CN110983288A - 一种基于原子层沉积方法的层间剥离方法及其在纳米复合材料制备上的应用 - Google Patents

一种基于原子层沉积方法的层间剥离方法及其在纳米复合材料制备上的应用 Download PDF

Info

Publication number
CN110983288A
CN110983288A CN201911220311.8A CN201911220311A CN110983288A CN 110983288 A CN110983288 A CN 110983288A CN 201911220311 A CN201911220311 A CN 201911220311A CN 110983288 A CN110983288 A CN 110983288A
Authority
CN
China
Prior art keywords
ald
powder
annealing
atomic layer
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201911220311.8A
Other languages
English (en)
Inventor
李爱东
子陶清
赵希瑞
曹燕强
吴迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201911220311.8A priority Critical patent/CN110983288A/zh
Publication of CN110983288A publication Critical patent/CN110983288A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种基于原子层沉积方法的层间剥离方法及其在纳米复合材料制备上的应用,属于纳米功能复合材料制备领域,可以同时实现层状材料的层间剥离和纳米复合粉末材料的制备,获得的材料比表面积明显改善。本发明选用层状材料粉末作为担体;在所述担体上利用原子层沉积(ALD)技术沉积包覆层,得到复合粉末样品;将ALD沉积获得的复合粉末样品进行热处理退火,所述包覆层结晶把层状材料层间撑开剥离,获得高比表面的复合层状纳米材料;重复步骤上述步骤实现基于ALD技术对层状材料的多次层间剥离,进一步增加复合层状纳米粉末材料的比表面积。

Description

一种基于原子层沉积方法的层间剥离方法及其在纳米复合材 料制备上的应用
技术领域
本发明属于纳米功能复合材料制备领域,尤其涉及一种基于原子层沉积方法的层间剥离方法及其在纳米复合材料制备上的应用。
背景技术
随着人类社会的高速发展,面临的环境污染、能源短缺等问题日益严峻。各类纳米复合材料因其特殊的结构和良好的光电性能,受到人们的广泛关注。其中,层状结构复合纳米材料,特别是二维复合纳米材料,如:石墨相氮化碳、石墨烯和二硫化钼复合纳米材料在污染物降解、可再生能源的储存和利用等多个领域展示出巨大的应用前景。目前将层状粉体材料(石墨相氮化碳、石墨和二硫化钼等)转变成二维材料或纳米片材料,主要是通过机械剥离法、溶液超声剥离法和氧化还原法等,再结合其他合成与制备方法获得纳米复合材料。机械剥离法效率太低,不适合规模化制备;溶液超声剥离法和氧化还原法,适合大量制备,但容易引入其他杂质,或需要其他的步骤,如和水热法结合才能获得纳米复合材料。
原子层沉积(Atomic layer deposition,ALD)方法是一种正在蓬勃发展中的新型材料气相制备技术。自从2001年国际半导体工业协会(ITRS)将ALD与金属有机化学气相沉积(MOCVD)、等离子体增强CVD并列作为与微电子工艺兼容的候选技术以来,ALD技术发展势头强劲。原子层沉积是通过将气相前驱体脉冲交替地通入反应器并在沉积基体表面上发生化学吸附反应形成薄膜的一种方法,其独特的自限制性与自饱和性反应机理,保证了沉积薄膜的大面积均匀性、优异的三维共形性和膜厚的精确可控性(埃尺度),尤其在材料的表面改性和界面修饰方面表现出突出的优势。近些年来,原子层沉积在微电子、光电子、纳米技术、新能源、催化、生物医学等领域展现出广阔的应用前景。
发明内容
本发明提供了一种基于原子层沉积方法的层间剥离方法及其在纳米复合材料制备上的应用,可以同时实现层状材料的层间剥离和纳米复合粉末材料的制备,获得的材料比表面积明显改善。
为实现以上目的,本发明采用以下技术方案:
一种基于原子层沉积方法的层间剥离方法,包括以下步骤:
(1)选用层状材料粉末作为担体;
(2)在所述担体上利用原子层沉积(ALD)技术沉积包覆层,得到复合粉末样品;
(3) 将步骤(2)中ALD沉积获得的复合粉末样品进行热处理退火,所述包覆层结晶把层状材料层间撑开剥离,获得高比表面的复合层状纳米材料;
以上所述步骤中,步骤(1)中所述层状材料包括g-C3N4粉末、二硫化钼、石墨、六方相氮化硼;步骤(2)中所述的包覆层为超薄无定型金属氧化物包覆层MOx或MOx-贵金属复合包覆层,所述的ALD沉积参数为:
1)金属氧化物:反应室温度为50-400oC、反应源为常用的ALD金属源、氧源为水或者臭氧、载气为高纯氮气或者氩气(5N),脉冲和清洗时间:金属源脉冲为0.1-60 s、高纯氮气或氩气清洗2-60 s、氧源脉冲为2-60s、高纯氮气或氩气清洗2-60 s,反应循环数:10-300循环;
2)贵金属:反应室温度为150~400oC、反应源为常见的贵金属ALD源、氧源为氧气,载气为高纯氮气或者氩气(5N),脉冲和清洗时间:金属源脉冲为0.2-60 s、高纯氮气或氩气清洗5-60 s、氧源脉冲为1-60s、高纯氮气或氩气清洗5-60 s,反应循环数为10-300 循环;
步骤(3)中所述热处理退火的参数为:退火温度为300-1000oC、退火时间为0.5-4h、升温速率为管式炉或马弗炉1-20oC/min、快速热处理为10-250oC/s、退火气氛为惰性气氛、还原性气氛或氧化性气氛,所述惰性气氛为氮气或氩气,所述还原性气氛为3~10%H2 + 97~90%Ar 或3~10%H2 +N2,所述氧化性气氛为空气或氧气;
所述方法中重复步骤(2)-(3)实现基于ALD技术对层状材料的多次层间剥离,进一步增加复合层状纳米粉末材料的比表面积。
以上所述方法在纳米复合材料制备上的应用。
有益效果:本发明提供了一种基于原子层沉积方法的层间剥离方法及其在纳米复合材料制备上的应用,利用原子层沉积技术实现对层状材料表面超薄MOx或MOx-贵金属的沉积包裹,并通过后退火使包覆层结晶以实现层状材料的层间剥离,重复沉积可实现基于ALD技术对层状材料的多次层间剥离,进一步增加复合层状纳米粉末材料的比表面积。本发明方法简单易行,比表面积增加显著,获得的纳米复合层状粉末材料,在能源和催化领域有广泛和重要的应用前景。
附图说明
图1为本发明的方法流程示意图:(a)在粉末担体上沉积MOx对层状材料进行剥离的工艺流程示意图;(b)在粉末担体上沉积MOx-N(贵金属)对层状材料进行剥离的工艺流程示意图;
图2实施例中为g-C3N4、g-C3N4粉末表面ALD沉积50循环TiO2后500℃空气退火前后的X射线衍射谱图(XRD);
图3为实施例中g-C3N4、g-C3N4粉末表面ALD沉积50循环TiO2后500℃空气退火前后的扫描电子显微镜(SEM)照片:(a)为g-C3N4、(b)为g-C3N4表面ALD沉积50循环TiO2后退火前、(c)为g-C3N4表面ALD沉积50循环TiO2后退火后;
图4为实施例中g-C3N4、g-C3N4粉末表面ALD沉积50循环TiO2后500℃空气退火前后的透射电子显微镜(TEM)照片:(a)为g-C3N4、(b)为g-C3N4表面ALD沉积50循环TiO2后退火前、(c)为g-C3N4表面ALD沉积50循环TiO2后退火后、(d)为g-C3N4表面ALD沉积50循环TiO2后退火后的选区电子衍射图样;
图5为实施例中g-C3N4、g-C3N4粉末表面ALD沉积50循环TiO2后500℃空气退火前后的BET吸附曲线;
图6为实施例中g-C3N4、g-C3N4粉末表面ALD沉积50循环TiO2500℃空气退火前后可见光催化降解甲基橙的时间曲线;
图7为实施例中g-C3N4、通过一次、两次、三次剥离工艺后(ALD沉积50循环TiO2-500℃氮气后退火)的C3N4粉末照片(a)和比表面积变化曲线(b);
图8为实施例中g-C3N4、 g-C3N4粉末表面ALD沉积100循环CoOx后500℃空气退火前后的BET吸附曲线;
图9为实施例中g-C3N4、 g-C3N4粉末表面ALD沉积100循环CoOx后500℃空气退火前后的CV曲线;
图10为实施例中沉积-退火工艺制备的CoPt的XRD衍射谱;(a)100Pt-100Co样品(b)100Pt-200Co样品;
图11为不同Co-Pt比样品对析氢反应的LSV测试曲线。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明:
实施例1
如图1所示,一种基于原子层沉积方法的层间剥离方法,包括以下步骤:
使用三聚氰胺热缩聚制得的g-C3N4粉末作为担体,将粉末担体放入粉末样品罐转移进入ALD反应室,采用原子层沉积(ALD),对其表面进行50循环的二氧化钛(TiO2)沉积包裹,具体沉积参数如下:生长温度为200oC;使用四氯化钛(TiCl4)和水分别作为钛源和氧源;使用高纯氮气作为载气;生长循环参数为5s TiCl4-10sN2清洗- 2s水-10s N2清洗,生长完成后,将所得的粉末样品在管式炉空气中后退火,退火温度为500oC,升温速率5oC/分钟,退火时间1小时。
图2为g-C3N4粉末和表面ALD沉积50循环TiO2后的g-C3N4粉末在退火前后的X射线衍射(XRD)图谱,可见所有样品都展示出相似的衍射峰,对应着g-C3N4相,通过计算可以发现,g-C3N4粉末颗粒尺寸在19 nm左右,沉积50循环TiO2后的g-C3N4粉末颗粒尺寸在20nm左右,基本未变。图3(a)、(b)和(c)分别为为g-C3N4、g-C3N4表面ALD沉积50循环TiO2后退火前后的扫描电子显微镜(SEM)照片,从图(a)中可以清晰地看到g-C3N4是以纳米片状(20~50nm)形式存在,这些纳米片堆积团聚在一起形成厚度在几百纳米的插层间隙结构,而从沉积50循环TiO2在未退火前的SEM照片(b)中可以看出,g-C3N4片状堆积结构表面被无定形的TiO2包覆后,整体形貌变得紧致,TiO2复合后的粉末样品仍保持薄片层状结构,且片层表面非常平整,500℃退火后TiO2/g-C3N4样品(c)形貌与退火前有了显著的差异,一方面层状复合物发生剥离,层厚度明显变薄,约5~20 nm,片与片之间不再紧密交叠,而是向各个方向延伸,另一方面,可以明显看到片层上有很多小的孔洞,尺寸大约在十几纳米,从而会有效增加产物的比表面积。g-C3N4以及退火前后TiO2/ g-C3N4样品的TEM如图4所示,可以看出在退火前,TiO2为无定形态,退火后,TiO2转变为结晶态。
图5为g-C3N4、g-C3N4粉末表面ALD沉积50循环TiO2后500℃空气退火前后的BET吸附曲线,可知三聚氰胺热缩聚制得的g-C3N4粉末比表面积较小,约为10.4 m2/g,ALD沉积了50循环TiO2后,比表面积明显降低,只有3.3 m2/g,而再退火后样品比表面积显著提升到了31.5 m2/g。由于g-C3N4粉末是类石墨层状结构,纯的g-C3N4粉末最初是有间隙的片状堆积体,片状层厚度在几百纳米,ALD沉积50循环无定形的TiO2后,对有间隙的片状体表面起到了很好包覆作用,将一些原先存在的微间隙予以填隙封闭,使得刚沉积的TiO2/g-C3N4比表面积下降,当500℃退火后,因为超薄的无定形TiO2包覆层结晶,形成了不少尺寸为5~10纳米的晶粒,TiO2纳米晶的出现,打开了片状g-C3N4结构层与层之间间隙,形成了较薄的纳米片层(约5~20纳米厚),且表面形成孔洞,引起比表面积显著增加。
使用g-C3N4和表面ALD沉积50循环TiO2后的g-C3N4粉末在可见光下降解甲基橙,使用300W的氙灯作为可见光源,用滤波片滤去紫外光部分(λ<420nm)得到可见光,通循环冷却水以保持其温度恒定在25℃±0.5℃,反应液面距光源的距离约为10厘米左右。如图6所示,通过对比g-C3N4、表面ALD沉积50循环g-C3N4退火前后可见光催化降解甲基橙的时间曲线可以发现纯TiO2粉末在可见光下光催化活性较低,光照100分钟后的降解率不到45%;表面沉积了50循环TiO2后,未退火前,降解效果变得更差,120分钟的降解率仅为38.1%;而500℃退火处理后的TiO2/g-C3N4样品,可见光催化活性显著提高,90分钟就降解掉了98.2%的甲基橙,显著地提升了g-C3N4的光催化性能。
实施例2
如图1所示,一种基于原子层沉积方法的层间剥离方法,包括以下步骤:
使用自制的g-C3N4粉末作为担体,将粉末担体放入粉末样品罐转移进入ALD反应室,采用ALD对其表面进行50循环的TiO2沉积包裹。具体沉积参数如下:生长温度为200 oC;使用四氯化钛(TiCl4)和水分别作为钛源和氧源;使用高纯氮气作为载气;生长循环参数为5sTiCl4-10s N2清洗- 2s水-10s N2清洗。生长完成后,将所得的粉末样品放在管式炉中高纯氮气氛中进行高温退火,退火温度为500 oC,升温速率5 oC/分钟,退火时间1小时。
将退火完成后的样品取出反应室,记作一次剥离后样品,取少量样品采用等温氮气吸附比表面积测试法(BET)对样品的比表面积进行测定,剩余样品再次放入原子层沉积反应室,重复前述ALD沉积TiO2及氮气退火过程,得到二次剥离、三次剥离后样品。采用BET比表面积测试法测试这些样品的比表面积。
图7为g-C3N4、一次剥离、二次剥离、三次剥离后粉末样品的光学照片(a)和BET比表面积变化曲线(b),可以看出,随着剥离次数的增加,粉末颜色变浅;在每一次ALD沉积-退火后,样品的比表面积均得到了明显提升,说明该剥离工艺可以对同一个层状材料进行反复剥离,以得到高比表面积的粉末样品。
实施例3
如图1所示,一种基于原子层沉积方法的层间剥离方法,包括以下步骤:
使用自制的g-C3N4粉末作为担体,将粉末担体放入粉末样品罐转移进入ALD反应室,采用ALD对其表面进行100循环的氧化钴沉积包裹。具体沉积参数如下:生长温度为200oC;使用二茂钴(CoCp2)和水分别作为钴源和氧源;使用高纯氮气作为载气;生长循环参数为5sCoCp2-10s N2清洗- 2s水-10s N2清洗。生长完成后,将所得的粉末样品在管式炉中空气氛下进行后退火,退火温度为500oC,升温速率5oC/分钟,退火时间1小时。采用BET比表面积测试法分别对g-C3N4、g-C3N4粉末表面ALD沉积100循环CoOx后500℃空气退火前后样品的比表面积进行测定(图8),三个样品的BET比表面积分别为10.47 m2/g,8.46 m2/g,202.24m2/g。在沉积CoOx后C3N4样品的比表面积出现略微的下降,是由于沉积的无定形CoOx薄膜将C3N4的缝隙及层间裂隙进行了包裹和填补所导致的;退火后,实现了对C3N4的层间剥离,比表面积得到了显著提升。
分别对g-C3N4粉末、g-C3N4粉末表面ALD沉积100循环CoOx后500℃空气退火前后样品的超级电容器性能进行测试:将样品、乙炔黑(导电剂)、PVDF(粘结剂)以3:1:1的比例混合,加入N-甲基吡咯烷酮作为溶剂,用磁力搅拌器搅拌20分钟,然后将混合均匀的浆体涂覆在泡沫镍表面,在60摄氏度下烘干。烘干后,对三个样品分别进行循环伏安CV测试(图9),对循环伏安曲线进行积分并依据活性物质计算材料的比电容,得到g-C3N4粉末、g-C3N4粉末表面ALD沉积100循环CoOx后退火前后样品的比电容分别为5.12F/g、24.35F/g、140.90F/g,可见,g-C3N4粉末表面ALD沉积CoOx退火后获得的复合纳米粉末材料应用于超级电容器,比电容性能有了显著提升。
实施例4
如图1所示,一种基于原子层沉积方法的层间剥离方法,包括以下步骤:
使用商业化的石墨粉末作为担体,将粉末担体放入粉末样品罐转移进入ALD反应室,采用ALD对其表面进行CoOx-Pt沉积包裹。在沉积CoOx时,采用的Co源为CoCp2,氧源为O3,使用高纯氮气作为载气,生长温度为250 ℃,分别生长循环数为100、 200循环的CoOx薄膜。沉积Pt时,采用Me3PtMeCp作为Pt源,生长温度为300 ℃,在生长有CoOx的样品上生长循环 数为100的Pt薄膜。沉积后,在5% H2 + 95% N2气氛下管式炉进行退火,升温速度2 ℃/min,退火温度为700℃保持3小时,以还原CoOx,获得金属合金。退火完成后,通过XRD测试可知(图10),此时两种样品(分别标注为100Co-100Pt和200Co-100Pt)的晶相,均为四方面心相(fct)的L1 0 相CoPtx合金。 为了检测电催化性能,也做了参比样品-没有沉积CoOx,ALD直接沉积了100循环的Pt样品(标注为100Pt)。分别测试上述样品对电解水析氢反应(HER)的催化性能,用电化学工作站进行了线性伏安扫描测试(图11)。在石墨上经过ALD沉积-还原退火工艺后获得的两种C/CoPtx复合粉末样品展现出了较好的HER反应催化性能,均优于单纯的Pt金属。当电流密度为10mA/cm2时,200Co-100Pt析氢过电位为53 mV左右,100Co-100Pt的样品展现出最小的析氢过电位40 mV,具有良好的应用前景。EIS测试表明,该工艺制备的石墨-CoPtx具有较小的电子转移电阻,有利于催化反应的发生。
实施例5
如图1所示,一种基于原子层沉积方法的层间剥离方法,包括以下步骤:
使用商业化的二硫化钼(MoS2)粉末作为担体,将粉末担体放入粉末样品罐转移进入ALD反应室,采用ALD对其表面进行150循环的TiO2沉积包裹。具体沉积参数如下:生长温度为150 oC;使用四氯化钛(TiCl4)和水分别作为钛源和氧源;使用高纯氩气作为载气;生长循环参数为5s TiCl4-10s N2清洗- 2s水-10s N2清洗。生长完成后,将所得的粉末样品进行快速热处理后退火,退火时通以高纯氧气,退火温度为400 oC,升温速率50 oC/s,退火时间30分钟,得到比表面积提高的MoS2-TiO2复合材料,在太阳能可见光催化领域具有较好的应用前景。
实施例6
如图1所示,一种基于原子层沉积方法的层间剥离方法,包括以下步骤:
使用商业化的热解石墨粉末作为担体,通过粉末样品罐直接转移入原子层沉积反应室,采用原子层沉积(ALD),对其表面进行400循环的NiO沉积包裹。具体沉积参数如下:生长温度为260 oC;使用二(2,2,6,6-四甲基-3,5-庚二酮酸)镍(Ni(thd)2)和水分别作为镍源和氧源;Ni(thd)2源温为165 oC;使用高纯氮气作为载气;生长循环参数为3s TiCl4-8s N2清洗- 6s水-8s N2清洗。生长完成后,将所得的粉末样品放在管式炉中氧气氛中进行退火,退火温度为600 oC,升温速率20 oC/分钟,退火时间4小时。得到比表面积提高的石墨- NiO纳米复合材料,在锂离子电池领域有较好的应用前景。
实施例7
如图1所示,一种基于原子层沉积方法的层间剥离方法,包括以下步骤:
使用商业的六方相氮化硼(h-BN)粉末作为担体,通过粉末样品罐直接转移入原子层沉积反应室,采用原子层沉积(ALD),对其表面进行100循环的Fe2O3沉积包裹。具体沉积参数如下:生长温度为300 oC;使用二茂铁(FeCp2)和臭氧分别作为钛源和氧源;两者均使用150sccm的高纯氮气作为载气;生长循环参数为2s FeCp2-6s N2清洗- 2s O3-6s N2清洗。生长完成后,将所得的粉末样品放在马弗炉中进行高温退火,退火温度为700 oC,升温速率15 oC/分钟,退火时间2小时。得到比表面积提高的h-BN-Fe2O3纳米复合材料,在超级电容器领域有较好的应用前景。
以上所述仅是本发明的优选实施方式,应当指出对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种基于原子层沉积方法的层间剥离方法,其特征在于,包括以下步骤:
(1)选用层状材料粉末作为担体;
(2)在所述担体上利用原子层沉积(ALD)技术沉积包覆层,得到复合粉末样品;
(3) 将步骤(2)中ALD沉积获得的复合粉末样品进行热处理退火,所述包覆层结晶把层状材料层间撑开剥离,获得高比表面的复合层状纳米材料。
2.根据权利要求1所述的基于原子层沉积方法的层间剥离方法,其特征在于,所述方法中重复步骤(2)-(3)基于ALD技术对层状材料进行多次层间剥离,进一步增加复合层状纳米粉末材料的比表面积。
3.根据权利要求1所述的基于原子层沉积方法的层间剥离方法,其特征在于,步骤(1)中所述层状材料包括g-C3N4粉末、二硫化钼、石墨、六方相氮化硼。
4.根据权利要求1所述的基于原子层沉积方法的层间剥离方法,其特征在于,步骤(2)中所述的包覆层为超薄无定型金属氧化物包覆层MOx或MOx-贵金属复合包覆层。
5.根据权利要求1或4所述的基于原子层沉积方法的层间剥离方法,其特征在于,步骤(2)中所述的包覆层ALD沉积参数为:
金属氧化物:反应室温度为50-400oC、反应源为常用的ALD金属源、氧源为水或者臭氧、载气为高纯氮气或者氩气(5N),脉冲和清洗时间:金属源脉冲为0.1-60s、高纯氮气或氩气清洗2-60s、氧源脉冲为2-60s、高纯氮气或氩气清洗2-60s,反应循环数:10-300循环。
6.根据权利要求1或4所述的基于原子层沉积方法的层间剥离方法,其特征在于,步骤(2)中所述的包覆层ALD沉积参数为:
贵金属:反应室温度为150~400oC、反应源为常见的贵金属ALD源、氧源为氧气,载气为高纯氮气或者氩气(5N),脉冲和清洗时间:金属源脉冲为0.2-60s、高纯氮气或氩气清洗5-60s、氧源脉冲为1-60s、高纯氮气或氩气清洗5-60s,反应循环数为10-300 循环。
7.根据权利要求1所述的基于原子层沉积方法的层间剥离方法,其特征在于,
步骤(3)中所述热处理退火的参数为:退火温度为300-1000oC,退火时间为0.5-4h,升温速率为1-20oC/min,快速热处理为10-250oC/s,退火气氛为惰性气氛、还原性气氛或氧化性气氛。
8.根据权利要求7所述的基于原子层沉积方法的层间剥离方法,其特征在于,
所述惰性气氛为氮气或氩气,所述还原性气氛为3~10%H2 + 97~90%Ar或3~10%H2 +N2,所述氧化性气氛为空气或氧气。
9.权利要求1-8所述的基于原子层沉积方法的层间剥离方法在纳米复合材料制备上的应用。
CN201911220311.8A 2019-12-03 2019-12-03 一种基于原子层沉积方法的层间剥离方法及其在纳米复合材料制备上的应用 Withdrawn CN110983288A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911220311.8A CN110983288A (zh) 2019-12-03 2019-12-03 一种基于原子层沉积方法的层间剥离方法及其在纳米复合材料制备上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911220311.8A CN110983288A (zh) 2019-12-03 2019-12-03 一种基于原子层沉积方法的层间剥离方法及其在纳米复合材料制备上的应用

Publications (1)

Publication Number Publication Date
CN110983288A true CN110983288A (zh) 2020-04-10

Family

ID=70089547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911220311.8A Withdrawn CN110983288A (zh) 2019-12-03 2019-12-03 一种基于原子层沉积方法的层间剥离方法及其在纳米复合材料制备上的应用

Country Status (1)

Country Link
CN (1) CN110983288A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110236654A1 (en) * 2010-03-26 2011-09-29 Wen-Kuang Hsu Method of surface treatment and surface treated article provied by the same
CN107937884A (zh) * 2017-09-19 2018-04-20 云南师范大学 一种大面积二硫化钼薄膜的原子层沉积制备方法
CN110042365A (zh) * 2019-03-04 2019-07-23 中国科学院物理研究所 一种在二维材料表面生长氧化铝的原子层沉积方法
CN110158048A (zh) * 2019-04-29 2019-08-23 南京大学 在二维层状材料上生长超薄高质量氧化物薄膜的方法及其应用
CN110284121A (zh) * 2019-06-21 2019-09-27 南京大学 一种成分可调的Co-Pt/Fe-Pt纳米颗粒的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110236654A1 (en) * 2010-03-26 2011-09-29 Wen-Kuang Hsu Method of surface treatment and surface treated article provied by the same
CN107937884A (zh) * 2017-09-19 2018-04-20 云南师范大学 一种大面积二硫化钼薄膜的原子层沉积制备方法
CN110042365A (zh) * 2019-03-04 2019-07-23 中国科学院物理研究所 一种在二维材料表面生长氧化铝的原子层沉积方法
CN110158048A (zh) * 2019-04-29 2019-08-23 南京大学 在二维层状材料上生长超薄高质量氧化物薄膜的方法及其应用
CN110284121A (zh) * 2019-06-21 2019-09-27 南京大学 一种成分可调的Co-Pt/Fe-Pt纳米颗粒的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵希瑞: "原子层沉积技术对石墨相氮化碳光催化材料的表面改性研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Ahmed et al. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage
Pandit et al. Two-dimensional hexagonal SnSe nanosheets as binder-free electrode material for high-performance supercapacitors
Rashidi et al. WS2 and MoS2 counter electrode materials for dye‐sensitized solar cells
CN102586869B (zh) 三维石墨烯管及其制备方法
Gao et al. Synergistic effects in three-dimensional SnO2/TiO2/CdS multi-heterojunction structure for highly efficient photoelectrochemical hydrogen production
CN102560415A (zh) 三维石墨烯/金属线或金属丝复合结构及其制备方法
Li et al. Atomic layer deposition in the development of supercapacitor and lithium-ion battery devices
Zhai et al. Direct growth of nitrogen-doped graphene films on glass by plasma-assisted hot filament CVD for enhanced electricity generation
KR101105473B1 (ko) 신규한 구조의 탄소계 나노복합체 및 이의 제조방법
Bai et al. Controlled growth of Cu3Se2 nanosheets array counter electrode for quantum dots sensitized solar cell through ion exchange
Wei et al. Cooperation effect of heterojunction and co-catalyst in BiVO 4/Bi 2 S 3/NiOOH photoanode for improving photoelectrochemical performances
Shi et al. Hierarchical WO3 nanoflakes architecture with enhanced photoelectrochemical activity
Riyanto et al. A review of atomic layer deposition for high lithium-ion battery performance
Ansari et al. Atomic layer deposition—a versatile toolbox for designing/engineering electrodes for advanced supercapacitors
Deokate et al. Energy storage potential of sprayed α-MoO 3 thin films
Liu et al. Finely prepared and optimized Co/Fe double hydroxide nanofilms at an ionic layer level on rough Cu substrates for efficient oxygen evolution reaction
Sawal et al. A review of recent modification strategies of TiO2-based photoanodes for efficient photoelectrochemical water splitting performance
Lu et al. Highly efficient MoS2/rGO electrocatalysts for triiodide reduction as Pt-free counter electrode for dye-sensitized solar cells
Namsheer et al. Molybdenum sulfo-selenides grown on surface engineered vertically aligned graphitic petal arrays for solid-state supercapacitors
CN105761951B (zh) 一种超级电容器用三维氧化镍/石墨烯复合材料的制备方法
Xue et al. Ni0. 85Se@ CoFe LDH heterostructure nanosheet arrays on Ni foam as efficient electrocatalysts for enhanced oxygen evolution
Lai et al. Facile fabrication and optimization of bowl-like ZnO/CdS nano-composite thin films with hierarchical nanopores and nano-cracks for high-performance photoelectrochemistry
CN113410062B (zh) 碳纳米线圈堆积体/镍钴化合物超级电容器复合电极材料及制备方法
CN110983288A (zh) 一种基于原子层沉积方法的层间剥离方法及其在纳米复合材料制备上的应用
CN105990586A (zh) 一种锂空气电池用氧正极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200410