CN110971406B - 一种两光子六量子位超纠缠Bell态并发度测量方法 - Google Patents

一种两光子六量子位超纠缠Bell态并发度测量方法 Download PDF

Info

Publication number
CN110971406B
CN110971406B CN201911273074.1A CN201911273074A CN110971406B CN 110971406 B CN110971406 B CN 110971406B CN 201911273074 A CN201911273074 A CN 201911273074A CN 110971406 B CN110971406 B CN 110971406B
Authority
CN
China
Prior art keywords
state
concurrency
superentangled
degree
bell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911273074.1A
Other languages
English (en)
Other versions
CN110971406A (zh
Inventor
盛宇波
朱莎
周澜
钟伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN201911273074.1A priority Critical patent/CN110971406B/zh
Publication of CN110971406A publication Critical patent/CN110971406A/zh
Application granted granted Critical
Publication of CN110971406B publication Critical patent/CN110971406B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种两光子六量子位超纠缠Bell态并发度测量方法,具体步骤如下:S1:构造两光子六量子位超纠缠Bell态,将超纠缠Bell态作为输入;S2:对超纠缠Bell态并发度进行测量:超纠缠Bell态在两个纵向动量和偏振组成的三个自由度中被编码,使用由弱交叉克尔非线性、分束器和偏振分束器来构造的QND测量,对超纠缠Bell态的第一纵向动量自由度、第二纵向动量自由度以及偏振自由度进行独立地测量。本发明的超纠缠Bell态并发度的测量方法,对不同纠缠态之间的纠缠程度的差别给出更具体直观的比较;仅需要交叉克尔非线性来构建QND测量,不需要精密、复杂的CNOT门操作,在很大程度上降低了实验的复杂度,对未来信息处理打下很好的基础。

Description

一种两光子六量子位超纠缠Bell态并发度测量方法
技术领域
本发明涉及量子信息处理领域,特别涉及一种两光子六量子位超纠缠Bell态并发度测量方法。
背景技术
量子纠缠作为几乎不可缺少的关键资源,在过去几十年里,已经在量子通信和量子计算中得到广泛应用,例如量子隐性传态、量子密钥分发、量子密集编码、量子密钥共享、量子安全直接通信,在现阶段,许多量子物理模型被用于量子信息处理QIP方面,其中光子成为了有力的竞争者,主要是光子的多个自由度能携带量子信息,如偏振、空间模式、时间片段等,并且这些纠缠态也被证实在实验中成功产生。
在许多量子信息处理的方案中,需要部分纠缠态和最大纠缠态,因此许多确定纠缠度的协议被提出,如部分熵纠缠度、相对熵纠缠度、生成纠缠度、负值度、几何纠缠度、纠缠并发度、Three-tangle,其中生成纠缠度由Bennett等人提出:对于两个量子纯态|Ψ>,纠缠程度通过并发度来量化[Charles H.Bennett,David P.DiVincenzo,John A.Smolin,andWilliam K.Wootters.Mixed-state entanglement and quantum errorcorrection.Phys.Rev.A,54:3824–3851,Nov 1996]。
Walborn等人报道了两光子纠缠纯态并发度直接测量的实验,利用光子的两个自由度的超纠缠,测量时只需要用到单光子测量器的局域操作,就可以得到初始纠缠态的纠缠并发度,但在实验中还需要用到光子控制非门(CNOT),使得实验的实现变得更加困难[S.P.Walborn,P.H.Souto Ribeiro,L.Davidovich,F.Mintert,andA.Buchleitner.Experimental determination of entanglement with a singlemeasurement.Nature,440(7087):1022–4,2006];Romero等人提出了两离子纠缠纯态系统的并发度直接测量方案,在方案中需要用到腔模来存储纠缠态,使得方案对于腔的衰减十分敏感[G.Romero,C.E.L′opez,F.Lastra,E.Solano,and J.C.Retamal.Directmeasurement of concurrence for atomic two-qubit pure states.Phys.Rev.A,75:032303,Mar 2007]。
发明内容
发明目的:针对以上问题,本发明目的是提供一种两光子六量子位超纠缠Bell态并发度测量方法,对每个自由度的并发度进行单独的测量,降低实验复杂度。
技术方案:本发明提出了一种两光子六量子位超纠缠Bell态并发度测量方法,具体步骤如下:
S1:构造两光子六量子位超纠缠Bell态,将超纠缠Bell态作为输入;
S2:对超纠缠Bell态并发度进行测量:超纠缠Bell态在两个纵向动量和偏振组成的三个自由度中被编码,使用由弱交叉克尔非线性、分束器和偏振分束器来构造的量子非破坏(QND)测量,对超纠缠Bell态的第一纵向动量自由度、第二纵向动量自由度以及偏振自由度进行独立地测量。
所述步骤S1中超纠缠Bell态为部分纠缠态或任意纠缠态,进一步,当为部分纠缠态时,满足下列关系式:
Figure BDA0002314756800000021
其中两光子分别分配给Alice和Bob,6个参数满足归一化条件:
1|2+|β1|2=1   (2)
2|2+|β2|2=1   (3)
3|2+|β3|2=1   (4)
其中
Figure BDA0002314756800000022
为初始态,H和V为水平偏振和垂直偏振,l、r、I、E为线性动量,α、β分别为各个态出现的概率,下角标A、B为Alice和Bob简写。
进一步,所述步骤S1中超纠缠Bell态为任意纠缠态时,满足下列关系式:
Figure BDA0002314756800000023
其中12个参数满足归一化条件:
1|2+|β1|2+|γ1|2+|δ1|2=1   (6)
2|2+|β2|2+|γ2|2+|δ2|2=1   (7)
3|2+|β3|2+|γ3|2+|δ3|2=1   (8)
其中下角标P为偏振纠缠,F为第一纵向动量自由度纠缠,S为第二纵向动量自由度纠缠,δ、γ分别为各个态出现的概率。
所述步骤S2中三个自由度之间是相互独立的,因此第一纵向动量自由度的测量不会影响偏振自由度和第二纵向动量自由度。
所述步骤S2中第一纵向动量自由度的并发度测量:对于部分纠缠Bell态|Ψ>=α|00>+β|11>,它的并发度为:
C(|Ψ>)=2|αβ|   (9)
且满足
|α|2+|β|2=1   (10)
此部分纠缠Bell态通过QND测量从而挑选出相干态没有相移的态,得到并发度为:
Figure BDA0002314756800000031
所述步骤S2中第二纵向动量自由度的并发度测量:动量自由度r/l和I/E是线性动量,所以第二纵向动量自由度的测量方法与第一纵向动量自由度的方法相同,并发度为:
Figure BDA0002314756800000032
所述步骤S2中偏振自由度的并发度测量:通过QND测量后,挑选出相干态都有±θ相移的态,得到并发度为:
Figure BDA0002314756800000033
两光子六量子位部分纠缠Bell态的并发度为:
Figure BDA0002314756800000034
所述步骤S1超纠缠Bell态为任意纠缠态时,步骤S2中任意纠缠态并发度测量为:在QND基础上进行一个Hadamard门操作,经过计算挑选出需要的态,然后计算需要态纠缠度的并发度,具体为:
第一纵向动量自由度的并发度为:
Figure BDA0002314756800000035
第二纵向动量自由度的并发度为:
Figure BDA0002314756800000036
偏振自由度的并发度为:
Figure BDA0002314756800000037
两光子六量子位任意纠缠Bell态的并发度为:
Figure BDA0002314756800000041
有益效果:本发明与现有技术相比,其显著优点是:
(1)本发明的超纠缠态并发度的测量,对不同纠缠态之间的纠缠程度的差别给出更具体直观的比较;
(2)依赖于各个自由度之间的相互独立,确保了对每一个自由度的并发度进行单独的测量;
(3)仅需要交叉克尔非线性来构建QND测量,不需要精密、复杂的CNOT门操作,在很大程度上降低了实验的复杂度,对未来信息处理打下很好的基础。
附图说明
图1为本发明超纠缠并发度测量方法流程图;
图2为本发明两光子六量子位超纠缠Bell态的示意图;
图3为本发明部分纠缠态中测量第一纵向动量纠缠的原理示意图;
图4为本发明部分纠缠态中测量第二纵向动量纠缠的原理示意图;
图5为本发明部分纠缠态中测量偏振纠缠的原理示意图;
图6为本发明任意纠缠态中测量动量纠缠的原理示意图。
具体实施方式
如图1,本发明的一种两光子六量子位超纠缠Bell态并发度测量方法,包含如下步骤:
S1:构造两光子六量子位超纠缠Bell态,将超纠缠Bell态作为输入;
S2:对超纠缠Bell态并发度进行测量:超纠缠Bell态在两个纵向动量和偏振组成的三个自由度中被编码,使用由弱交叉克尔非线性、分束器和偏振分束器来构造的量子非破坏(QND)测量,对超纠缠Bell态的第一纵向动量自由度、第二纵向动量自由度以及偏振自由度进行独立地测量。
实施例1:部分纠缠态并发度测量
步骤S1中超纠缠Bell态为部分纠缠态,满足下列关系式:
Figure BDA0002314756800000042
其中两光子分别分配给Alice和Bob,6个参数满足归一化条件:
1|2+|β1|2=1   (2)
2|2+|β2|2=1   (3)
3|2+|β3|2=1   (4)
如图2,其中H和V为水平偏振和垂直偏振,l、r、I、E为线性动量,α、β分别为各个态出现的概率,下角标A、B为Alice和Bob简写。
为了从部分纠缠态中测量并发度,需要两个初始态
Figure BDA0002314756800000051
Figure BDA0002314756800000052
因为各个自由度之间的相互独立性,首先对第一纵向动量自由度的并发度进行测量,基本原理如图3,根据QND测量原理,
Figure BDA0002314756800000053
和相干态表示如下:
Figure BDA0002314756800000054
从上式中选取相干态没有相移的态,得到:
Figure BDA0002314756800000055
从式(20)得到|l>A1|r>A2|l>B1|r>B2的概率是PF=|α2β2|2,得到第一纵向动量自由度并发度为:
Figure BDA0002314756800000056
本发明中超纠缠Bell态的动量自由度是线性的,第二纵向动量纠缠的并发度测量与第一纵向动量纠缠并发度的测量相同,原理如图4所述,第二纵向动量自由度的并发度为:
Figure BDA0002314756800000057
经过纵向动量纠缠态并发度测量之后,得到的态为:
Figure BDA0002314756800000061
从式(21)已知每个光子的纵向动量是明确的,通过图5,测量偏振自由度并发度,图5中包括了交叉克尔非线性和偏振分束器(PBS),其中PBS传输|H>偏振光子反射|V>偏振光子,得到:
Figure BDA0002314756800000062
从式(22)中挑选出相干态都有±θ相移的态,得到:
Figure BDA0002314756800000063
得到态
Figure BDA0002314756800000064
的概率为PP=|α1β1|2,从而得到偏振自由度的并发度为:
Figure BDA0002314756800000065
所以两光子六量子位超纠缠Bell态的并发度为:
Figure BDA0002314756800000066
实施例2:任意纠缠态并发度测量
任意纠缠态为:
Figure BDA0002314756800000067
首先测量第一纵向动量自由度的并发度,初始态被写成:
Figure BDA0002314756800000068
通过图3后挑选出相干态没有相移的态,得到:
Figure BDA0002314756800000071
概率为P1F=2(|α2β2|2+|γ2δ2|2),如图6所示:每一个分束器BS作用为Hadamard门操作,让B1通过分束器BS1,B2通过分束器BS2,
Figure BDA0002314756800000072
则|φ>1将变为:
Figure BDA0002314756800000073
如果相干态的相移为θ14,得到:
Figure BDA0002314756800000074
如果相干态的相移为θ23,得到:
Figure BDA0002314756800000075
概率为
Figure BDA0002314756800000076
因此得到总的概率为
Figure BDA0002314756800000077
得到第一纵向动量自由度的并发度为:
Figure BDA0002314756800000078
与上述第一纵向动量自由度的并发度原理相同,得到第二纵向动量自由度的并发度为:
Figure BDA0002314756800000079
偏振自由度的并发度为:
Figure BDA00023147568000000710
因此任意纠缠态并发度为:
Figure BDA0002314756800000081

Claims (5)

1.一种两光子六量子位超纠缠Bell态并发度测量方法,其特征在于,具体步骤如下:
S1:构造两光子六量子位超纠缠Bell态,将超纠缠Bell态作为输入;超纠缠Bell态为部分纠缠态或任意纠缠态;
当超纠缠Bell态为部分纠缠态时,满足下列关系式:
其中为初始态,H和V为水平偏振和垂直偏振,l、r、I、E为线性动量,α、β分别为各个态出现的概率,下角标A、B为Alice和Bob简写;两光子分别分配给Alice和Bob,6个参数满足归一化条件:
1|2+|β1|2=1                      (2)
2|2+|β2|2=1                     (3)
3|2+|β3|2=1                      (4)
当超纠缠Bell态为任意纠缠态时,满足下列关系式:
1|2+|β1|2+|γ1|2+|δ1|2=1                  (6)
2|2+|β2|2+|γ2|2+|δ2|2=1                  (7)
3|2+|β3|2+|γ3|2+|δ3|2=1                  (8)
其中下角标P为偏振纠缠,F为第一纵向动量自由度纠缠,S为第二纵向动量自由度纠缠,γ、δ为各个态出现的概率;
S2:对超纠缠Bell态并发度进行测量:超纠缠Bell态在两个纵向动量和偏振组成的三个自由度中被编码,使用由弱交叉克尔非线性、分束器和偏振分束器来构造的量子非破坏测量,对超纠缠Bell态的第一纵向动量自由度、第二纵向动量自由度以及偏振自由度进行独立地测量。
2.根据权利要求1所述的一种两光子六量子位超纠缠Bell态并发度测量方法,其特征在于,所述步骤S2中第一纵向动量自由度的并发度测量:对于部分纠缠Bell态|ψ>=α|00>+β|11>,它的并发度为:C(|ψ>)=2|αβ|且满足|α|2+|β|2=1,此部分纠缠Bell态通过QND测量从而挑选出相干态没有相移的态,得到并发度为:
3.根据权利要求1所述的一种两光子六量子位超纠缠Bell态并发度测量方法,其特征在于,所述步骤S2中第二纵向动量自由度的并发度测量:动量自由度r/l和I/E是线性动量,并发度为:
4.根据权利要求1所述的一种两光子六量子位超纠缠Bell态并发度测量方法,其特征在于,所述步骤S2中偏振自由度的并发度测量:通过QND测量后,挑选出相干态都有±θ相移的态,得到并发度为:
5.根据权利要求1所述的一种两光子六量子位超纠缠Bell态并发度测量方法,其特征在于,所述步骤S1超纠缠Bell态为任意纠缠态时,步骤S2中任意纠缠态并发度测量为:在QND基础上进行一个Hadamard门操作,经过计算挑选出所需要的态,然后计算需要态纠缠度的并发度。
CN201911273074.1A 2019-12-12 2019-12-12 一种两光子六量子位超纠缠Bell态并发度测量方法 Active CN110971406B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911273074.1A CN110971406B (zh) 2019-12-12 2019-12-12 一种两光子六量子位超纠缠Bell态并发度测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911273074.1A CN110971406B (zh) 2019-12-12 2019-12-12 一种两光子六量子位超纠缠Bell态并发度测量方法

Publications (2)

Publication Number Publication Date
CN110971406A CN110971406A (zh) 2020-04-07
CN110971406B true CN110971406B (zh) 2023-04-21

Family

ID=70034031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911273074.1A Active CN110971406B (zh) 2019-12-12 2019-12-12 一种两光子六量子位超纠缠Bell态并发度测量方法

Country Status (1)

Country Link
CN (1) CN110971406B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111443548B (zh) * 2020-04-20 2021-05-28 上海交通大学 非线性光子晶体及其双光子频率和路径超纠缠产生方法
CN112068336B (zh) * 2020-09-17 2021-09-10 南京大学 一种基于周期极化铌酸锂波导的电控式偏振纠缠态产生芯片
CN113589435B (zh) * 2021-07-07 2023-01-17 北京大学 一种全无源偏振量子态层析方法及芯片
CN113746566B (zh) * 2021-07-29 2022-10-04 暨南大学 基于线性光器件的5粒子量子线性纠缠态的纠缠浓缩方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505060A (zh) * 2019-09-02 2019-11-26 苏州大学 非最大纠缠两能级bell态的量子对话方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394269B (zh) * 2008-08-07 2011-05-11 清华大学 用量子态注入增强与量子直接安全通信的远距离通信方法
CN104104500B (zh) * 2013-04-02 2017-07-28 华为技术有限公司 一种量子保密传输的方法和装置
CN104702342B (zh) * 2015-02-10 2017-10-31 华南师范大学 一种多自由度混合纠缠w态光子的产生系统及方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505060A (zh) * 2019-09-02 2019-11-26 苏州大学 非最大纠缠两能级bell态的量子对话方法

Also Published As

Publication number Publication date
CN110971406A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
CN110971406B (zh) 一种两光子六量子位超纠缠Bell态并发度测量方法
Xiao et al. Enhancing teleportation of quantum Fisher information by partial measurements
Hu et al. Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity
Nemoto et al. Photonic quantum networks formed from NV− centers
Sheng et al. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement
Liu et al. Remote preparation of a two-particle entangled state
Koashi et al. Probabilistic manipulation of entangled photons
Sheng et al. Two-step measurement of the concurrence for hyperentangled state
Sheng et al. Multipartite entanglement purification with quantum nondemolition detectors
Wang et al. Practical single-photon-assisted remote state preparation with non-maximally entanglement
Wei et al. Transfer and teleportation of quantum states encoded in decoherence-free subspace
Wang et al. High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED
He et al. Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system
Zhang et al. Entanglement concentration of microwave photons based on the Kerr effect in circuit QED
Zheng et al. Error-heralded generation and self-assisted complete analysis of two-photon hyperentangled Bell states through single-sided quantum-dot-cavity systems
Wei et al. Implementing a Two‐Photon Three‐Degrees‐of‐Freedom Hyper‐Parallel Controlled Phase Flip Gate Through Cavity‐Assisted Interactions
Hong et al. Scheme for encoding single logical qubit information into three-photon decoherence-free states assisted by quantum dots
Liu et al. Efficient entanglement concentration for partially entangled cluster states with weak cross-Kerr nonlinearity
Griffiths et al. Optimal eavesdropping in quantum cryptography. II. A quantum circuit
Khalique et al. Practical long-distance quantum communication using concatenated entanglement swapping
Su et al. Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity
Tokunaga et al. Simple experimental scheme of preparing a four-photon entangled state for the teleportation-based realization of a linear optical controlled-NOT gate
Yang et al. Enhancing the fidelity of remote state preparation by partial measurements
Tang et al. Highly efficient transfer of quantum state and robust generation of entanglement state around exceptional lines
Du et al. Refined entanglement concentration for electron-spin entangled cluster states with quantum-dot spins in optical microcavities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant