CN110981894B - 一种二维Cu功能配合物及其制备方法和应用 - Google Patents

一种二维Cu功能配合物及其制备方法和应用 Download PDF

Info

Publication number
CN110981894B
CN110981894B CN201911322201.2A CN201911322201A CN110981894B CN 110981894 B CN110981894 B CN 110981894B CN 201911322201 A CN201911322201 A CN 201911322201A CN 110981894 B CN110981894 B CN 110981894B
Authority
CN
China
Prior art keywords
dimensional
electrode
functional complex
complex
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911322201.2A
Other languages
English (en)
Other versions
CN110981894A (zh
Inventor
吴晓琴
魏学红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN201911322201.2A priority Critical patent/CN110981894B/zh
Publication of CN110981894A publication Critical patent/CN110981894A/zh
Application granted granted Critical
Publication of CN110981894B publication Critical patent/CN110981894B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供一种二维Cu功能配合物及其制备方法和应用。所述二维Cu功能配合物分子式为:{[CuL(H2O)]}n,其中L为脱氢的2,5‑二羧酸‑3,4‑乙撑二氧噻吩。该配合物制备方法:按摩尔比为1~1:2取氯化铜和2,5‑二羧酸‑3,4‑乙撑二氧噻吩,溶于体积比为1~1:3~1:2的蒸馏水、N,N‑二甲基甲酰胺(DMF)和1,4‑二氧六环的混合液中,置于70~90℃的烘箱中反应24~48小时,自然降温后过滤,得到蓝色晶状固体即目标产物。该配合物修饰电极的制备方法:将该配合物均匀分散在Nafion溶液中,得到稳定悬浊液,修饰于玻碳电极表面,自然晾干,得到修饰电极,放入4℃生物冰箱待用。该修饰电极可应用于Fe3+的检测。将该配合物置于pH=4的水溶液中,利用紫外可见吸收光谱可应用于对Fe3+的检测。

Description

一种二维Cu功能配合物及其制备方法和应用
技术领域
本发明涉及金属配合物,具体属于一种二维Cu功能配合物及其制备方法,以及该配合物构筑的修饰电极,该电极在Fe3+的电化学检测方法和该配合物在Fe3+紫外可见光谱检测中的应用。
背景技术
金属离子在环境污染、临床医学及生命科学中具有重要的研究意义。目前,金属元素的定量和定性检测主要采用紫外、荧光光谱分析法、质谱法以及电化学等手段。其中,紫外可见分光光度法和电化学传感技术由于操作简单、速度快、成本低等优势是金属离子检测的主要研究方法。2019年,Mahantesh Budri等人合成了一种光学传感器,并利用UV-Vis检测出此传感器对Zn2+的高选择性,并且得到了随Zn2+浓度增加紫外强度增加的良好线性曲线,实现了对Zn2+的便捷检测。同年,刘玉媛等在新型纳米材料的制备和应用中发现,利用差示脉冲溶出伏安法也可以做到对金属离子的检测。将利用不同方法合成的纳米材料富集在电极上,以pH=4.4NaAc-HAc缓冲液为电解液,测试了加入不同浓度Cd2+的伏安曲线,得数据良好的线性方程,精准地检测了Cd2+
功能配合物是因具有较大的比表面积、可调控的孔径、多维的结构及裸露的金属活性位点等性质,成为配位化学领域中发展迅速的新型多功能材料。国内外一些课题组已尝试将功能配合物应用于构筑各类电化学传感器,展现出优越的应用效果。2018年,AkashDeep教授课题组构建了一种基于铜功能配合物、石墨烯和聚苯胺的复合材料,该材料拥有较高孔隙率和优异导电性能,将其构筑的电化学传感器应用于水溶液中氨的检测,在1-100ppm浓度范围内检测限为0.6ppm。基于上述研究背景,开发和设计新颖的功能配合物,并将其引入金属离子检测领域,通过紫外可见分光光度法和电化学手段,实现金属离子快速、精准的痕量检测是是现今科研工作者的研究热点。
发明内容
基于上述背景,本发明的目的在于提供一种二维Cu功能配合物及其制备方法和应用。
本发明提供的一种二维Cu功能配合物,其分子式为:{[CuL(H2O)]}n,其中L为脱氢的2,5-二羧酸-3,4-乙撑二氧噻吩,结构式为:
Figure GDA0003002819490000021
本发明提供的一种二维Cu功能配合物的制备方法,包括如下步骤:
按摩尔比为1~1:2取氯化铜和2,5-二羧酸-3,4-乙撑二氧噻吩,溶于体积比为1~1:3~1:2的蒸馏水、N,N-二甲基甲酰胺(DMF)和1,4-二氧六环的混合液中,置于70~90℃的烘箱中反应24~48小时,自然降温后过滤,得到蓝色晶状固体即目标产物。
二维Cu功能配合物修饰电极的制备方法,包括如下步骤:
将上述Cu功能配合物均匀分散在Nafion溶液中,得到稳定悬浊液,取8~10μL点于玻碳电极表面,9~12小时自然晾干,得到Cu功能配合物修饰电极。
二维Cu功能配合物修饰电极可以用于对Fe3+检测。
二维Cu功能配合物修饰电极对Fe3+的检测方法,步骤为:
二维Cu功能配合物修饰电极作为工作电极,饱和甘汞电极作为参比电极,铂丝电极作为辅助电极,组成三电极系统,接入电化学工作站,在pH=3~6的水溶液中对Fe3+进行检测。
Cu功能配合物在pH=3~6水溶液中对Fe3+的紫外可见检测方法,步骤为:
二维Cu功能配合物分散在pH=3~6的水溶液,取2~3mL于比色皿中,放入紫外分光光度计中,对Fe3+进行检测。
本发明的有益效果:本发明首次制备了二维Cu功能配合物{[CuL(H2O)]}n并对其进行了结构表征,制备了基于这种功能配合物的修饰电极,并应用于对Fe3+的检测。此外,该配合物还可以应用紫外分光光度法实现对Fe3+的检测。综上,该配合物制备方法简单,价格低廉,对Fe3+的检测效果明显。
附图说明
图1二维Cu功能配合物的单晶X-射线衍射解析所得分子结构图。
图2二维Cu功能配合物的粉末X-射线衍射图与单晶模拟数据对比图。
图3二维Cu功能配合物修饰玻碳电极检测Fe3+循环伏安图。
图4二维Cu功能配合物在pH=4的水溶液中检测Fe3+的紫外可见图谱。
具体实施方式
实施例1:二维Cu功能配合物的合成和表征
取17.04mg二水合氯化铜,23.02mg 2,5-二羧酸-3,4-乙撑二氧噻吩溶于4mL蒸馏水,4mL N,N-二甲基甲酰胺(DMF)和4mL1,4-二氧六环的混合液中,置于密闭容器中,放入80℃的烘箱中反应48小时,自然降温后过滤,得到蓝色晶状固体,即为Cu功能配合物。
所述Cu功能配合物的性质表征:
(1)单晶结构测定
晶体结构晶体结构测定采用Supernova型X-射线单晶衍射仪,使用经过石墨单色化的Mo Kα射线
Figure GDA0003002819490000031
为入射辐射源,以ω-φ扫描方式收集衍射点,经过最小二乘法修正得到晶胞参数,从差值Fourier电子密度图利用SHELXL-97直接法解得晶体结构,并经Lorentz和极化效应修正。所有的H原子由差值Fourier合成并经理想位置计算确定。晶体测定数据见表1。
表1{[CuL(H2O)]}n的晶体学数据
Figure GDA0003002819490000032
Figure GDA0003002819490000041
图1为所述Cu功能配合物的单晶衍射解析所得配位环境图,由图可知该化合物分子中含有二个铜(II)离子、四个脱氢配体L2-和两个配位水分子。Cu1为五配位结构,其配原子中5个O原子(来源于四个配体分子中酸羧基上的O和一个水分子上的O);Cu2也为五配位结构,其配原子中5个O原子(来源于四个与Cu1配位的相同配体分子酸羧基上的另一O原子和一个水分子上的O);组成一个{Cu2C4O10}节点。该节点延四个配体分子的延展方向连接不同节点,形成形成一个二维网状结构。
(2)粉末X-射线衍射测定
粉末X-射线衍射数据于Rigaku D/Max-2500衍射仪上收集完成,操作电压为40kV,电流为100mA,测试中使用经石墨单色化的铜靶X-射线为入射辐射源。密度数据收集使用2θ/deg.扫描模式,于5°到50°范围内进行连续扫描,扫描速度为8°/秒,跨度为0.02°/次。实验数据拟合使用Cerius2程序,单晶结构粉末X-射线衍射谱模拟转化使用软件Mercury3.9。
图2为所述Cu功能配合物的粉末X-射线衍射图与根据单晶数据模拟对比图。
实施例2 Cu功能配合物修饰电极的制备
称取1mg实施例1制备的Cu功能配合物,超声条件下加入1mL Nafion溶液中,得到蓝色的悬浊液。取8μL该悬浊液点于干净玻碳电极表面,12小时自然晾干,得到Cu功能配合物修饰电极。
实施例4 Cu功能配合物修饰电极对Fe3+的检测
用实施例2制得的Cu功能配合物修饰电极,对Fe3+的检测,具体检测方法如下:将实施例2制得的Cu功能配合物修饰电极作为工作电极,饱和甘汞电极作为参比电极,铂丝电极作为辅助电极,组成三电极系统,接入电化学工作站,在pH=4的水溶液中对Fe3+进行检测。该修饰电极对Fe3+有良好的响应,识别效果明显,见图3。
实施例5 Cu功能配合物对Fe3+的检测:
用实施例1制得的Cu功能配合物放置于pH=4的水溶液中,取2mL放置于比色皿中,用紫外可见分光光度法进行检测,在292nm处得到明显吸收谱线,即Cu功能配合物的紫外可见吸收光谱。随后,在上述溶液中再加入1uM的Fe3+50uL进行检测,检测条件同上,得到Fe3+的检测曲线,如图4所示,检测效果明显。

Claims (3)

1.二维Cu功能配合物修饰电极用于对Fe3+的检测;所述的二维Cu功能配合物修饰电极通过如下方法制备得到:将二维Cu功能配合物均匀分散在Nafion溶液中,得到稳定悬浊液,取8~10 μL点于玻碳电极表面,9~12小时自然晾干,得到二维Cu功能配合物修饰电极;所述的二维Cu功能配合物,其分子式为:{[CuL(H2O)]}n,其中L为脱氢的2,5-二羧酸-3,4-乙撑二氧噻吩;所述的二维Cu功能配合物的结构式为:
Figure DEST_PATH_IMAGE001
2.一种Fe3+的检测方法,步骤为:
以二维Cu功能配合物修饰电极作为工作电极,饱和甘汞电极作为参比电极,铂丝电极作为辅助电极,组成三电极系统,接入电化学工作站,在pH=3~6的水溶液中对Fe3+进行检测;
所述的二维Cu功能配合物修饰电极通过如下方法制备得到:将二维Cu功能配合物均匀分散在Nafion溶液中,得到稳定悬浊液,取8~10 μL点于玻碳电极表面,9~12小时自然晾干,得到二维Cu功能配合物修饰电极;
所述的二维Cu功能配合物,其分子式为:{[CuL(H2O)]}n,其中L为脱氢的2,5-二羧酸-3,4-乙撑二氧噻吩;所述的二维Cu功能配合物的结构式为:
Figure 675076DEST_PATH_IMAGE002
3.一种Fe3+的检测方法,步骤为:将二维Cu功能配合物置于pH=3~6的水溶液中混匀,取2~3 mL于比色皿中,放入紫外分光光度计中对Fe3+进行检测;
所述的二维Cu功能配合物,其分子式为:{[CuL(H2O)]}n,其中L为脱氢的2,5-二羧酸-3,4-乙撑二氧噻吩;所述的二维Cu功能配合物的结构式为:
Figure DEST_PATH_IMAGE003
CN201911322201.2A 2019-12-20 2019-12-20 一种二维Cu功能配合物及其制备方法和应用 Active CN110981894B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911322201.2A CN110981894B (zh) 2019-12-20 2019-12-20 一种二维Cu功能配合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911322201.2A CN110981894B (zh) 2019-12-20 2019-12-20 一种二维Cu功能配合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110981894A CN110981894A (zh) 2020-04-10
CN110981894B true CN110981894B (zh) 2021-07-27

Family

ID=70065669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911322201.2A Active CN110981894B (zh) 2019-12-20 2019-12-20 一种二维Cu功能配合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110981894B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110745A1 (en) * 2006-03-24 2007-10-04 Medical Therapies Limited Combination therapy for treatment of cancer
CN104370943A (zh) * 2014-11-03 2015-02-25 南开大学 一种[Cu2(HL)2(μ2-OH)2(H2O)5]的制备方法和应用
CN108440578A (zh) * 2018-01-11 2018-08-24 山西大学 一种二维Zn功能配合物及其制备方法和应用
CN110551293A (zh) * 2019-09-19 2019-12-10 桂林理工大学 3,4-乙撑二氧基噻吩-2,5-二羧酸锌配合物及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8426368B2 (en) * 2010-03-25 2013-04-23 The University Of Kentucky Research Foundation Method of ameliorating oxidative stress and supplementing the diet
US20110237776A1 (en) * 2010-03-25 2011-09-29 Haley Boyd E Aromatic compounds with sulfur containing ligands

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110745A1 (en) * 2006-03-24 2007-10-04 Medical Therapies Limited Combination therapy for treatment of cancer
CN104370943A (zh) * 2014-11-03 2015-02-25 南开大学 一种[Cu2(HL)2(μ2-OH)2(H2O)5]的制备方法和应用
CN108440578A (zh) * 2018-01-11 2018-08-24 山西大学 一种二维Zn功能配合物及其制备方法和应用
CN110551293A (zh) * 2019-09-19 2019-12-10 桂林理工大学 3,4-乙撑二氧基噻吩-2,5-二羧酸锌配合物及其制备方法

Also Published As

Publication number Publication date
CN110981894A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
Roushani et al. Electroanalytical sensing of Cd2+ based on metal–organic framework modified carbon paste electrode
Xin et al. Polyoxometalate-based crystalline materials as a highly sensitive electrochemical sensor for detecting trace Cr (VI)
CN108998007B (zh) 一种稀土金属有机框架材料的制备方法
Liu et al. Visible-light driven photoelectrochemical immunosensor for insulin detection based on MWCNTs@ SnS2@ CdS nanocomposites
Zhang et al. Anderson-type polyoxometalate-based complexes constructed from a new ‘V’-like bis-pyridine–bis-amide ligand for selective adsorption of organic dyes and detection of Cr (VI) and Fe (III) ions
CN105758917A (zh) 一种Nafion/辣根过氧化物酶/四氧化三钴-石墨烯/离子液体碳糊电极的制备及催化应用
Javar et al. Development of a new electrochemical DNA biosensor based on Eu3+− doped NiO for determination of amsacrine as an anti-cancer drug: Electrochemical, spectroscopic and docking studies
Cao et al. Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC
Xiong et al. Stripping analysis of Pb (II), Cd (II), Hg (II) and Cu (II) based on irradiated attapulgite/Ionic liquid composites
Ding et al. Photoelectrochemical biosensor for DNA hydroxymethylation detection based on the enhanced photoactivity of in-situ synthesized Bi4NbO8Cl@ Bi2S3 heterojunction
Jin et al. High sensitivity and low detection limit of acetone sensor based on Ru-doped Co3O4 flower-like hollow microspheres
Koventhan et al. Efficient hydrothermal synthesis of flake-like molybdenum disulfide for selective electrochemical detection of metol in water real samples
Zhao et al. Concentration as a trigger to improve electrocatalytic activity of a Prussian blue analogue in glucose oxidation
CN108384027B (zh) 一种具有乙酰丙酮荧光响应的锌-有机框架及制备方法
Zhang et al. An ultrasensitive electrochemical sensor based on antimonene simultaneously detect multiple heavy metal ions in food samples
Gilani et al. Sensitive amperometric determination of hydrazine using a carbon paste electrode modified with silver-doped zeolite L nanoparticles
CN102583582A (zh) Co3O4纳米晶、其制备方法、用途及无酶过氧化氢传感器
Karthika et al. An ultrahigh selective uric acid sensor based on SrWO4 nanocomposite using pomelo leaf extract solubilized Nafion modified glassy carbon electrode
CN110981894B (zh) 一种二维Cu功能配合物及其制备方法和应用
CN108440578A (zh) 一种二维Zn功能配合物及其制备方法和应用
Li et al. A carbon paste electrode modified with a cobalt (II) coordination polymer for the direct voltammetric determination of tryptophan
Gan et al. Novel electrocatalytic system for the oxidation of methyl jasmonate based on layer-by-layer assembling of montmorillonite and phosphotungstic acid nanohybrid on graphite electrode
Wang et al. Two new manganese-based phosphomolybdate compounds as electrochemical sensors for the highly sensitive trace determination of heavy metal Cr (vi) ions
Hsieh et al. Electrochemical characterization of and theoretical insight into a series of 2D MOFs,[M (bipy)(C 4 O 4)(H 2 O) 2]· 3H 2 O (M= Mn (1), Fe (2), Co (3) and Zn (4)), for chemical sensing applications
Dong et al. POMs as active center for sensitively electrochemical detection of bisphenol A and acetaminophen

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant