CN110991566B - 通过信息融合方式进行风力发电机故障诊断的方法和装置 - Google Patents
通过信息融合方式进行风力发电机故障诊断的方法和装置 Download PDFInfo
- Publication number
- CN110991566B CN110991566B CN201911363285.4A CN201911363285A CN110991566B CN 110991566 B CN110991566 B CN 110991566B CN 201911363285 A CN201911363285 A CN 201911363285A CN 110991566 B CN110991566 B CN 110991566B
- Authority
- CN
- China
- Prior art keywords
- data
- sample data
- sample
- original
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24147—Distances to closest patterns, e.g. nearest neighbour classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
本公开涉及一种通过信息融合方式进行风力发电机故障诊断的方法和装置。所述方法包括根据风力发电机在不同运行状态下的运行数据,构建原始数据空间;确定所述原始数据空间中任一样本数据的K近邻样本数据,利用第一方式,得到任一样本数据与其对应的K近邻样本数据之间的局部线性结构;基于所述样本数据,利用第二方式,得到所述原始数据空间中所有样本的类内散射图和类间散射图的监督信息;基于所述第一方式得到的局部线性结构和所述第二方式得到的监督信息,得到所述原始数据空间中所述样本数据的低维特征;基于所述的低维特征利用KNN分类器,得到风力发电机的故障诊断结果,同时还能通过训练样本得到最佳映射方向,实现对新增故障数据的快速处理。本公开可以提高风力发电机的故障诊断精度。
Description
技术领域:
本发明涉及的是一种风力发电机的故障检测方法及装置。
背景技术:
随着流形学习理论的逐步完善,流形学习被广泛应用于故障诊断领域。与传统的特征提取方法相比,流形学习是以整个数据集而非单一数据作为研究对象,能充够利用原始数据间的局部结构信息,但是流形学习在故障诊断中的应用依旧存在着诸多问题。其具体表现在现有的流形学习算法仅考虑了原始数据单方面的结构信息,这使得原始样本数据的信息不能充分被利用,使得最终的低维特征集合不能准确地反映原始数据的本质特征,这严重影响了故障诊断精度。为了解决单一结构故障诊断方法的局限性,本发明提出了一种基于多方面信息的流形学习算法,并将之应用到风力发电机故障诊断中。此外,针对现有的流形学习算法不能快速处理新增样本数据,本发明提出的流行学习算法基于所述原始样本学习了一种显性的线性映射,实现对新增样本数据的故障状态进行快速诊断。
发明内容:
为了解决背景技术中所提到的技术问题,本发明提供一种风力发电机故障检测方法及装置,利用该检测方法及装置能够增强所提取特征的显著性,提高最终故障识别的精度。该方法利用两种不同的方法挖掘出了原始数据两种不同方面的信息结构,并基于该两方面的信息采用加权求和方法构造了一种基于多信息融合的流形学习故障诊断方法。它通过在低维空间中保持多种信息结构不变得到原始数据对应的低维特征集合。将得到的低维特征集合输入至KNN分类器中,根据分类器的输出信息,对风力发电机的故障数据进行诊断。同时本发明给出了一种快速处理新增样本数据的方法,基于数据样本的局部线性关系,将新增的样本数据输入至已获得的显性映射关系中,根据KNN分类器的输出结果实现快速处理新增风力发电机故障的诊断。
本发明所述风力发电机故障检测方法,包括如下步骤:
第一步,根据风力发电机在不同运行状态下的运行数据,构建原始数据空间,包括:
通过至少一种传感器采集风力发电机在不同运行状态下的运行数据;
根据预设周期,从每种传感器采集的运行数据中截取预设长度的运行数据;
对截取的预设长度的运行数据利用式(1)进行中心化和归一化处理,得到所述样本数据X,并基于所述样本数据形成所述原始数据空间;
其中,N为选取的预设长度的运行数据的数目,也为得到的样本数据的组数;X为归一化后得到的样本数据的集合,以矩阵集合的方式表示X={x1,x2,...xN},;X表示选取的预设长度的运行数据的集合;i为大于或者等于1且小于或者等于N的整数;xi表示第i个预设长度的运行数据;
第二步,根据式(2)确定与所述原始数据空间中任一样本数据距离最小的K组样本数据,确定为该样本数据的K近邻样本数据,利用第一方式,得到样本数据及其K近邻样本数据构建的局部线性关系,K为大于零且小于样本个数N的整数,包括:
采用欧式距离判别方法,获得所述原始数据空间中任意两组样本数据之间的距离,表达式如下:
其中,dist(xi,xj)表示所述原始数据空间任意两组样本数据间的欧式距离;xij和xlj分别表示所述原始数据空间中的样本数据xi和xl的第j个特征;j表示样本数据的特征维数,j为大于零且小于或等于D的整数,D表示所述原始数据空间样本数据的特征维数;
根据上述确定的任一样本的K近邻样本数据,通过所述的第一方式,得到任一样本数据与对应的K近邻样本数据之间的局部线性结构,按照如下路径进行:
首先,按照式(3)通过最小化重构误差计算出任一样本数据的局部结构:
其中,xi表示第i个高维样本数据;wij代表第i个样本的第j个近邻点的权重系数,K表示样本数据xi的近邻点的组数,且1≤K≤N;而A则表示样本数据xi的K近邻样本数据的集合,表示为A={x1,x2,....xK};
之后,采用最小二乘法求得式(3)的解表示如下:
W=(A'A)-1A'x………式(4)
其中,x表示原始数据空间中的任一样本数据;A表示样本数据x的K近邻样本数据的集合,A'表示A的转置,(A'A)-1表示A'A的逆变换;W表示基于第一方式确定的样本数据x及其对应的K近邻样本数据之间的局部线性结构;
第三步,基于所述样本数据,通过第二方式,得到所述原始数据空间中所有样本的类内散射图和类间散射图的监督信息;
其中,根据式(5)计算样本的监督信息:
其中,Sw、Sb分别为基于第二种方式确定的样本的类内散射图和类间散射图;c表示样本类别数目;xj表示原始数据空间中任一属于类别i的样本,xi表示为类别i的所有数据集合,为类别i的样本数据的均值,是的转置,是的转置;ni表示类别i的样本数据的数目;表示为所述原始样本数据的均值;
第四步,基于所述第一方式得到的局部线性结构和所述第二方式得到的监督信息,得到原始数据空间中所述样本数据的低维特征,假设数据局部呈现线性结构Y=VTX,包括:
首先,基于所述的第一方式,利用线性结构表示所述原始数据空间中样本数据的低维特征,其表达式为:
s.t.VTXXTV=I
其中,Yi表示原始数据空间中第i组样本数据的低维特征;i表示样本数据的组数,i为大于零且小于或者等于N的整数,且所述低维特征的线性关系为Yi=Vi TXi;N为样本数据的总组数;Yi j表示第i组样本数据的第j个近邻点,j为大于零且小于或者等于K的整数;s.t.表示约束条件,进一步的限定解的范围;Wi表示局部线性结构中第i组样本数据和其对应的近邻点间的权重;其中样本的协方差矩阵表示如下:
Mi=(I-Wi)T(I-Wi)……式(8)
之后,基于所述的第二方式,利用式(9)得到所述原始数据空间中样本数据到低维特征空间的最佳投影方向V,其表达式为:
其中,V表示所述原始数据空间中原始样本到低维特征空间的线性映射关系;Sw、Sb分别表示所述原始数据空间中同一类别样本的类内散射图和不同类别样本数据的类间散射图;
之后,基于所述第一方式得到的局部线性结构和所述第二方式得到的监督信息,通过(10)或者(11)两种加和方式中的任一种来重构融合的信息,确定最佳的映射方向:
其中,X表示原始数据空间中样本数据;M表示所述样本数据在低维特征空间的协方差矩阵;β是平衡两种信息方式的权重系数;Sb、Sw分别表示所述原始数据空间中同一类别样本的类内散射矩阵和不同类别样本数据的类间散射矩阵;V表示所述原始数据空间中原始样本到低维特征空间的线性映射关系;式子(101)和(102)分别为两种不同的加和方式,任选其一进行信息融合即可。通过对以上目标函数的特征值求解,选取前d个特征值对应的特征向量,即表示为最佳投影的方向;
之后,利用所述原始样本到低维特征空间的线性映射V,得到样本数据的低维特征,即表示为:
Yi=Vi TXi………式(11)
其中,Yi表示原始数据空间中第i组样本数据的低维特征,i表示样本数据的组数,i为大于零且小于或者等于N的整数;Vi T表示所述原始数据空间中原始样本到低维特征空间的线性映射的转置;Xi表示所述原始数据空间中第i组原始样本数据;所述原始样本的低维特征集合可表示为Y={Y1,Y2,.....YN};
第五步,将第四步所获得的低维特征作为KNN分类器的输入,通过分类器输出的类别信息进行风力发电机故障诊断。
进一步地,将所述的一种风力发电机故障检测方法用于检测新增样本,将基于所述原始数据空间中样本数据作为输入数据,通过第四步得到原始样本到低维特征空间的最佳线性映射V,之后,将新增的风力发电机故障数据作为新的数据输入,基于数据集的局部线性关系,利用式(11)从而实现对新增风力发电机故障数据的快速计算。
用于实施上述方法的一种风力发电机故障检测装置,包括:
采集模块,其用于采集风力发电机在不同运行状态下的运行数据,构建原始数据空间,所述原始数据空间包括多组基于所述运行数据确定的样本数据;
第一获得模块,其用于确定所述原始数据空间中任一样本数据的K近邻样本数据,并利用第一方式,得到所述任一样本数据与其对应的K近邻样本数据之间的局部线性结构;
第二获得模块,其用于基于原始样本数据,利用第二方式得到所述原始数据空间中所有样本的类内散射图和类间散射图的监督信息;
第三获得模块,其用于对所述第一和第二获得模块分别获得的局部线性结构和监督信息执行加和操作,得到所述原始数据空间中样本数据的低维特征集合;
诊断模块,其用于将所述第三获得模块输出的低维特征集合输入至KNN分类器中,通过分类器输出的类别信息进行风力发电机故障诊断。
本发明具有如下有益效果:与现有技术相比,本发明所述方法根据数据的特点,从挖掘多方面信息的角度出发,利用第一种方式和第二种方式分别得到原始数据的局部线性结构信息和监督信息,并将两方面信息实现加权求和处理得到多信息的融合,并基于该多信息融合得到所述原始数据对应的低维特征,使得到的低维特征中更多地保留了原始数据的特征,极大地提高故障诊断的精度。针对本发明提出的多信息融合的流形学习故障诊断方法,它是以整个数据集为研究对象,同时从多方面挖掘样本信息的角度出发,使得最终的低维特征更多地保留了原始数据的本质特征,因此该方法适用于复杂的故障检测场景。此外,本发明提出的基于信息融合的故障诊断方法可以实现对新增风力发电机样本故障数据的快速计算,能显著提高风力发电机的故障诊断效率。另外,本发明所述方法可以只对单一传感器采集的数据进行处理,降低了硬件成本。
附图说明:
图1为本发明所述风力发电机故障检测方法的流程图;
图2为图1中步骤S10的流程图;
图3为图1中步骤S20的流程图;
图4为图1中步骤S30的流程图;
图5为图1中步骤S40的流程图;
图6为图1中步骤S50的流程图;
图7为本发明所述风力发电机故障诊断装置的构成框图;
图8示出为可实施本发明的一种电子设备的框图;
图9示出为可实施本发明的另一种电子设备的框图;
具体实施方式:
下面结合附图对本发明作进一步说明:
鉴于流形学习通过挖掘数据在高维空间中的局部线性几何结构,并在低维空间中保持该结构关系,实现对数据降维。因此,数据的局部几何结构对最终的降维结果至关重要。除此之外,数据的监督信息对故障分类问题的重要性也不可小觑,它能指导数据的降维,使数据的分类更加准确。目前已有的流形学习研究成果中,大都采用单一的信息结构来描述数据间的局部几何关系,这就使得最终的低维特征无法全面地揭示出原始数据的内在本质属性,低维特征的可识别性较差。为此,本发明拟提供一种能够结合多方面信息结构的风力发电机特征提取方法,以实现对风力发电机运行状态的实时监测与诊断,其中可以采用两种方式获得两种不同的描述数据的信息,并可以利用该两种信息的融合得到原始数据空间中的样本数据对应的低维特征,通过该低维特征执行故障识别,可以提升故障诊断的精确度。与现有技术相比,本发明具有较小的计算复杂度,且极大地降低了原始数据空间维数,适用于复杂的故障检测场景。
图1为本发明所述风力发电机故障检测方法的流程图,本种风力发电机故障检测方法可以用于检测任意类型的发电机的故障情况,例如风力发电机、水力发电机,或者其他任意类型的发电机,本公开对此不作具体限定。另外,本发明所述发电机故障诊断方法的执行主体可以是任意的电子设备,例如,发电机故障检测方法可以由终端设备或服务器或其它处理设备执行,其中,终端设备可以为用户设备(User Equipment,UE)、移动设备、用户终端、终端、蜂窝电话、无绳电话、个人数字处理(Personal Digital Assistant,PDA)、手持设备、计算设备、车载设备、可穿戴设备等。在一些可能的实现方式中,该发电机的故障诊断方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。
如图1所示,所述风力发电机的故障检测方法可以包括:
S10:根据风力发电机在不同运行状态下的运行数据,构建原始数据空间,所述原始数据空间包括多组基于所述运行数据确定的样本数据;
在一些可能的实施方式中,风力发电机的运行状态可以包括正常状态、执行器故障状态、传感器故障状态中的至少一种。通过在发电机上或者发电机的各个器件上设置不同的传感器,可以检测发电机在不同运行状态下的运行数据。其中传感器可以实时的检测对应的运行数据。例如,运行数据可以包括浆距角、发电机转矩、发电机转动角速度以及转子角速度中的至少一种。对应的可以通过相应类型的传感器检测各运行数据。继而可以利用各运行数据得到多组样本数据,基于该做足样本数据构成原始数据空间。另外,本公开实施例中的相同组内的样本数据中的各运行数据为相同类型,不同组的样本数据中的运行数据的类型可以相同,也可以不同。
S20:确定所述原始数据空间中任一样本数据的K近邻样本数据,K为大于零且小于样本数据总数的整数,利用第一方式,得到任一样本数据与其对应的K近邻样本数据之间的局部线性结构;
在一些可能的实施方式中,在得到原始数据空间中的多组样本数据的情况下,可以获得每组样本数据的近邻,本公开实施例可以为每组样本数据确定对应的K近邻,K大于或者等于1的整数。通过获得K近邻的方式可以选择出与每组样本数据对应的相似样本数据。本公开实施例可以根据样本数据之间的距离,确定上述K近邻样本数据,该距离可以为欧式距离,也可以是马氏距离,或者也可以为其他距离得到K近邻,如曼哈顿距离、测地线距离、闵可夫斯基距离以及皮尔逊系数中至少一种,本公开对此不作具体限定。
本公开实施例中,基于确定的数据样本的K近邻,可以利用第一方式得到样本数据和其对应的K近邻之间的局部线性结构,该局部线性结构可以为样本数据和对应的K近邻之间的权重。例如,基于原始样本数据X表示为1024*400的矩阵,但是在进行特征提取前往往需要对数据进行预处理,来减少冗余信息的干扰,这里可以采用时频域参数指标,初次降低数据维度到29*400的矩阵,那么某个样本数据x可以表示为29*1的向量,当K=22时,其近邻样本数据可以表示为A={x1,x2,...x22},则x的结构为x=AW,W为样本数据x和其近邻样本数据之间的局部线性结构,表示为22*1的向量,则样本数据x所对应的近邻样本数据即表示为29*22的矩阵,该矩阵的每一列为x的一个近邻样本数据。第一种方式采用最小二乘法,获得样本数据和对应的K近邻之间的权重。
S30:基于所述任一样本数据,利用第二方式,得到所述原始数据空间中所有样本的类内散射图和类间散射图的监督信息。
在一些可能的实施方式中,基于所述原始数据空间中所有样本的信息,利用第二方式,获得同类样本数据的类内散射图和不同类样本的类间散射图。
S40:基于所述第一种方式得到的局部线性结构和所述第二种方式得到的监督信息进行加权处理,得到所述原始数据空间中所述样本数据的低维特征;
在一些可能的实施方式中,在分别通过第一方式得到样本数据与其K近邻样本数据对应的局部线性结构,以及通过第二方式得到样本数据的监督信息的情况下,可以分别利用该两种方式得到的信息结构,利用线性映射关系对样本数据的低维特征进行表示,获得高维特征空间和低维特征空间之间的最佳投影方向。
在一些可能的实施方式中,可以针对每个样本数据对应的最佳投影向量,获得原始数据空间中原始样本到低维特征空间的线性映射,进而得到相应样本数据的低维特征。通过低维特征描述各样本数据,可以剔除数据冗余的维度,揭示出数据的内在的本质特征,提高系统的诊断精度。
S50:基于所述的低维特征利用KNN分类器,得到风力发电机的故障诊断结果。KNN算法或者说K近邻算法的主旨是通过不同样本特征值之间的距离进行分类,具体分类过程包括:
(1)、把S40得到的低维特征的样本数据作为样本输入到KNN分类器中,采用欧式距离,计算任一样本与其他样本间的距离。
其中,dist(xi,xj)表示所述原始数据空间任意两组样本数据间的欧式距离,xij和xlj分别表示所述原始数据空间中的样本数据xi和xl的第j个特征,j表示样本数据的特征维数,j为大于零且小于或等于D的整数,D表示所述原始数据空间样本数据的特征维数;
(2)、把上一步得到的距离按从小到大排序,并选取与当前样本距离最小的K个近邻样本点;
(3)、统计选取的这K个样本出现次数最多的类别,即将类别频率较高的将其作为该样本新的数据类别。
(4)、根据上述步骤,重复对数据集的每个样本进行操作,直至完成所有的分类,根据样本所属类别来以此判断风力发电机故障数据的类别。
利用线性映射处理新增风力发电机样本数据
当新增的风力发电机故障数据加入时,基于数据的局部线性关系,即可得到样本的低维特征,再根据KNN分类器的输出结果就可以预测风力发电机的故障类别。
下面继续结合附图对本发明进行详细说明。图2示出步骤S10的流程图。其中,所述根据发电机在不同运行状态下的运行数据,构建原始数据空间,可以包括:
S101:通过至少一种传感器采集发电机在不同运行状态下的运行数据;
具体实施时可以采用一种传感器采集发电机在不同状态下的运行数据,或者也可以采用不同的传感器采集发电机在不同运行状态下的不同类型的运行数据。通过设置单一传感器可以减少硬件成本,通过设置多种传感器可以实现更全面的故障检测。
可以通过传感器实时的检测相应的运行数据,并实时存储。例如可以通过角度传感器检测发电机不同运行状态下的转动角速度,通过位移传感器检测发电机的转矩等,本公开对此不作具体限定,可以采用不同的传感器采集相应类型的运行数据。
S102:根据预设周期,从每种传感器采集的运行数据中截取预设长度的运行数据。
在一些可能的实施方式中,可以从每种运行数据中选择一个或多个预设长度的运行数据,或者可以周期性的截取多组预设长度的运行数据。其中预设长度可以为预先设置的值,如可以为10,也可以为5,预设周期和预设长度对应,本公开不作具体限定。
S103:对截取的预设长度的运行数据执行归一化处理,得到所述样本数据,并基于所述样本数据形成所述样本数据。
在一些可能的实施方式中,可以将截取的预设长度的运行数据直接作为样本数据,或者也可以将预设长度的运行数据进行归一化处理,得到相应的样本数据,并基于样本数据构成原始数据空间。
由于运行数据不同维度间的单位可能是不同的,这就导致了各维度实际数据有可能不在同一数量级上,直接对原始数据进行分析,很容易使得某些数量级较大的维度在分析中影响较大,而一些重要的小数值维度信息被忽略,影响了数据最终的处理结果。另外,大量的大数值数据的存在同时也会降低算法的计算速度。因此,在对原始运行数据分析之前,通常需要进行归一化处理,将各选取的运行数据统一在同一区域内。常用的数据归一化方法是利用数据中的最大值和最小值通过线性变换实现的,这种只依赖个别数据点的归一化方法受数据中的奇异值影响较大。本公开实施例引入向量的l2范数对数据进行归一化处理,具体计算公式如下:
其中,N为选取的预设长度的运行数据的数目,也为得到的样本数据的组数;X表示归一化后得到的样本数据的集合;xi表示第i个预设长度的运行数据,i为大于或者等于1且小于或者等于N的整数;xj为所述样本数据的第j个特征;由于所有预设长度的运行数据均参与了归一化过程中,可以降低个别异常数据的影响,提高了归一化算法的鲁棒性。
在得到多样样本数据的情况下,可以得到样本数据的K近邻。本公开实施例用KNN算法估计样本数据的局部区域范围,即估计每个样本数据的K近邻样本数据,其思想就是通过确定样本数据最近的K个样本数据构建该样本数据的局部区域。图3示出根据本公开实施例的步骤S20的流程图。
其中,如图3所示,确定所述原始数据空间中任一样本数据的K近邻样本数据,利用第一方式,建立数据的局部线性关系,包括:
S201:基于所述原始数据空间多组样本数据中任意两组样本数据之间的距离,确定样本数据的K近邻样本数据;
如上述实施例所述每组样本数据可以表示为向量形式,对应的可以将相应的向量之间的距离作为样本数据之间的距离,即可以得到每组样本数据与其余各样本数据之间的距离,如欧式距离,或者也可以采用其他距离,上述距离可以表示两个样本数据之间的相似度。距离越小,说明相似度越高。根据距离的大小,确定任一样本数据的K近邻样本数据。
S202:基于所述任一样本数据的K近邻样本数据,利用第一方式,建立样本的局部线性关系。
在一些可能的实施方式中,在得到每组样本数据的K近邻样本数据的情况下,可以得到样本数据与K近邻样本数据之间的局部线性结构关系,该局部线性结构与K近邻样本数据之间的乘积可以近似表示为样本数据。对应的局部线性结构也可以表示为向量,其中局部线性结构内的各数值表示K近邻样本数据中每个样本数据对应的权重。
如上述实施例,本公开实施例可以采用第一种方式得到对应的局部线性结构。其中所述第一种方式采用了最小二乘的方法,其表达式为:
W=(A'A)-1A'x………式(4)
其中,x表示原始数据空间中的任一样本数据;A表示样本数据x的K近邻样本数据的集合;A'表示A的转置,(A'A)-1表示A'A的逆变换;W表示基于第一方式确定的样本数据x及其对应的K近邻样本数据之间的局部线性结构。
图4示出根据本公开实施例的步骤S30的流程图。其中,基于所述任一样本数据,利用第二方式,得到所述原始数据空间中所有样本的类内散射图和类间散射图的监督信息。其中,包括:
S301:针对同类别的样本数据,得到所述原始数据空间中所有同类样本的类内散射矩阵。
在一些可能的实施方式中,对于所述原始数据空间的样本来说。一旦数据的监督信息可知,那么利用式(5),可得到反映数据在原始空间类内分散程度的类内散射图,其表达式如下:
S302:针对不同类别的样本数据,得到所述原始数据空间中所有不同类样本的类间散射图。
在一些可能的实施方式中,对于所述原始数据空间的样本来说。一旦数据的监督信息可知,那么利用式(6),可得到反映数据在原始空间中各类中心的分散程度的类间散射图,其表达式如下:
图5示出根据本公开实施例中步骤S40的流程图。其中基于所述第一方式得到的局部线性结构和所述第二方式得到的监督信息,得到所述原始数据空间中所述样本数据的低维特征,包括:
S401:对所述第一方式得到的局部线性结构和所述第二方式的监督性信息执行加和处理,得到所述原始数据空间中原始样本到低维特征空间的线性映射。
如上述实施例所述,本公开实施例可以对第一方式得到的局部线性结构和所述第二方式的监督性信息进行重构融合,得到重构的局部线性结构,其中重构融合的方式可以为对两方面信息进行加和处理,即样本数据及其与K近邻样本数据集合A之间重构的局部线性结构W可以表示为第一方式得到的局部线性结构,以及第二方式得到的监督信息Sb和Sw之间的加和值。在其他实施方式中,也可以选择不同的加权重构方式,本公开对此不作具体限定。
在得到重构的局部线性结构的情况下,利用线性结构表示所述原始数据空间中样本数据的低维特征,其表达式为:
s.t.VTXXTV=I
其中,Yi表示原始数据空间中第i组样本数据的低维特征;i表示样本数据的组数,i为大于零且小于或者等于N的整数,且所述低维特征的线性关系为Yi=Vi TXi;N为样本数据的总组数;Yi j表示第i组样本数据的第j个近邻点;j为大于零且小于或者等于K的整数;s.t.表示约束条件,进一步限定解的范围;Wi表示局部线性结构中第i组样本数据和对应的近邻点之间的权重,其中样本的协方差矩阵表示为Mi=(I-Wi)T(I-Wi)。
基于所述的第二方式,用所述原始数据空间中样本数据到低维特征空间的最佳投影方向V表示样本数据的低维特征,其表达式为:
其中,V表示所述原始数据空间中原始样本到低维特征空间的线性映射关系;Sw、Sb分别表示所述原始数据空间中同一类别样本的类内散射图和不同类别样本数据的类间散射图;
之后,基于所述第一方式得到的局部线性结构和所述第二方式得到的监督信息,通过(10)或者(11)两种加权和方式中的任一种来重构融合的信息,确定最佳的映射方向:
其中,X表示原始数据空间中样本数据;M表示所述样本数据在低维特征空间的协方差矩阵;β是平衡两种信息方式的权重系数;Sw、Sb分别表示所述原始数据空间中同一类别样本的类内散射图和不同类别样本数据的类间散射图;V表示所述原始数据空间中原始样本到低维特征空间的线性映射关系;式子(10)和(11)分别为两种不同的加权和方式,式子(10)是通过最大化监督信息的同时在分子分母上加减局部线性结构,而式子(11)是通过最小化监督信息的同时分子加结构信息,分母加约束条件。任选其一进行信息融合即可,本公开对此不作具体限定。通过对目标函数的特征值求解,选取前d个特征值对应的特征向量,即表示为最佳投影的方向。
S402:基于所述原始样本到低维特征空间的线性映射V,得到样本数据的低维特征,即表示为:
Yi=Vi TXi………式(12)
其中,Yi表示原始数据空间中第i组样本数据的低维特征;i表示样本数据的组数;i为大于零且小于或者等于N的整数;Vi T表示所述原始数据空间中原始样本到低维特征空间的线性映射的转置;Xi表示所述原始数据空间中第i组原始样本数据。
通过上述实施方式,可以获得所述原始数据空间中原始样本到低维特征空间的线性映射V,进而得到所述原始数据空间中所述样本数据的低维特征。通过挖掘原始数据的两种不同方面的信息,实现对相应样本数据低维显著特征的提取。并且通过低维特征描述各样本数据,可以剔除数据冗余的维度,揭示出数据的内在的本质特征,提高系统的诊断精度。
图6示出根据本公开实施例中步骤S50的流程图。其中,基于所述得到的低维特征,将它们作为KNN分类器的输入,通过分类器输出的类别信息进行风力发电机的故障诊断。包括:
S501:基于上述获得的原始数据样本在低维特征空间的低维表示,将它们作为KNN分类器的输入。
在一些可能的实施方式中,选择合适的分类器对输入样本进行分类。一般常用的有:KNN分类器、SVM分类器和决策树等分类器。但往往分类器的选择需要根据数据集的特点来选择,当数据样本的数目较小时,可以选择KNN分类器,它简单快捷,没有训练过程,只需要设置一个参数。SVM分类器因为需要寻找超平面,会有一个模型训练的过程,可调整的参数较多,在不同情况下,还可加入松弛变量和核函数。决策树用于分类问题时,能在短时间内对大型数据做出可行且效果良好的结果,但是当类别多时,错误率较高,有时还需要做很多预处理工作。
S502:通过分类器输出的类别信息进行风力发电机的故障诊断。
如上述实施例所述,本公开实施例综合考虑我们应用的风力发电机故障数据集的特点,选择采用KNN分类器,根据分类器的输出信息进行故障类别的判断。
图7示出根据本公开实施例的发电机故障装置的框图,如图7所示,所述故障检测装置包括:
采集模块10,其用于根据发电机在不同运行状态下的运行数据,构建原始数据空间,所述原始数据空间包括多组基于所述运行数据确定的样本数据;
第一获得模块20,其用于确定所述原始数据空间中任一样本数据的K近邻样本数据,并利用第一方式,得到所述任一样本数据与其对应的K近邻样本数据之间的局部线性结构;
第二获得模块30,其用于基于原始样本数据,利用第二方式得到所述原始数据空间中所有样本的类内散射图和类间散射图的监督信息;
第三获得模块40,其用于对所述第一和第二获得模块分别获得的局部线性结构和监督信息执行加和操作,得到所述原始数据空间中样本数据的低维特征集合;
诊断模块50,其用于将所述第三获得模块输出的低维特征集合输入至KNN分类器中,通过分类器输出的类别信息进行风力发电机故障诊断。
本公开实施例还提出一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。计算机可读存储介质可以是非易失性计算机可读存储介质。所述电子设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为上述方法。电子设备可以被提供为终端、服务器或其它形态的设备。
图8示出根据本公开实施例的一种电子设备800的框图。例如,电子设备800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。参照图6,电子设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制电子设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。存储器804被配置为存储各种类型的数据以支持在电子设备800的操作。这些数据的示例包括用于在电子设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。电源组件806为电子设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为电子设备800生成、管理和分配电力相关联的组件。多媒体组件808包括在所述电子设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当电子设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当电子设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。传感器组件814包括一个或多个传感器,用于为电子设备800提供各个方面的状态评估。例如,传感器组件814可以检测到电子设备800的打开/关闭状态,组件的相对定位,例如所述组件为电子设备800的显示器和小键盘,传感器组件814还可以检测电子设备800或电子设备800一个组件的位置改变,用户与电子设备800接触的存在或不存在,电子设备800方位或加速/减速和电子设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。通信组件816被配置为便于电子设备800和其他设备之间有线或无线方式的通信。电子设备800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
电子设备800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
包括计算机程序指令的存储器804,上述计算机程序指令可由电子设备800的处理器820执行以完成上述方法。
图9示出可实施本发明的另一种电子设备的框图。例如,电子设备1900可以被提供为一服务器。参照图7,电子设备1900包括处理组件1922,其进一步包括一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述方法。电子设备1900还可以包括一个电源组件1926被配置为执行电子设备1900的电源管理,一个有线或无线网络接口1950被配置为将电子设备1900连接到网络,和一个输入输出(I/O)接口1958。电子设备1900可以操作基于存储在存储器1932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。包括计算机程序指令的存储器1932,上述计算机程序指令可由电子设备1900的处理组件1922执行以完成上述方法。
用于实现本发明的装置可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。其中,计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本发明所述操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本发明的各个方面。
Claims (2)
1.一种通过信息融合方式进行风力发电机故障诊断的方法,包括以下步骤:
第一步,采集根据风力发电机在不同运行状态下的运行数据,构建原始数据空间,包括:
通过至少一种传感器采集风力发电机在不同运行状态下的运行数据;
根据预设周期,从每种传感器采集的运行数据中截取预设长度的运行数据;
对截取的预设长度的运行数据利用式(1)进行归一化处理,得到样本数据X,并基于所述样本数据形成原始数据空间;
其中,对运行数据执行归一化处理表达式如下:
其中,N为选取的预设长度的运行数据的数目,也为得到的样本数据的组数;X为归一化后得到的样本数据的集合,以矩阵集合的方式表示X={x1,x2,...xN};i为大于或者等于1且小于或者等于N的整数;xi表示第i个预设长度的运行数据;
第二步,根据式(2)确定与所述原始数据空间中任一样本数据距离最小的K组样本数据,确定为该样本数据的K近邻样本数据,利用第一方式,得到样本数据及其K近邻样本数据构建的局部线性关系,K为大于零且小于样本个数N的整数,包括:
采用欧式距离判别方法,获得所述原始数据空间中任意两组样本数据之间的距离,表达式如下:
其中,dist(xi,xj)表示所述原始数据空间任意两组样本数据间的欧式距离,xij和xlj分别表示所述原始数据空间中的样本数据xi和xl的第j个特征,j表示样本数据对应的任一特征,j为大于零且小于或等于D的整数,D表示所述原始数据空间样本数据的特征维数;
根据上述确定的任一样本的K近邻样本数据,通过所述的第一方式,得到任一样本数据与对应的K近邻样本数据之间的局部线性结构,按照如下路径进行:
首先,按照式(3)通过最小化重构误差计算出任一样本数据的局部结构:
其中,xi表示第i个高维样本数据,i为大于或者等于1且小于或者等于N的整数;wij代表第i个样本的第j个近邻点的权重系数;K表示样本数据xi的近邻点的组数,且1≤K≤N;A则表示样本数据xi的K近邻样本数据的集合,表示为A={x1,x2,....xK};
之后,采用最小二乘法求得式(3)的解表示如下:
W=(A'A)-1A'x………式(4)
其中,x表示原始数据空间中的任一样本数据;A表示样本数据x的K近邻样本数据的集合,A'表示A的转置,(A'A)-1表示A'A的逆变换;W表示基于第一方式确定的样本数据x及其对应的K近邻样本数据之间的局部线性权重矩阵;
第三步,基于所述样本数据,通过第二方式,得到所述原始数据空间中所有样本的类内散射图和类间散射图的监督信息;
其中,根据式(5)、式(6)计算样本的监督信息:
其中,Sw、Sb分别为基于第二种方式确定的样本的类内散射图和类间散射图;c表示样本类别数目;xj表示原始数据空间中任一属于类别i的样本;Xi表示为类别i的所有数据集合;为类别i的样本数据的均值;是的转置,是的转置;ni表示类别i的样本数据的数目;表示为原始样本数据的均值;
第四步,基于所述第一方式得到的局部线性结构和所述第二方式得到的监督信息,得到原始数据空间中所述样本数据的低维特征,假设数据局部呈现线性结构Y=VTX,包括:
首先,基于所述的第一方式,利用线性结构表示所述原始数据空间中样本数据的低维特征,其表达式为:
其中,Yi表示原始数据空间中第i组样本数据的低维特征;i表示样本数据的组数,i为大于零且小于或者等于N的整数,且所述低维特征的线性关系为Yi=Vi TXi;N为样本数据的总组数;Yi j表示第i组样本数据的第j个近邻点,j为大于零且小于或者等于K的整数;Wi表示局部线性结构中第i组样本数据和其对应的近邻点之间的权重;其中样本的协方差矩阵表示如下:
Mi=(I-Wi)T(I-Wi)……式(8)
之后,基于所述的第二方式,利用式(9)得到所述原始数据空间中样本数据到低维特征空间的最佳投影方向V,其表达式为:
其中,V表示所述原始数据空间中原始样本到低维特征空间的线性映射关系;Sw、Sb分别表示所述原始数据空间中同类别样本的类内散射图和不同类别样本数据的类间散射图;
之后,基于所述第一方式得到的局部线性结构和所述第二方式得到的监督信息,通过式(10)重构融合的信息,确定最佳的映射方向:
其中,X表示原始数据空间中样本数据;M表示所述样本数据在低维特征空间的协方差矩阵;β是平衡两种信息方式的权重系数;Sb、Sw分别表示所述原始数据空间中同类别样本的类内散射矩阵和不同类别样本数据的类间散射矩阵;V表示所述原始数据空间中原始样本到低维特征空间的线性映射;
之后,利用所述原始样本到低维特征空间的线性映射V,得到样本数据的低维特征,即表示为:
Yi=VTXi………式(11)
其中,Yi表示原始数据空间中第i组样本数据的低维特征;i表示样本数据的组数,i为大于零且小于或者等于N的整数;VT表示所述原始数据空间中原始样本到低维特征空间的线性映射的转置;Xi表示所述原始数据空间中第i组原始样本数据;所述原始样本的低维特征集合可表示为Y={Y1,Y2,.....YN};
第五步,将第四步所获得的低维特征集合作为k-nearest neighbor(KNN)分类器的输入,通过分类器输出的类别信息进行风力发电机的故障诊断。
2.根据权利要求1所述的一种通过信息融合方式进行风力发电机故障诊断的方法,其特征在于:
将所述方法用于处理新增样本数据,将基于所述原始数据空间中样本数据作为输入数据,通过权利要求1第四步得到原始样本到低维特征空间的最佳线性映射V,之后,将新增的风力发电机故障数据作为新的数据输入,基于数据集的局部线性关系,利用式(11)实现对新增风力发电机故障数据的快速计算,获得其对应的低维特征。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911363285.4A CN110991566B (zh) | 2019-12-26 | 2019-12-26 | 通过信息融合方式进行风力发电机故障诊断的方法和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911363285.4A CN110991566B (zh) | 2019-12-26 | 2019-12-26 | 通过信息融合方式进行风力发电机故障诊断的方法和装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110991566A CN110991566A (zh) | 2020-04-10 |
CN110991566B true CN110991566B (zh) | 2022-09-27 |
Family
ID=70077145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911363285.4A Active CN110991566B (zh) | 2019-12-26 | 2019-12-26 | 通过信息融合方式进行风力发电机故障诊断的方法和装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110991566B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116975588B (zh) * | 2023-09-22 | 2023-12-19 | 太原理工大学 | 用于带式输送机的故障诊断方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1987892A (zh) * | 2005-12-23 | 2007-06-27 | 北京海鑫科金高科技股份有限公司 | 基于数据流形的人脸自动识别方法 |
CN102930285A (zh) * | 2012-09-18 | 2013-02-13 | 四川大学 | 基于有监督增量式局部线性嵌入(sille)维数化简的早期故障辨识方法 |
CN108073158A (zh) * | 2017-12-05 | 2018-05-25 | 上海电机学院 | 基于pca和knn密度算法风电机组轴承故障诊断方法 |
CN108182445A (zh) * | 2017-12-13 | 2018-06-19 | 东北大学 | 基于大数据智能核独立元分析的过程故障识别方法 |
CN108647690A (zh) * | 2017-10-17 | 2018-10-12 | 南京工程学院 | 用于非约束人脸识别的判别稀疏保持投影方法 |
CN109145706A (zh) * | 2018-06-19 | 2019-01-04 | 徐州医科大学 | 一种用于振动信号分析的敏感特征选取与降维方法 |
CN109492708A (zh) * | 2018-11-30 | 2019-03-19 | 东北大学 | 一种基于ls-knn的管道漏磁内检测缺失数据插补方法 |
CN109582003A (zh) * | 2018-12-03 | 2019-04-05 | 东北林业大学 | 基于伪标签半监督核局部费舍尔判别分析轴承故障诊断 |
CN109665399A (zh) * | 2019-01-28 | 2019-04-23 | 枣庄学院 | 一种矿井提升机无线传输的故障诊断系统及方法 |
CN109992674A (zh) * | 2019-04-12 | 2019-07-09 | 南京工业大学 | 一种融合自动编码器和知识图谱语义信息的推荐方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9630318B2 (en) * | 2014-10-02 | 2017-04-25 | Brain Corporation | Feature detection apparatus and methods for training of robotic navigation |
-
2019
- 2019-12-26 CN CN201911363285.4A patent/CN110991566B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1987892A (zh) * | 2005-12-23 | 2007-06-27 | 北京海鑫科金高科技股份有限公司 | 基于数据流形的人脸自动识别方法 |
CN102930285A (zh) * | 2012-09-18 | 2013-02-13 | 四川大学 | 基于有监督增量式局部线性嵌入(sille)维数化简的早期故障辨识方法 |
CN108647690A (zh) * | 2017-10-17 | 2018-10-12 | 南京工程学院 | 用于非约束人脸识别的判别稀疏保持投影方法 |
CN108073158A (zh) * | 2017-12-05 | 2018-05-25 | 上海电机学院 | 基于pca和knn密度算法风电机组轴承故障诊断方法 |
CN108182445A (zh) * | 2017-12-13 | 2018-06-19 | 东北大学 | 基于大数据智能核独立元分析的过程故障识别方法 |
CN109145706A (zh) * | 2018-06-19 | 2019-01-04 | 徐州医科大学 | 一种用于振动信号分析的敏感特征选取与降维方法 |
CN109492708A (zh) * | 2018-11-30 | 2019-03-19 | 东北大学 | 一种基于ls-knn的管道漏磁内检测缺失数据插补方法 |
CN109582003A (zh) * | 2018-12-03 | 2019-04-05 | 东北林业大学 | 基于伪标签半监督核局部费舍尔判别分析轴承故障诊断 |
CN109665399A (zh) * | 2019-01-28 | 2019-04-23 | 枣庄学院 | 一种矿井提升机无线传输的故障诊断系统及方法 |
CN109992674A (zh) * | 2019-04-12 | 2019-07-09 | 南京工业大学 | 一种融合自动编码器和知识图谱语义信息的推荐方法 |
Non-Patent Citations (4)
Title |
---|
杜伟等.基于独立特征选择与流形学习的故障诊断.《振动与冲击》.2018,(第16期), * |
王冠超等.基于一种流形学习新算法的转子故障数据集降维研究.《机械设计与制造》.2015,(第09期), * |
王江萍等.基于改进LLE算法的机械故障特征压缩与诊断.《科学技术与工程》.2016,(第13期), * |
谢小欣等.一种基于多流形局部线性嵌入算法的故障诊断方法.《机械工程学报》.2013,(第11期), * |
Also Published As
Publication number | Publication date |
---|---|
CN110991566A (zh) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI754855B (zh) | 人臉圖像識別方法、裝置、電子設備及儲存介質 | |
WO2020199932A1 (zh) | 模型训练方法、人脸识别方法、装置、设备及存储介质 | |
WO2021155632A1 (zh) | 图像处理方法及装置、电子设备和存储介质 | |
CN107491541B (zh) | 文本分类方法及装置 | |
WO2020232977A1 (zh) | 神经网络训练方法及装置以及图像处理方法及装置 | |
Yin et al. | A subgrid-oriented privacy-preserving microservice framework based on deep neural network for false data injection attack detection in smart grids | |
CN109800325A (zh) | 视频推荐方法、装置和计算机可读存储介质 | |
CN111614634B (zh) | 流量检测方法、装置、设备及存储介质 | |
EP3923202A1 (en) | Method and device for data processing, and storage medium | |
US11556761B2 (en) | Method and device for compressing a neural network model for machine translation and storage medium | |
CN111931844A (zh) | 图像处理方法及装置、电子设备和存储介质 | |
CN111428032B (zh) | 内容质量评价方法及装置、电子设备、存储介质 | |
CN109920016B (zh) | 图像生成方法及装置、电子设备和存储介质 | |
CN113792207A (zh) | 一种基于多层次特征表示对齐的跨模态检索方法 | |
CN112926310B (zh) | 一种关键词提取方法及装置 | |
KR20210044475A (ko) | 대명사가 가리키는 객체 판단 방법 및 장치 | |
CN111046742B (zh) | 一种眼部行为检测方法、装置以及存储介质 | |
CN110991566B (zh) | 通过信息融合方式进行风力发电机故障诊断的方法和装置 | |
CN112884040B (zh) | 训练样本数据的优化方法、系统、存储介质及电子设备 | |
CN111062447B (zh) | 通过降维方式进行风力发电机故障诊断的方法和装置 | |
CN117807493A (zh) | 基于ietm的故障诊断方法及装置 | |
EP3848778B1 (en) | Fingertip detection method, fingertip detection means, fingertip detection device, and medium | |
CN113989562B (zh) | 模型训练、图像分类方法和装置 | |
CN111142020B (zh) | 通过多结构方式进行风力发电机故障诊断的方法和装置 | |
US11445120B2 (en) | Information processing method for adjustting an image capture region based on spoken utterance and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |