消融能量的递送之前自动地调整消融能量例程的电压以及脉冲宽度中的至少一个;并且通过治疗元件向目标组织的区域递送消融能量。
在该实施例的一个方面中,低电压、治疗前脉冲例程包括具有10μs的脉冲宽度的能量的递送。
在一个实施例中,不可逆地电穿孔目标组织的区域而不会不利地影响非目标组织的区域的方法包括:通过医疗设备的治疗元件向目标组织的区域递送低电压、治疗前脉冲例程,该低电压、治疗前脉冲例程包括具有在0.1V和100V之间的电压的能量的递送;确定低电压、治疗前脉冲例程是否对非目标组织的区域具有不利效果;当确定低电压、治疗前脉冲例程对非目标组织的区域具有刺激效果时,在发起向目标组织的区域的电穿孔能量递送之前调整电穿孔能量例程的至少一个消融参数,使得向目标组织的区域的电穿孔能量递送将不会对非目标组织的区域具有不利效果;并且随后通过治疗元件向目标组织的区域递送电穿孔能量。
在该实施例的一个方面中,电穿孔能量例程的至少一个参数包括电压、脉冲的数量、应用的数量以及脉冲宽度中的至少一个。
在该实施例的一个方面中,确定低电压、治疗前脉冲例程是否对非目标组织的区域具有不利效果是至少部分地基于从刺激监测设备接收的信号。
附图说明
在结合附图考虑时,通过参考以下详细说明,将更容易地理解本发明的更完整的理解以及其所伴随的优点和特征,其中:
图1示出了用于递送低电压、治疗前脉冲例程以及治疗或消融能量的示例性医疗系统;
图2示出了膈神经附近位置处的治疗元件的示例性放置;
图3-图6示出了轮廓曲线,该轮廓曲线示出了下述之间的关系的示例性数据:电压、脉冲宽度、以及治疗元件与非目标组织的区域之间的相对距离;
图7示出了电压以及脉冲宽度对于距离非目标组织的区域的刺激距离的影响的图形表示;
图8示出了医疗进程的示例性波形,该波形包括不可逆电穿孔例程之前递送的低电压治疗前脉冲例程的第一实施例;
图9示出了医疗进程的示例性波形,该波形包括不可逆电穿孔例程之前递送的低电压治疗前脉冲例程的第二实施例;
图10示出了医疗进程的示例性波形,该波形包括不可逆电穿孔例程之前递送的低电压治疗前脉冲例程的第三实施例;
图11示出了医疗进程的示例性波形,该波形包括不可逆电穿孔例程之前递送的低电压治疗前脉冲例程的第四实施例;
图12示出了医疗进程的示例性时间线,其中用户手动地发起治疗前脉冲例程,并且随后手动地发起不可逆电穿孔例程;
图13示出了医疗进程的示例性时间线,其中用户手动地发起治疗前脉冲例程,并且医疗系统自动地发起不可逆电穿孔脉冲例程;以及
图14示出了递送低电压、治疗前脉冲例程以及治疗或消融能量的示例性方法。
具体实施方式
本文描述的设备、系统以及方法涉及用于评估非目标组织从能量的递送(诸如,向目标组织的区域的电穿孔能量的递送)受到损害的可能性的治疗前(或消融前)脉冲例程。该治疗前脉冲例程也可被称为治疗前或消融前检查例程。可通过递送参数确定被特定治疗影响的组织区域,因为不同的递送参数可需要不同的脉冲测试例程以适当地在使用那些参数治疗的组织区域中引起效果。即,每一个消融设置、模式、设备、组织目标等等可能需要唯一的测试脉冲事项(matter)以测试治疗效果的正确区域。在详细描述示例性实施例之前,应注意已通过附图中的常规符号在适宜的位置对系统和方法构成进行了表示,这些表示仅示出与理解本公开的实施例有关的那些特定细节,以便不会使得具有对受益于本文的描述的本领域技术人员而言显而易见的那些细节的公开变得晦涩。
如本文所使用的,诸如“第一”和“第二”、“顶部”和“底部”等等之类的关系术语可单独地用于将一个实体或要素与另一实体或要素区别开来,而不一定要求或暗示这些实体或要素之间的任何物理或逻辑关系或顺序。本文所使用的术语只是为了描述特定实施例的目的,并且不旨在对本文所描述的概念做出限制。如本文所使用的,单数形式“一(a)”、“一(an)”和“该(the)”也旨在包括复数形式,除非上下文另有明确指示。将进一步理解的是,当在本文中使用时,术语“包括(comprises)”、“包括(comprising)”、“包括(includes)”和/或“包括(including)”指定所陈述的特征、整数、步骤、操作、要素和/或部件的存在,但不排除一个或多个其他特征、整数、步骤、操作、要素、部件和/或其群组的存在或添加。
除非另外限定,本文中所使用的所有术语(包括技术和科学术语)具有如本公开所属领域的普通技术人员所普遍理解的相同含义。将进一步理解的是,本文使用的术语应当被解释为具有与其在本说明书的上下文中以及相关技术中的意义一致的意义,并且除非本文明确表示,否则将不被解释为理想化或过于正式的含义。
在本文所描述的实施例中,“与…通信”等联结术语可被用于指示电或数据通信,其可由例如物理接触、感应、电磁辐射、无线电信令、红外信令或光学信令完成。本技术的普通技术人员将理解,多个组件可交互操作,并且修改以及变化可能实现电以及数据通信。
现在参考图1,医疗系统被示出并且通常被指定为“10”。医疗系统10可包括医疗设备12以及与医疗设备12通信的控制单元14。医疗设备12可被配置成递送能量(例如,脉冲场消融(PFA)和/或电脉冲能量)以用于治疗或消融目标组织的区域,并且还被配置成递送治疗前脉冲例程以用于评估非目标组织从能量的递送受到损害的可能性。
在一个实施例中,医疗设备12可以是导管,该导管包括用于设备与治疗部位之间的能量或其他治疗交互的一个或多个治疗元件16。(多个)治疗元件16可包括一个或多个电极18。(多个)电极18可递送例如脉冲场消融能量、电穿孔能量和/或其他能量传递,其中组织区域在目标组织(诸如,心脏组织)的区域附近。
医疗设备12可包括可穿行通过患者的血管和/或可接近于用于诊断或治疗的目标组织的区域定位的细长体20,诸如导管、鞘或血管内插管。细长体20可限定近侧部分22和远侧部分24,并且可进一步包括设置在细长体20内的一个或多个腔,该一个或多个腔提供细长体20的近侧部分22与细长体20的远侧部分24之间的机械、电和/或流体通信,该远侧部分24可包括(多个)治疗元件16。在一个实施例中,细长体远侧部分24可包括治疗元件16,该治疗元件16具有载体臂18,多个电极18被粘附至该载体臂18。治疗元件16和/或细长体远侧部分24可以是在线性或基本线性的第一配置与圈状、圆形或弓形、或至少基本圈状、圆形或弓形的第二配置之间可转换的。设备12可包括中心或导线腔30,轴32可至少部分地被定位在该中心或导线腔30内。在一个实施例中,载体臂28可具有远侧端34以及近侧端36,该远侧端34被耦合至细长体远侧部分24,该近侧端36被耦合至轴32的远侧部分。轴32可在导线腔30内是纵向地可滑动或可移动的,并且轴32的纵向移动可导致治疗元件16在第一配置与第二配置之间转换。
再次参考图1,医疗设备12可包括耦合至细长体近侧部分22的手柄40。手柄40可包括电路系统,以用于标识和/或用于控制医疗设备12或系统10的另一组件。额外地,手柄40还可包括连接器,该连接器可与控制单元14配对以在医疗设备12与控制单元14的一个或多个组件或部分之间建立通信。手柄40还可包括一个或多个致动或控制特征,该一个或多个致动或控制特征允许用户从医疗设备12的近侧部分控制、偏转、转向(steer)或以其它方式操纵医疗设备12的远侧部分。例如,手柄40可包括一个或多个组件,诸如杆或钮(knob),以用于操纵细长体20和/或医疗设备12的额外组件。
系统10可进一步包括导航系统42和/或用于执行特定医疗进程的其他系统组件。医疗设备12可被直接耦合至控制单元14或可通过导航系统42或其他中间系统组件(例如,如图1中所示)被间接地耦合至控制单元14。
如本文中所使用的,术语“控制单元14”为了简单起见可包括不是医疗设备12本身的一部分、除了导航系统16和成像系统(如果包括的话)的组件之外的任何系统组件,无论该组件是否物理地位于控制单元14内部或外部。进一步地,导航系统42可以是与控制单元14通信的独立系统或可以被包括在控制单元14内或与控制单元14集成,尽管导航系统42在图1中被示为与控制单元物理地分离。控制单元14可包括一个或多个组件,以用于递送系统使用的一种或多种能量形式。例如,控制单元14可包括能量源44,作为与设备12的(多个)治疗元件16通信的治疗或诊断机制。作为非限制性示例,能量源44可以是脉冲场消融和/或电穿孔能量发生器,其具有多个输出通道并且可在一个或多个操作模式(例如,单极模式和/或双极模式)中操作,和/或可被配置成递送电能量,诸如高电压能量以及低电压能量两者。
控制单元14可包括一个或多个控制器、处理器和/或软件模块,其包含指令或算法以提供本文描述的特征、序列或进程的自动操作以及执行。例如,控制单元14可包括具有存储器以及处理器的处理电路系统46。存储器可以与处理器电通信并且可具有指令,该指令在被处理器执行时,配置该处理器接收、处理或以其它方式使用来自设备12的信号。进一步地,控制单元14可包括一个或多个使用输入设备、控制器以及显示器,以用于从用户收集信息以及向用户传送信息。
系统10可进一步提供刺激、对患者的生理状况的测量和/或监测,以及响应于监测的/测得的状况,提供一个或多个预先确定的、自动的协议或进程的后续触发或致动。例如,处理电路系统46可被配置成在消融或治疗能量的递送之前执行治疗前脉冲例程。控制单元14可包括专用用户输入设备48(例如,按钮、开关、触摸屏菜单等),该专用用户输入设备48允许用户在发起治疗或消融能量的递送之前快速并且容易地执行治疗前脉冲例程。基于变量,诸如系统参数、所使用的医疗设备、目标组织类型、非目标组织类型、预期治疗的能量模态、用户的评估/判断等,治疗前脉冲例程可能更为保守或更不保守地用于确定到非目标组织的区域的接近度。在非限制性示例中,治疗前脉冲例程可包括一个或多个双相、双极脉冲的递送,关于该双相、双极脉冲,每一个相的脉冲宽度为10μs并且振幅为40V。然而,将理解的是,可使用不同的脉冲宽度和/或电压,如下文更加详细地讨论的。系统10可包括一个或多个刺激监测设备50,诸如膈膜或胸部偏移(excursion)评估设备(例如,可被放置在靠近膈膜的患者皮肤上的加速度计),该一个或多个刺激监测设备50可被用于检测作为膈神经刺激的结果的膈膜或胸部移动。这些(多个)刺激监测设备50可与控制单元处理电路系统46无线或有线通信,并且可向处理电路系统46提供与膈膜以及胸腔在一个或多个平面中移动有关的信息。在一个实施例中,可使用3轴加速度计。所实现的(多个)加速度计可根据多个感测方法中的任一个操作,诸如测量悬浮检测质量(proof mass)的移位;测量检测质量的移动产生的压阻效应;和/或通过例如将检测质量附接至电容板来测量差分电容变化。加速度计可被定位在膈膜和/或胸腔的外部表面上或周围,使得它们可操作以用于检测膈膜移动。系统10可以可选地包括次级设备(诸如评估设备(未示出)),其具有可被用于监测或记录膈膜和/或胸部肌肉系统的肌电图(“EMG”)测量的一个或多个传感器。肌电图仪检测当肌肉细胞处于机械地活跃或静息两者时由这些细胞所生成的电势。为了执行肌内EMG,电极可穿过皮肤被插入至肌肉组织中。随后,可在肌肉收缩时(诸如,响应于目标组织结构的诱导激发)采集电信号并且在松弛期间再次采集电信号。随后,所得的肌肉运动单位电势的形状、大小以及频率可被分析以建立用于之后比较的基线值或阈值。在肌内EMG可能被考虑为过于侵入式或不必要的情况下,表面电极可被用于监测肌肉激动。额外地或替代地,可由医师视觉地或手动地检测刺激,诸如通过腹部触诊以确认膈膜移动。如上文讨论的,膈神经是定位在心脏组织附近的敏感生理结构,心脏组织可以作为一个或多个治疗应用(诸如,用于治疗例如心律失常的消融)的目标。诱导的反应可随后被用于建立或以其它方式限定阈值或基线值。可将在治疗进程期间在患者体内发生的后续活动或生理改变与基线值或阈值相比较,并且由此生成警报和/或被用于修改递送的治疗的一个或多个参数。尽管系统10可被用于刺激以及监测膈神经,将理解的是,非目标组织和/或解剖结构的其他区域(诸如,其他神经或肌肉)可替代地被刺激并且被监测,以防止在向目标组织的区域递送治疗或消融能量期间对那些非目标组织造成损害。
尽管未示出,系统10可包括一个或多个传感器以监测整个系统的操作参数,包括例如压力、温度、递送的电压等,并且除了用于监测、记录或以其他方式传送医疗设备12或医疗设备12的远侧部分处的周围环境内的测量或状况之外还用于测量以及监测一个或多个组织特性,诸如ECG波形、组织阻抗等。(多个)传感器可与控制单元14通信以用于在医疗设备12的操作期间发起或触发一个或多个警报或治疗递送修改。
现在参考图3-图6,示出了轮廓曲线,每一个轮廓曲线示出了下述之间的关系:电压、脉冲宽度、以及治疗元件与非目标组织(诸如膈神经)之间的相对距离。这些关系可被用于确定可在特定的治疗位置处递送的能量的最大量和/或可从特定电极递送的能量的最大量,和/或用于确定治疗元件(或特定电极)必须距离非目标组织的区域多远以避免损伤非目标组织,诸如膈神经。此类数据可被存储并且由处理电路系统46访问以用于系统10的自动或半自动操作。在一个实施例中,处理电路系统46可被配置成使用此类数据,以基于能量递送参数、所使用的医疗设备的类型、电极的数量、治疗元件配置等来确定距离治疗元件的最大刺激距离,并且确定非目标组织的区域是否在最大刺激距离内(并且因此可能会被治疗和/或消融能量的后续递送不利地影响)。处理电路系统46进一步可被配置成至少部分基于治疗元件16与非目标组织之间的距离(例如,至少部分基于相对电极对距离),确定将不会不利地影响非目标组织的区域的推荐能量递送参数。
为了生成图3-图6中的每一个所示的数据,具有包括九个电极的治疗元件的设备在上腔静脉(SVC)内被取向使得电极2以及电极3距离膈神经最近。在一个实施例中,诸如图2中所示的,治疗元件16包括九个电极,编号为电极1-9。当治疗元件16处于第一配置时,每一个连续的电极对之间的空间是相同的。即,电极1与电极2之间的空间与电极2与电极3之间的空间相同,电极2与电极3之间的空间与电极4与电极5之间的空间相同,以此类推。然而,当治疗元件16处于第二配置时,电极1与电极9之间的空间可能大于任何其他电极对之间的空间。因此,出于数据获取目的,电极2以及电极3可被定位成最靠近要被评估的非目标组织的区域(如图2中所示)。图2还示出了电极对之间递送的示例性能量场,该能量场被描绘为封围每一个电极对的圆圈。
图3-图6中的轮廓曲线的y轴上的每一个标记(0-6)表示连续的电极对,并且因此表示从所递送的能量以及感兴趣的解剖目标的相对距离:标记0表示电极对2和3;标记1表示电极对3和4;标记2表示电极对4和5;标记3表示电极对5和6;标记4表示电极对6和7;标记5表示电极对7和8;并且标记6表示电极对8和9。出于上文讨论的原因,未从电极对9和1收集数据。若干电压的能量(10V、20V、30V、40V、50V、75V以及100V)从八个电极对按照特定或预先确定的脉冲宽度(图1中5μs的脉冲宽度、图2中10μs的脉冲宽度、图3中25μs的脉冲宽度以及图4中50μs的脉冲宽度)被递送。在每一个脉冲宽度、电压以及电极对组合下,单个双相脉冲被递送四次并且针对膈神经中的刺激响应被独立地评估。通过手动地(使用二进制是/否确定)以及通过使用一个或多个加速度计两者来确定刺激响应的存在,并且根据两种方法获取的数据被比较以确认手动观察。
图7示出了电压以及脉冲宽度对于距离非目标组织的区域的刺激距离的影响的图形表示。因为电极宽度以及电极之间的间隔可能是已知的,因此这些已知的距离可被用于计算递送能量的电极18与非目标组织之间的距离。例如,当如图2中所示地相对于膈神经定位电极18时,在10V的电压以及5μs的脉冲宽度下,八个电极对中的零对到两对之间可能对非目标组织(诸如膈神经)的区域具有刺激效果。相反,当如图2中所示地相对于膈神经定位电极18时,在100V的电压以及50μs的脉冲宽度下,八个电极对中的六对到八对之间可能对非目标组织(诸如膈神经)的区域具有刺激效果。图3-图6中的轮廓曲线以不同的方式示出了该数据:例如,图3示出当按照10V的电压按照5μs的脉冲宽度递送能量时,没有电极对可能对非目标组织的区域具有刺激效果。发现按照40V的电压以及10μs的脉冲宽度递送能量提供了从非目标组织的两个电极对的刺激距离并且不是过度保守的方案,并且因此不会产生假阳性和/或潜在地损害疗效。由此,该数据可被用于确定在特定电压和/或脉冲宽度下的能量的应用是否将穿透目标组织的区域足够深以对非目标组织的区域产生效果(在一个实施例中,刺激非目标组织的区域)并且因此潜在地损害非目标组织的区域。换言之,处理电路系统46可被配置成:基于非目标组织中刺激响应的存在或缺失以及刺激响应的幅度,在治疗前脉冲方案期间计算多少能量可被安全地递送至目标组织的区域而不会对非目标组织造成预期外的损害。然而,能量穿透的深度可能取决于设备。由此,处理电路系统46可包括来自多个不同的设备的数据。处理电路系统46可被配置成识别并且标识多个医疗设备中的任一个,并且可针对特定设备应用正确的数据以准确地评估通过该设备的能量递送的效果。在一个实施例中,处理电路系统46可被配置成基于给定参数(设备、消融设置、目标组织等)访问查找表。相似地,可选择将从更远处影响刺激响应的检测脉冲参数,诸如可以从等于距离膈神经四或五个电极对的相对距离被观察。如果期望更为激进的治疗参数集或系统的能力(诸如,例如较高的电压)被应用以用于电穿孔,则可以使用该较大距离。对非目标组织的一些刺激可被预期并且被允许用于目标组织的特定治疗,只要用户和/或处理电路系统46在治疗/消融能量的递送之前确定治疗不会在非目标组织中产生不利效果或治疗不会不必要地面临在非目标组织中的不利效果的风险。治疗前脉冲例程可使得用户和/或处理电路系统46能够确定计划的治疗是否将对非目标组织具有不利效果,即使对非目标组织造成了一些安全水平下的刺激。
现在参考图8-图11,示出了不可逆电穿孔例程之前递送的低电压、治疗前脉冲例程的示例性波形。在所有三个示例中,用户在第一时间段中发起治疗前脉冲例程54,观察非目标组织由治疗前脉冲例程导致的刺激效果,如果治疗前脉冲例程的结果指示在所选择的参数下的能量递送将对非目标组织导致预期外的损害则采取校正的动作(如果必要的话),随后在第二时间段中递送治疗或消融能量例程56,诸如足以导致不可逆电穿孔的能量的递送。第二时间段可以短于、长于第一时间段或者与第一时间段相同。在一个实施例中,第一时间段(治疗前脉冲例程54的时间)可以是大约25μs。低电压、治疗前脉冲例程54可包括双相或单相以及双极或单极的能量的递送。额外地或替代地,低电压、治疗前脉冲例程54可包括具有一个或多个其他波形(诸如,正弦形、三角形、梯形、倾斜状、不规则形状等)的能量(例如,一个或多个能量脉冲)的递送。图8的治疗前脉冲例程54包括多个双相、低电压(在0.1V和100V之间)脉冲的递送。图9的治疗前脉冲例程54包括在第一时间段中单个单相、低电压(在0.1V和100V之间)脉冲的递送。图10的治疗前脉冲例程54包括在第一时间段中多个单相、低电压(在0.1V和100V之间)脉冲的递送。最后,图11的治疗前脉冲例程54包括单个双相、低电压(在0.1V和100V之间)脉冲的递送。在一个实施例中,在治疗前脉冲例程期间按照40伏特的电压以及10μs的脉冲宽度递送能量。具有这些特性的能量可能不足以对非目标组织导致任何损害,但是仍可能在非目标组织中产生可由系统10和/或用户观察到的刺激效果。
诸如本文讨论的系统10可包括硬件以及软件,不仅用于快速并且简单地递送治疗前脉冲例程,也用于评估对治疗前脉冲例程的患者响应并且相应地调整计划的治疗或消融能量递送。替代地,可使用本文讨论的硬件和/或软件改造现有消融系统(诸如脉冲场消融和/或电穿孔系统)以添加这些能力。尽管本文中讨论并且在附图中示出了不可逆电穿孔,但是将理解的是,也可使用本文讨论的硬件和/或软件改造其他现有消融系统,诸如,RF消融系统、冷冻消融系统、高强度聚焦超声(HIFU)或可包括能量递送组件以及到目标区域的电连接(通过该电连接治疗前脉冲例程可被应用)的任何其他能量模态系统。在一个实施例中,现有电穿孔系统可具有处理电路系统,该处理电路系统被配置成执行软件以用于根据一个或多个切换和/或计时模式递送能量。可通过修改处理电路系统和/或用于根据导致本文讨论的示例性波形的一个或多个切换和/或计时模式递送能量的软件,来改造现有系统。进一步地,在一个实施例中,系统10包括用户输入设备48,或被改造以包括专用用户输入设备48(诸如,按钮、开关、触摸屏菜单等),用户可操作该专用用户输入设备48以发起治疗前脉冲例程,而不需要来自用户的进一步输入。处理电路系统46可被配置成随后确定在患者体内由治疗前脉冲例程导致的任何效果(诸如膈神经刺激)并且自动地基于该确定自动地调整能量递送和/或系统参数和/或向用户传送该确定。在一个实施例中,处理电路系统46可被配置成确定距离治疗元件16的最大刺激距离,并且可被配置成如果治疗和/或消融能量要按照当前递送参数(例如,当前设置的递送电压和/或脉冲宽度)被递送则确定非目标组织的区域是否在该最大刺激距离内。额外地或替代地,用户可基于患者体内由治疗前脉冲例程导致的效果和/或基于通过控制单元14被传送至用户的信息来设置和/或改变能量递送和/或系统参数。在一个实施例中,如果处理电路系统46确定在当前所选择的参数下的治疗和/或消融的递送将对非目标组织导致预期外的损害,则处理电路系统46可阻止由用户进行的对治疗和/或消融能量的递送的手动发起。在一个实施例中,控制单元14可显示或发出一个或多个视觉或可听警报。可在用于评估相对于目标治疗位置的电极位置的步骤之前和/或之后使用治疗前脉冲例程。进一步地,治疗前脉冲例程可消除使用电生理(EP)系统以独立地检查神经激动的需要。
现在参考图14,示出了递送低电压、治疗前脉冲例程以及治疗或消融能量的方法。在第一步骤101中,一旦治疗元件16被定位在目标组织的区域附近或与目标组织的区域接触,则用户可发起低电压、治疗前脉冲例程的递送。在一个实施例中,用户可通过与一个或多个用户输入设备交互或激活一个或多个用户输入设备(诸如,按钮、开关、触摸屏显示器等)来手动地发起治疗前脉冲例程。该治疗前脉冲例程可包括单相或双相波形(例如,如图8-图11中所示),并且可由能量源44通过治疗元件16以双极或单极模式递送(诸如第二步骤102中)。在一个实施例中,治疗元件16包括九个电极18(八个电极对)并且可在线性或至少基本线性的第一配置与圈状、圆形或弓形、或至少基本圈状、圆形或弓形的第二配置之间转换(例如,如图1和图2中所示的)。在一个实施例中,低电压、治疗前脉冲例程按照40伏特的电压以及10μs的脉冲宽度被递送。然而,将理解的是,低电压、治疗前脉冲例程的电压和/或脉冲宽度可被选择或被调整以适合多个变量中的任一个,诸如系统参数、所使用的医疗设备、目标组织类型、非目标组织类型等。在一个实施例中,诸如图3-图7中所示的那些数据之类的数据可被参考以用于确定适当的治疗前脉冲例程。治疗前脉冲例程可被配置或选择成使得当非目标组织的区域在距离目标组织的区域的预先确定的距离内时,治疗前脉冲例程能够在非目标组织的区域内具有刺激效果,但是当非目标组织在距离目标组织的区域的预先确定的距离外时,治疗前脉冲例程将在非目标组织的区域内不具有刺激效果。
一个或多个刺激监测设备50(诸如一个或多个加速度计)可被放置在靠近膈膜的患者皮肤上。一个或多个刺激监测设备50可通过无线或有线连接向控制单元14的处理电路系统46传输信号。例如,在某些状况下,(多个)刺激监测设备50可响应于治疗前脉冲例程而记录膈膜的移动。在第三步骤103中,处理电路系统46可基于从(多个)刺激监测设备50接收的信号来确定治疗前脉冲例程是否对非目标组织的区域(诸如膈神经)具有刺激效果。额外地或替代地,用户可基于触觉、视觉或可由用户观察的其他信号(例如,通过触诊患者的身体以检测膈膜收缩的存在)来确定治疗前脉冲例程是否对非目标组织的区域具有刺激效果。额外地或替代地,控制单元14可向用户传送信息(诸如从(多个)刺激监测设备50接收的信息或数据),并且用户可确定治疗前脉冲例程是否对非目标组织的区域具有刺激效果。
在第四步骤104中,治疗前脉冲例程被停止并且治疗和/或消融能量递送系统设置可被调整(如果必要的话);和/或该方法可继续至治疗和/或消融能量递送步骤。如果在第三步骤103中确定低电压、治疗前脉冲例程对非目标组织的区域具有刺激效果,则处理电路系统46可自动地或半自动地调整能量递送系统设置或者用户可手动地调整能量递送系统设置,使得治疗和/或消融能量的后续递送将不会不利地影响非目标组织的区域。例如,电压和/或脉冲宽度可在治疗和/或消融能量递送的发起之前被调整或修改。在一个实施例中,治疗和/或消融能量递送可包括不可逆电穿孔例程。治疗前脉冲例程可被重复期望的次数,或直至用户和/或处理系统系统46确定治疗元件16的位置和/或能量递送系统设置不会使得治疗能量的后续递送将对非目标组织的区域具有不期望的效果。进一步地,紧接在治疗前脉冲例程之后的无能量递送的时段可为用户提供在发起治疗和/或消融能量的递送之前中止治疗和/或消融能量的递送的机会。如果在第三步骤103中确定低电压、治疗前脉冲例程不对非目标组织的区域具有刺激效果,则调整或修改治疗和/或消融能量递送系统设置可能是不必要的,并且该进程可以继续。
在第五步骤105中,用户和/或处理电路系统46可发起治疗和/或消融能量(诸如不可逆电穿孔能量)的递送。在图12中所示的时间线中,用户可通过与一个或多个用户输入设备交互或激活一个或多个用户输入设备(诸如,按钮、开关、触摸屏显示器等)来手动地发起治疗和/或消融能量的递送。替代地,在图13中所示的时间线中,当处理电路系统46确定(例如,在第三步骤103中)低电压、治疗前脉冲例程不对非目标组织的区域具有刺激效果时,处理电路系统46可自动地发起治疗和/或消融能量的递送,而不需要来自用户的进一步输入或指令。
在一个实施例中,医疗系统10包括:医疗设备12,该医疗设备12具有治疗元件16;以及控制单元14,该控制单元14与医疗设备12通信,控制单元14被配置成:通过治疗元件16向目标组织的区域递送低电压、治疗前脉冲例程54,该低电压、治疗前脉冲例程被配置成当非目标组织在距离目标组织的区域的预先确定的距离内时在非目标组织的区域内具有刺激效果并且当非目标组织的区域在距离目标组织的预先确定的距离之外时在非目标组织的区域内不具有刺激效果;并且当低电压脉冲例程对非目标组织的区域不具有刺激效果时通过治疗元件16向目标组织的区域递送消融能量例程56。
在该实施例的一个方面中,消融能量例程56的递送包括不可逆电穿孔、射频消融、冷冻消融以及高强度聚焦超声中的至少一个的使用。
在该实施例的一个方面中,系统进一步包括刺激监测设备50,该刺激监测设备50与控制单元14通信。在该实施例的一个方面中,刺激监测设备50包括加速度计以及肌电图设备中的至少一个。
在该实施例的一个方面中,控制单元14被配置成:基于由控制单元14从刺激监测设备50接收的信号来确定低电压脉冲例程54是否对非目标组织的区域具有刺激效果。
在该实施例的一个方面中,控制单元14被进一步配置成:基于消融能量例程配置低电压、治疗前脉冲例程,并且当低电压、治疗前脉冲例程对非目标组织的区域具有刺激效果时调整消融能量例程。
在该实施例的一个方面中,控制单元14被进一步配置成:基于对距离治疗元件16的最大刺激距离的确定,在消融能量例程56的发起之前自动地调整消融能量例程的电压以及脉冲宽度中的至少一个。
在该实施例的一个方面中,低电压、治疗前脉冲例程54包括具有在0.1V和100V之间的电压的能量的递送。在该实施例的一个方面中,低电压、治疗前脉冲例程54包括具有40V的电压以及10μs的脉冲宽度的能量的递送。
在该实施例的一个方面中,低电压、治疗前脉冲例程54包括单相脉冲的递送。
在该实施例的一个方面中,低电压、治疗前脉冲例程54包括多个单相脉冲的递送。
在该实施例的一个方面中,低电压、治疗前脉冲例程54包括至少一个双相脉冲的递送。
在该实施例的一个方面中,低电压、治疗前脉冲例程54包括具有正弦波形的至少一个脉冲的递送。
在该实施例的一个方面中,控制单元14包括用户输入设备48,以用于低电压、治疗前脉冲例程54的用户选择以及低电压、治疗前脉冲例程54的用户发起中的至少一者。
在该实施例的一个方面中,控制单元14被进一步配置成:当控制单元14确定低电压脉冲例程54对非目标组织的区域不具有刺激效果时,通过治疗元件16向目标组织的区域自动地递送消融能量例程。
在该实施例的一个方面中,控制单元14被进一步配置成:当用户确定低电压、治疗前脉冲例程54对非目标组织的区域不具有刺激效果时,接受用户输入以用于发起通过多个治疗元件16向目标组织的区域递送消融能量例程56。
在一个实施例中,医疗系统10包括:医疗设备12,该医疗设备12具有治疗元件16,该治疗元件16具有多个电极18;刺激监测设备50;以及控制单元14,该控制单元14与医疗设备12以及刺激监测设备50通信,该控制单元14包括消融能量源44,该消融能量源44被配置成:确定消融能量例程;基于消融能量例程确定低电压、治疗前脉冲例程,该低电压、治疗前脉冲例程包括具有在0.1V和100V之间的电压的能量的递送;通过治疗多个电极18向目标组织的区域递送低电压、治疗前脉冲例程54;确定低电压、治疗前脉冲例程54是否对非目标组织的区域具有刺激效果;基于低电压、治疗前脉冲例程54对非目标组织的区域具有刺激效果的确定,在发起向目标组织的区域的消融能量的递送之前自动地调整消融能量例程56的电压以及脉冲宽度中的至少一个;以及通过多个电极18向目标组织的区域递送消融能量。
在该实施例的一个方面中,低电压、治疗前脉冲例程54包括具有10μs的脉冲宽度的能量的递送。
在一个实施例中,不可逆地电穿孔目标组织的区域而不会不利地影响非目标组织的区域的方法包括:通过医疗设备12的治疗元件16向目标组织的区域递送低电压、治疗前脉冲例程54,该低电压、治疗前脉冲例程54包括具有在0.1V和100V之间的电压的能量的递送;确定低电压、治疗前脉冲例程54是否对非目标组织的区域具有不利效果;当确定低电压、治疗前脉冲例程54对非目标组织的区域具有刺激效果时,在发起向目标组织的区域的电穿孔能量递送之前调整电穿孔能量例程56的至少一个消融参数,使得向目标组织的区域的电穿孔能量递送将对在非目标组织的区域不具有不利效果;并且随后通过治疗元件16向目标组织的区域递送电穿孔能量。
在该实施例的一个方面中,电穿孔能量例程56的至少一个消融参数包括电压、脉冲的数量、应用的数量、以及脉冲宽度中的至少一者。
在该实施例的一个方面中,确定低电压、治疗前脉冲例程54是否对非目标组织的区域具有不利效果是至少部分地基于从刺激监测设备50接收的信号。
本领域技术人员应当理解,本发明不限于以上在本文中已具体示出并描述的内容。另外,除非作出与以上相反的提及,应该注意所有附图都不是按比例的。在以上示教启示下各种修改和变型是可能的,而不会背离本发明的范围和精神,本发明只受所附权利要求书限制。

Claims (15)

1.一种医疗系统,包括:
医疗设备,所述医疗设备具有治疗元件;以及
控制单元,所述控制单元与所述医疗设备通信,所述控制单元被配置成:
通过所述治疗元件向目标组织的区域递送低电压、治疗前脉冲例程,其中,要被递送到所述目标组织的区域的所述低电压、治疗前脉冲例程被配置成:当非目标组织在距离所述目标组织的区域的预先确定的距离内时在非目标组织的区域内具有刺激效果,并且当所述非目标组织的区域在距离所述目标组织的区域的预先确定的距离之外时在所述非目标组织的区域内不具有刺激效果;并且
当所述低电压脉冲例程对所述非目标组织的区域不具有刺激效果时通过所述治疗元件向所述目标组织的区域递送消融能量例程。
2.根据权利要求1所述的医疗系统,其特征在于,所述消融能量例程的递送包括不可逆电穿孔、射频消融、冷冻消融、以及高强度聚焦超声中的至少一者的使用。
3.根据权利要求1或2所述的医疗系统,进一步包括刺激监测设备,所述刺激监测设备与所述控制单元通信。
4.根据权利要求3所述的医疗系统,其特征在于,所述刺激监测设备包括加速度计以及肌电图设备中的至少一个。
5.根据权利要求3所述的医疗系统,其特征在于,所述控制单元被配置成基于由控制单元从所述刺激监测设备接收的信号来确定所述低电压脉冲例程是否对非目标组织的区域具有刺激效果。
6.根据权利要求1或2所述的医疗系统,其特征在于,所述控制单元被进一步配置成:
基于所述消融能量例程选择所述低电压、治疗前脉冲例程;以及
当所述低电压、治疗前脉冲例程对所述非目标组织的区域具有刺激效果时调整所述消融能量例程。
7.根据权利要求6所述的医疗系统,其特征在于,所述控制单元被进一步配置成:基于距离所述治疗元件的最大刺激距离的确定,在所述消融能量例程的发起之前自动地调整所述消融能量例程的电压以及脉冲宽度中的至少一个。
8.根据权利要求1、2或7中任一项所述的医疗系统,其特征在于,所述低电压、治疗前脉冲例程包括具有在0.1V和100V之间的电压的能量的递送。
9.根据权利要求8所述的医疗系统,其特征在于,所述低电压、治疗前脉冲例程包括具有40V的电压以及10μs的脉冲宽度的能量的递送。
10.根据权利要求1、2或7中任一项所述的医疗系统,其特征在于,所述低电压、治疗前脉冲例程包括至少一个单相脉冲的递送。
11.根据权利要求1、2或7中任一项所述的医疗系统,其特征在于,所述低电压、治疗前脉冲例程包括至少一个双相脉冲的递送。
12.根据权利要求1、2或7中任一项所述的医疗系统,其特征在于,所述控制单元包括用户输入设备,以用于所述低电压、治疗前脉冲例程的用户选择以及所述低电压、治疗前脉冲例程的用户发起中的至少一者。
13.根据权利要求1、2或7中任一项所述的医疗系统,其特征在于,所述控制单元被进一步配置成:当所述控制单元确定所述低电压脉冲例程对所述非目标组织的区域不具有刺激效果时,通过所述治疗元件向所述目标组织的区域自动地递送所述消融能量例程。
14.根据权利要求1、2或7中任一项所述的医疗系统,其特征在于,所述控制单元被进一步配置成:当用户确定所述低电压、治疗前脉冲例程对所述非目标组织的区域不具有刺激效果时,接受用户输入以用于发起通过所述治疗元件向所述目标组织的区域的所述消融能量例程的递送。
15.根据权利要求3所述的医疗系统,其特征在于,所述医疗设备进一步具有多个电极,所述控制单元具有消融能量源并且被进一步配置成:
确定所述消融能量例程;
基于所述消融能量例程确定所述低电压、治疗前脉冲例程,所述低电压、治疗前脉冲例程包括具有在0.1V和100V之间的电压以及10μs的脉冲宽度的能量的递送;
通过所述多个电极向目标组织的区域递送所述低电压、治疗前脉冲例程;
确定所述低电压、治疗前脉冲例程是否对非目标组织的区域具有刺激效果;
基于所述低电压、治疗前脉冲例程对所述非目标组织的区域具有刺激效果的确定,在发起向所述目标组织的区域的所述消融能量的递送之前自动地调整所述消融能量例程的电压以及脉冲宽度中的至少一个;并且
通过所述多个电极向所述目标组织的区域递送消融能量。
CN201880050270.XA 2017-08-04 2018-06-26 用于电穿孔的消融检查脉冲例程以及集成 Active CN110997062B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/669,048 US11633121B2 (en) 2017-08-04 2017-08-04 Ablation check pulse routine and integration for electroporation
US15/669,048 2017-08-04
PCT/US2018/039407 WO2019027589A1 (en) 2017-08-04 2018-06-26 ABLATION CONTROL PULSE ROUTINE AND INTEGRATION FOR ELECTROPORATION

Publications (2)

Publication Number Publication Date
CN110997062A CN110997062A (zh) 2020-04-10
CN110997062B true CN110997062B (zh) 2023-08-11

Family

ID=62976167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880050270.XA Active CN110997062B (zh) 2017-08-04 2018-06-26 用于电穿孔的消融检查脉冲例程以及集成

Country Status (4)

Country Link
US (1) US11633121B2 (zh)
EP (1) EP3661593B1 (zh)
CN (1) CN110997062B (zh)
WO (1) WO2019027589A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2882336B1 (en) 2012-08-09 2019-06-26 University of Iowa Research Foundation Catheter systems for puncturing through a tissue structure
EP3049005B1 (en) 2013-09-24 2022-08-10 Adagio Medical, Inc. Endovascular near critical fluid based cryoablation catheter
EP3139997B1 (en) 2014-05-07 2018-09-19 Farapulse, Inc. Apparatus for selective tissue ablation
WO2015192018A1 (en) 2014-06-12 2015-12-17 Iowa Approach Inc. Method and apparatus for rapid and selective tissue ablation with cooling
WO2016060983A1 (en) 2014-10-14 2016-04-21 Iowa Approach Inc. Method and apparatus for rapid and safe pulmonary vein cardiac ablation
WO2017048965A1 (en) 2015-09-18 2017-03-23 Adagio Medical Inc. Tissue contact verification system
US20170189097A1 (en) 2016-01-05 2017-07-06 Iowa Approach Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US9987081B1 (en) 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
CN111225626B (zh) 2017-09-05 2023-11-14 艾达吉欧医疗公司 具有形状记忆探针的消融导管
EP3737316A4 (en) 2018-01-10 2021-09-29 Adagio Medical, Inc. CONDUCTIVE COATED CRYOABLATION ELEMENT
JP7379377B2 (ja) 2018-05-07 2023-11-14 ファラパルス,インコーポレイテッド パルス電界アブレーションによって誘導される高電圧ノイズをフィルタリングするためのシステム、装置、および方法
JP2021522903A (ja) 2018-05-07 2021-09-02 ファラパルス,インコーポレイテッド 組織へアブレーションエネルギーを送達するためのシステム、装置、および方法
CN114554988A (zh) 2019-09-04 2022-05-27 艾格医疗技术公司 用于治疗器官中组织的靶区域的消融设备
US10625080B1 (en) 2019-09-17 2020-04-21 Farapulse, Inc. Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation
US11497541B2 (en) 2019-11-20 2022-11-15 Boston Scientific Scimed, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US11065047B2 (en) 2019-11-20 2021-07-20 Farapulse, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US10842572B1 (en) 2019-11-25 2020-11-24 Farapulse, Inc. Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines
WO2021250538A1 (en) 2020-06-07 2021-12-16 Arga' Medtech Sa Ablation equipment to treat target regions of tissue in organs
US20220008123A1 (en) * 2020-07-13 2022-01-13 Biosense Webster (Israel) Ltd. Sequential activation of electrode-pairs during irreversible electroporation (ire)
US20220031386A1 (en) * 2020-07-28 2022-02-03 Biosense Webster (Israel) Ltd. Controlling irreversible electroporation ablation using a focal catheter having contact-force and temperature sensors
KR102486572B1 (ko) * 2021-01-05 2023-01-11 (주)아이엠지티 집속 초음파 장치 및 그 집속 초음파 치료순서 설정 방법
WO2022214870A1 (en) 2021-04-07 2022-10-13 Btl Medical Technologies S.R.O. Pulsed field ablation device and method
IL309432A (en) 2021-07-06 2024-02-01 Btl Medical Dev A S Apparatus and method for ablation (burning) by electric pulse field
CN114366280B (zh) * 2022-03-22 2022-11-08 上海睿刀医疗科技有限公司 脉冲处理装置、脉冲处理方法、电子设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6428537B1 (en) * 1998-05-22 2002-08-06 Scimed Life Systems, Inc. Electrophysiological treatment methods and apparatus employing high voltage pulse to render tissue temporarily unresponsive
CN104684500A (zh) * 2012-09-06 2015-06-03 麦德托尼克消融前沿有限公司 用于消融和电穿孔组织细胞的设备
CN105072982A (zh) * 2013-02-21 2015-11-18 美敦力公司 用于使用相邻的单极电描记图之间的空间相关图的同时心脏基质标测的方法
WO2016118752A1 (en) * 2015-01-21 2016-07-28 Serene Medical, Inc. Systems and devices to identify and limit nerve conduction

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8406509D0 (en) 1984-03-13 1984-04-18 Bio Medical Res Ltd Electrical stimulation of muscle
US6023638A (en) 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US8709007B2 (en) 1997-10-15 2014-04-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Devices and methods for ablating cardiac tissue
US6821274B2 (en) 2001-03-07 2004-11-23 Gendel Ltd. Ultrasound therapy for selective cell ablation
US6618626B2 (en) * 2001-01-16 2003-09-09 Hs West Investments, Llc Apparatus and methods for protecting the axillary nerve during thermal capsullorhaphy
US6780178B2 (en) 2002-05-03 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US7937147B2 (en) * 2007-02-28 2011-05-03 Cardiac Pacemakers, Inc. High frequency stimulation for treatment of atrial fibrillation
US8574187B2 (en) * 2009-03-09 2013-11-05 Arthrocare Corporation System and method of an electrosurgical controller with output RF energy control
US8979771B2 (en) 2009-04-13 2015-03-17 Articulate Labs, Inc. Acoustic myography system and methods
US8886313B2 (en) * 2009-07-02 2014-11-11 Cardiac Pacemakers Inc. Systems and methods for ranking and selection of pacing vectors
US8617228B2 (en) 2009-10-23 2013-12-31 Medtronic Cryocath Lp Method and system for preventing nerve injury during a medical procedure
US8864761B2 (en) * 2010-03-10 2014-10-21 Covidien Lp System and method for determining proximity relative to a critical structure
US20120310230A1 (en) * 2011-06-01 2012-12-06 Angiodynamics, Inc. Coaxial dual function probe and method of use
US9724018B2 (en) * 2011-10-27 2017-08-08 Medtronic Cryocath Lp Method for monitoring phrenic nerve function
US20140358135A1 (en) * 2013-05-29 2014-12-04 Medtronic Cryocath Lp Method and apparatus for using phonomyography to prevent nerve damage during a medical procedure
CA2935454A1 (en) * 2014-01-21 2015-07-30 Simon Fraser University Systems and related methods for optimization of multi-electrode nerve pacing
US20150208934A1 (en) * 2014-01-24 2015-07-30 Genevieve Sztrubel Method And Apparatus For The Detection Of Neural Tissue
US9872989B2 (en) * 2015-04-02 2018-01-23 The Florida International University Board Of Trustees System and method for neuromorphic controlled adaptive pacing of respiratory muscles and nerves

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6428537B1 (en) * 1998-05-22 2002-08-06 Scimed Life Systems, Inc. Electrophysiological treatment methods and apparatus employing high voltage pulse to render tissue temporarily unresponsive
CN104684500A (zh) * 2012-09-06 2015-06-03 麦德托尼克消融前沿有限公司 用于消融和电穿孔组织细胞的设备
CN105072982A (zh) * 2013-02-21 2015-11-18 美敦力公司 用于使用相邻的单极电描记图之间的空间相关图的同时心脏基质标测的方法
WO2016118752A1 (en) * 2015-01-21 2016-07-28 Serene Medical, Inc. Systems and devices to identify and limit nerve conduction

Also Published As

Publication number Publication date
EP3661593A1 (en) 2020-06-10
WO2019027589A1 (en) 2019-02-07
EP3661593B1 (en) 2023-12-06
US11633121B2 (en) 2023-04-25
CN110997062A (zh) 2020-04-10
US20190038171A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
CN110997062B (zh) 用于电穿孔的消融检查脉冲例程以及集成
US11033329B2 (en) Timed energy delivery
US9724018B2 (en) Method for monitoring phrenic nerve function
CN112890947A (zh) 在心脏组织上使用可逆电穿孔
US10398332B2 (en) Methods, systems, and apparatus for neural signal detection
EP3370634B1 (en) Medical device and related methods
JP2017200598A (ja) マッピング中の電極接触のリアルタイムフィードバック
EP3033995B1 (en) Far field-insensitive intracardiac catheter electrodes
JP2018515247A (ja) Ac型心臓不可逆的電気穿孔法のための非対称形にバランスされた波形
JP7229713B2 (ja) 損傷部位を評価するための装置、及び、損傷部位を評価するためのコンピュータソフトウェア製品
CN110573100B (zh) 具有多功能感测元件的治疗设备和使用方法
US20220401146A1 (en) Tissue treatment systems, devices, and methods
JP2022512378A (ja) 療法的鼻神経変調のためのシステムおよび方法
US20230264031A1 (en) Systems for tissue stimulation and associated methods
CN115998412A (zh) 用于心脏消融的系统和相关方法
US20230346468A1 (en) Systems and methods that facilitate tissue treatment based on proximity information
US20230372003A1 (en) Systems and methods for therapeutic nasal treatment
CN115886980A (zh) 膈神经警告
KR20180027931A (ko) 신경감지 주사기를 구비한 신경감지 모니터링 시스템

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant