CN110993722A - 一种晶体硅太阳电池的硼扩散背钝化工艺 - Google Patents

一种晶体硅太阳电池的硼扩散背钝化工艺 Download PDF

Info

Publication number
CN110993722A
CN110993722A CN201910977470.6A CN201910977470A CN110993722A CN 110993722 A CN110993722 A CN 110993722A CN 201910977470 A CN201910977470 A CN 201910977470A CN 110993722 A CN110993722 A CN 110993722A
Authority
CN
China
Prior art keywords
diffusion
nitrogen
temperature
flow
keeping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910977470.6A
Other languages
English (en)
Inventor
刘进
王丽
郝延蔚
孙瑞敏
周永恒
师兆忠
赵辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaifeng University
Original Assignee
Kaifeng University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaifeng University filed Critical Kaifeng University
Priority to CN201910977470.6A priority Critical patent/CN110993722A/zh
Publication of CN110993722A publication Critical patent/CN110993722A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及太阳能电池生产领域,具体是一种新型太阳能晶硅电池技术(PERC)的背钝化工艺改进及提升。步骤一、扩散,保持载舟温度,按一定流量的氮气、高浓度的三溴化硼和氧气进行扩散;步骤二、均化过程,保持扩散时温度,按照氮气保持一定流量进行均化处理;步骤三、推进,保持氮气流量进行推进工艺;步骤四、退火处理;步骤五、降温完成扩散过程。本发明实现高浓度浅层扩散,并提高了扩散的均匀性,提高背钝化的致密性,提高太阳能电池的转换效率。

Description

一种晶体硅太阳电池的硼扩散背钝化工艺
技术领域
本发明涉及太阳能电池生产领域,具体是一种新型太阳能晶硅电池技术(PERCT)的背钝化工艺改进及提升。
背景技术
随着常规的化石能源的日益消耗殆尽,在现有的可持续能源中,太阳能作为一种清洁和最有潜力的替代能源越来越受到人们的重视。太阳能发电装置又称为太阳能电池或光伏电池,可以将太阳能直接转换成电能,当太阳光照射在半导体P-N结上时,会形成新的空穴-电子对,在P-N结电场的作用下,空穴由N区流向P区,电子由P区流向N区,接通电路后就形成电流。传统的太阳能电池一般只采用正面钝化技术,但随着当前对晶硅太阳能电池光电转换效率的要求越来越高,人们开始研究高效背钝化太阳电池技术,特别是采用P型基片背钝化工艺制备的PERC(passivated emitter and rear side cell)电池已成为当前研究的热点。其中背钝化工艺制备PERC电池的核心工艺为背钝化工艺。现有的硼(B)扩散背钝化工艺步骤常见的主要包括:步骤一、扩散,将硅片放入扩散炉中,保持载舟温度为800~950℃,按照氮气流量6~8L/min、三溴化硼流量5~10l/min、氧气流量3~5L/min的标准进行扩散,时间为8~15min;步骤二、推进过程,保持扩散时温度,按照氮气流量4L/min进行均化处理8~15min;步骤三、氧化过程,保持温度为930~960℃,保持氧气流量10l/min,处理20~30min;步骤四、降温至800~850℃,通氮气完成扩散过程,氮气流量4L/min。但现有的硼(B)扩散背钝化工艺中还存在着扩散方阻不均,钝化层致密性不足,钝化效果不佳,电池转换效率不高等缺憾。
发明内容
本发明索要解决的技术问题是:经硼扩散配方的步骤及参数改进后,有效改善电池方阻的均匀性,提高背钝化的致密性,提高电池片转换效率。
本发明所采用的技术方案是
步骤一、扩散,将硅片放入扩散炉中,保持载舟温度为800~930℃,按照氮气流量6L/min标准,保持10~20min,而后以2~10℃/min的速率升温至900~960℃进行扩散,按照氮气流量6~8L/min、三溴化硼流量5~10l/min、氧气流量4L/min的标准进行扩散,时间为12min;步骤二、均化过程,保持扩散时温度,按照氮气流量6L/min进行均化处理2min;步骤三、推进,保持温度为960℃,开始推进工艺,保持氮气流量为6L/min,氧气流量4l/min,推进10min;步骤四、退火处理,以960℃为基础温度,保持10min;步骤五、以5℃/min的速率降温至800~850℃,通氮气完成扩散过程,氮气流量5~10L/min。
本发明的工作机理是:
本发明的工作机理是:采用高扩散温度使更多的硼进入硅片的表面,提升硅片表面的硼浓度;在扩散环节结束后,通入2分钟氮气,这个步骤可以增加方阻分布的均匀性,然后采用一步推进和一步退火处理,使硅片表面的硼浓度分布更加均匀,减少了方阻的波动范围,提升硼扩散层的钝化效果,减少电池背面光生少数载流子的复合,降低复合速率,进而提高开路电压,使转换效率明显提升。
本发明在提高了扩散的均匀性的同时,提升硼扩散层的钝化效果,减少电池背面光生少数载流子的复合,明显提升转换效率。
具体实施方式
本发明在原生产工艺基础上进行了改进。
步骤一、扩散,将硅片放入扩散炉中,保持载舟温度为930℃,按照氮气流量6L/min标准,保持20min,而后以5℃/min的速率升温至960℃进行扩散,按照氮气流量8L/min、三溴化硼流量8l/min、氧气流量4L/min的标准进行扩散,时间为12min;步骤二、均化过程,保持扩散时温度,按照氮气流量6L/min进行均化处理2min;步骤三、推进,保持温度为960℃,开始推进工艺,保持氮气流量为6L/min,氧气流量4l/min,推进10min;步骤四、退火处理,以960℃为基础温度,保持10min;步骤五、以5℃/min的速率降温至830℃,通氮气完成扩散过程,氮气流量8L/min。
表一:工艺改进前与改进后的电池片转化效率对比
片数 Ncell Uoc Isc Rs Rsh FF
改进前 1049 19.15% 0.640 9.342 0.0035 119.53 78.0
改进后 1064 19.36% 0.644 9.352 0.0032 125.24 78.2
说明:从表一的对比数值可以看出,经硼扩散配方的步骤及参数改进后其方阻的均匀性和钝化的致密性有了提升,反映在开路电压提升了0.004V;改进后电池片效率提高约有0.21%,反映了电池品质的提升。
本专利通过对扩散生产工艺的调节,优化了扩散工艺,对提高晶硅电池转换效率起到了明显效果,运用调整后的工艺配方可以使电池片平均效率提高0.21%,效益明显。

Claims (1)

1.一种晶体硅太阳电池的硼扩散背钝化工艺,其特征在于,包括如下步骤:
步骤一、扩散,将硅片放入扩散炉中,保持载舟温度为800~930℃,按照氮气流量6L/min标准,保持10~20min,而后以2~10℃/min的速率升温至900~960℃进行扩散,按照氮气流量6~8L/min、三溴化硼流量5~10l/min、氧气流量4L/min的标准进行扩散,时间为12min;步骤二、均化过程,保持扩散时温度,按照氮气流量6L/min进行均化处理2min;步骤三、推进,保持温度为960℃,开始推进工艺,保持氮气流量为6L/min,氧气流量4l/min,推进10min;步骤四、退火处理,以960℃为基础温度,保持10min;步骤五、以5℃/min的速率降温至800~850℃,通氮气完成扩散过程,氮气流量5~10L/min。
CN201910977470.6A 2019-10-12 2019-10-12 一种晶体硅太阳电池的硼扩散背钝化工艺 Pending CN110993722A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910977470.6A CN110993722A (zh) 2019-10-12 2019-10-12 一种晶体硅太阳电池的硼扩散背钝化工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910977470.6A CN110993722A (zh) 2019-10-12 2019-10-12 一种晶体硅太阳电池的硼扩散背钝化工艺

Publications (1)

Publication Number Publication Date
CN110993722A true CN110993722A (zh) 2020-04-10

Family

ID=70081897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910977470.6A Pending CN110993722A (zh) 2019-10-12 2019-10-12 一种晶体硅太阳电池的硼扩散背钝化工艺

Country Status (1)

Country Link
CN (1) CN110993722A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103603053A (zh) * 2013-11-15 2014-02-26 中电电气(南京)光伏有限公司 一种制备晶体硅太阳能电池的方法
CN105261670A (zh) * 2015-08-31 2016-01-20 湖南红太阳光电科技有限公司 晶体硅电池的低压扩散工艺
WO2016112757A1 (zh) * 2015-01-15 2016-07-21 中利腾晖光伏科技有限公司 一种n型双面电池及其制作方法
CN109559982A (zh) * 2018-10-23 2019-04-02 开封大学 一种n型晶体硅太阳电池的硼扩散工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103603053A (zh) * 2013-11-15 2014-02-26 中电电气(南京)光伏有限公司 一种制备晶体硅太阳能电池的方法
WO2016112757A1 (zh) * 2015-01-15 2016-07-21 中利腾晖光伏科技有限公司 一种n型双面电池及其制作方法
CN105261670A (zh) * 2015-08-31 2016-01-20 湖南红太阳光电科技有限公司 晶体硅电池的低压扩散工艺
CN109559982A (zh) * 2018-10-23 2019-04-02 开封大学 一种n型晶体硅太阳电池的硼扩散工艺

Similar Documents

Publication Publication Date Title
NL2022765B1 (en) Step-by-Step Doping Method of Phosphorous for High-efficiency and Low-cost Crystalline Silicon Cell
CN109449246B (zh) 一种硅晶体片磷扩散方法
CN111162145A (zh) 具有选择性发射极结构的钝化接触太阳能电池及其制备方法
CN110010721B (zh) 一种基于se的碱抛光高效perc电池工艺
CN101937940B (zh) 印刷磷源单步扩散法制作选择性发射结太阳电池工艺
JP6741867B2 (ja) P型perc両面受光型太陽電池及びそのモジュール、システム並びに製造方法
CN110880541A (zh) 一种新结构n型晶硅PERT双面电池及其制备方法
CN102191562B (zh) 一种n型晶体硅太阳电池的硼扩散方法
CN109786511B (zh) 一种适用于选择性发射极的扩散方法
CN111384210B (zh) 一种perc叠加se的高开压扩散高方阻工艺
CN111739794B (zh) 硼扩散方法、太阳能电池及其制作方法
CN103050581A (zh) 一种激光掺杂选择性发射结的扩散工艺
CN110943143A (zh) 用于制造具有异质结和发射极扩散区的光伏太阳能电池的方法
CN102130211B (zh) 一种改善太阳能电池表面扩散的方法
CN102097523A (zh) 双次扩散选择性发射结硅太阳能电池的扩散工艺
CN109860312B (zh) 用于p型晶体硅太阳能电池硼扩散背钝化工艺
CN108110090B (zh) 一种n型双面电池制备方法
EP4060752A1 (en) Solar cell stack passivation structure and preparation method therefor
CN112086541B (zh) N型太阳能电池的后处理方法
CN113594299A (zh) 一种n型硅片p++结构的制作工艺
CN116053353A (zh) 硼掺杂选择性发射极的制备方法及n型晶体硅太阳能电池
CN110993722A (zh) 一种晶体硅太阳电池的硼扩散背钝化工艺
CN110931598A (zh) 一种二次退火的单晶硅se-perc电池的制造方法
KR101383426B1 (ko) 양면수광형 태양전지의 제조방법
US20230136715A1 (en) Laminated passivation structure of solar cell and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200410

WD01 Invention patent application deemed withdrawn after publication