CN110970514B - 一种基于二型量子阱的双波段红外光电探测器 - Google Patents

一种基于二型量子阱的双波段红外光电探测器 Download PDF

Info

Publication number
CN110970514B
CN110970514B CN201911279951.6A CN201911279951A CN110970514B CN 110970514 B CN110970514 B CN 110970514B CN 201911279951 A CN201911279951 A CN 201911279951A CN 110970514 B CN110970514 B CN 110970514B
Authority
CN
China
Prior art keywords
ingaas
infrared
contact layer
quantum well
gaassb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911279951.6A
Other languages
English (en)
Other versions
CN110970514A (zh
Inventor
陈佰乐
谢宗恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ShanghaiTech University
Original Assignee
ShanghaiTech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ShanghaiTech University filed Critical ShanghaiTech University
Priority to CN201911279951.6A priority Critical patent/CN110970514B/zh
Publication of CN110970514A publication Critical patent/CN110970514A/zh
Application granted granted Critical
Publication of CN110970514B publication Critical patent/CN110970514B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type

Abstract

本发明公开了一种基于二类量子阱的双波段红外光电探测器,其特征在于,包括依次复合的InP衬底、在InP衬底上生长的延长短波红外InGaAs阳极接触层、延长短波红外InGaAs/GaAsSb二类量子阱吸收层、延长短波红外InGaAs/GaAsSb二类量子阱阴极接触层、近红外InGaAs阴极接触层、近红外InGaAs吸收层、近红外InGaAs阳极接触层,以及两个阳极金属电极及一个阴极金属电极。本发明基于生长技术成熟的InP衬底,使用的化合物半导体材料与InP衬底晶格匹配,从而有较低的暗电流,较高的信噪比,吸收谱能够覆盖1.7‑2.8μm波段,同时还具有一定的可调节范围。

Description

一种基于二型量子阱的双波段红外光电探测器
技术领域
本发明涉及一种半导体光电探测器,尤其涉及一种基于二类量子阱的近红外/延长短波红外双波段红外光电探测器。
背景技术
双色短波红外探测器在光谱学,红外成像,辐射温度传感计量等领域都有重要应用。目前工作在近红外(0.9μm-1.7μm,NIR)和延长短波红外(1.7μm-2.55μm,eSWIR)的短波红外双色探测器已经商业化。日本滨松集团采用沿着同一光轴集成了基于磷化铟(InP)衬底的两个不同响应范围的铟镓砷(InGaAs)PIN光电二极管实现短波红外的双色探测。
这种技术采用不同In成分的InGaAs探测器实现不同的响应波段,通常晶格匹配于磷化铟衬底的InGaAs探测器的截止波长为1.7微米。为了延长InGaAs探测器的截止波长,需要增加InGaAs材料中In成分,但是同时InGaAs材料的晶格常数也会随着In成分的增加而增加,这造成InGaAs和InP衬底晶格失配,带来了额外的缺陷,从而影响器件的暗电流特性[1]。
由于二类量子阱可以通过调整材料组分和量子阱厚度来调整带隙,同时又保留了晶格匹配于衬底的优势,因此已成为非常适合多光谱检测的材料。InGaAs/GaAsSb二类量子阱材料体系在InP衬底上展示了高性能SWIR光电探测性能[2-10],但迄今为止,尚未报道过基于InGaAs体状材料与InGaAs/GaAsSb二类量子阱的短波双波段NIR-eSWIR光电探测器。
发明内容
本发明所要解决的技术问题是:现有的基于不同In成分的InGaAs双波段探测器存在的成本高、器件封装技术难,暗电流高的问题。
为了解决上述问题,本发明提供了一种基于二类量子阱的双波段红外光电探测器,其特征在于,包括依次复合的InP衬底、在InP衬底上生长的延长短波红外InGaAs阳极接触层、延长短波红外InGaAs/GaAsSb二类量子阱吸收层、延长短波红外InGaAs/GaAsSb二类量子阱阴极接触层、近红外InGaAs阴极接触层、近红外InGaAs吸收层、近红外InGaAs阳极接触层,以及两个阳极金属电极及一个阴极金属电极,两个阳极金属电极分别与延长短波红外InGaAs阳极接触层、近红外InGaAs阳极接触层相接触,阴极金属电极与延长短波红外InGaAs/GaAsSb二类量子阱阴极接触层相接触。
优选地,所述双波段红外光电探测器响应0.9-1.7μm及1.7-2.8μm两个波段。
优选地,所述延长短波红外InGaAs/GaAsSb二类量子阱吸收层用于吸收用是吸收波长在1.7-2.8μm波段的光子,其由周期性重复的InGaAs和GaAsSb层构成。每个周期内InGaAs和GaAsSb的厚度在纳米尺度,从而形成二类交错的量子阱结构以及分离的能级。当形成的电子基态能级与空穴基态能级之差小于2.8μm波长的光子对应的能量时,就能吸收1.7-2.8μm波长的光。当入射光激发一对电子空穴对之后,载流子被束缚在量子阱中,之后通过热激发或隧穿的机制离开量子阱。
优选地,所述延长短波红外InGaAs阳极接触层、近红外InGaAs阳极接触层采用n型重掺杂的半导体材料。
优选地,所述延长短波红外InGaAs/GaAsSb二类量子阱阴极接触层、近红外InGaAs阴极接触层采用p型重掺杂的半导体材料。
与现有技术相比,本发明的有益效果在于:
1、该光电探测器基于生长技术成熟的InP衬底,成本相对较低,同时材料品质能够得到保证,从而器件性能较稳定。
2、该光电探测器使用的化合物半导体材料与InP衬底晶格匹配,从而有较低的暗电流,较高的信噪比。
3、该光电探测器采用InGaAs/GaAsSb二类量子阱作为吸收区,其吸收谱能够覆盖1.7-2.8μm波段,同时还具有一定的可调节范围。
附图说明
图1为本发明提供的双波段红外光电探测器外延层的示意图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例
如图1所示,为本发明提供的一种基于二类量子阱的双波段红外光电探测器,其包括依次复合的InP衬底1、在InP衬底上生长的延长短波红外InGaAs阳极接触层2、延长短波红外InGaAs/GaAsSb二类量子阱吸收层3、延长短波红外InGaAs/GaAsSb二类量子阱阴极接触层4、近红外InGaAs阴极接触层5、近红外InGaAs吸收层6、近红外InGaAs阳极接触层7,以及两个阳极金属电极8及一个阴极金属电极9,两个阳极金属电极8分别与延长短波红外InGaAs阳极接触层2、近红外InGaAs阳极接触层7相接触,阴极金属电极9与延长短波红外InGaAs/GaAsSb二类量子阱阴极接触层4相接触。
上述器件在0.9-1.7μm及1.7-2.8μm的光响应,其制备流程如下:
步骤一:利用分子束外延方法在InP衬底1上以此生长出延长短波红外InGaAs阳极接触层2、延长短波红外InGaAs/GaAsSb二类量子阱吸收层3、延长短波红外InGaAs/GaAsSb阴极接接触层4、近红外InGaAs阴极接触层5、近红外InGaAs吸收层6、近红外InGaAs阳极接触层7;
其中,各层参数如表1所示:
表1
厚度 掺杂类型 掺杂浓度
InGaAs阳极接触层 500nm n 2.0×10<sup>17</sup>cm<sup>-3</sup>
InGaAs短波吸收层 2000nm i &lt;5.0×10<sup>15</sup>cm<sup>-3</sup>
InGaAs阴极接触层 500nm p 2.0×10<sup>17</sup>cm<sup>-3</sup>
InGaAs/GaAsSb量子阱阴极接触层 7nm/5nm×40 p 1.0×10<sup>18</sup>cm<sup>-3</sup>
InGaAs/GaAsSb量子阱短波吸收层 7nm/5nm×100 i &lt;5.0×10<sup>15</sup>cm<sup>-3</sup>
InGaAs阳极接触层 500nm n 2.0×10<sup>18</sup>cm<sup>-3</sup>
InP衬底
所述延长短波红外InGaAs阳极接触层2由一层厚度为500nm掺杂浓度为2×1018cm-3的n型InGaAs组成;
所述延长短波红外InGaAs/GaAsSb二类量子阱吸收层3的结构为:每个周期中InGaAs层和GaAsSb层的厚度分别为7nm和5nm,重复100个周期;
所述延长短波红外InGaAs/GaAsSb二类量子阱阴极接触层4的结构为:每个周期中InGaAs层和GaAsSb层的厚度分别为7nm和5nm,重复40个周期,掺杂浓度为1.0×1018cm-3的P掺杂;
所述近红外InGaAs阴极接触层5由一层厚度为500nm掺杂浓度为2×1017cm-3的p型InGaAs组成;
所述近红外InGaAs吸收层6由一层厚度为2000nm掺杂浓度不超过5×1015cm-3的p型InGaAs组成;
所述近红外InGaAs阳极接触层7由一层厚度为500nm掺杂浓度为2×1017cm-3的n型InGaAs组成;
步骤二、制备第一层台面:利用湿法刻蚀形成直径180μm的圆形台面,刻蚀面停止在延长短波红外InGaAs/GaAsSb二类量子阱阴极接触层4内;
步骤三、制备第二层台面:利用湿法刻蚀形成直径340μm的圆形台面,刻蚀面停止在延长短波红外InGaAs阳极接触层2内;
步骤四、制备金属电极:利用电子束蒸发技术在外延片的上表面蒸镀一层由钛、铂、金构成金属,三种材料的厚度分别为50nm、50nm、300nm。再通过剥离技术得到两个阳极金属电极8及一个阴极金属电极9。完成上述工艺步骤后,利用丝焊机将探测器键合到TOheader上,将单色仪得到的不同波长的光用斩波器调制后汇聚在探测器表面,再将产生光电流信号经过锁相放大器后输入电脑即可得到光电流信号,将光电流数据与标准探测器的光电流数据进行对比即可得到探测器的响应。测试结果表明通过上述步骤制备而成的双波段光电探测器可以分别响应0.9-1.7μm及1.7-2.8μm的红外光。其中在1.64um能达到0.57A/W的响应,在1.85μm能达到0.3A/W的响应。

Claims (3)

1.一种基于二类量子阱的双波段红外光电探测器,其特征在于,包括依次复合的InP衬底(1)、在InP衬底上生长的延长短波红外InGaAs阳极接触层(2)、延长短波红外InGaAs/GaAsSb二类量子阱吸收层(3)、延长短波红外InGaAs/GaAsSb二类量子阱阴极接触层(4)、近红外InGaAs阴极接触层(5)、近红外InGaAs吸收层(6)、近红外InGaAs阳极接触层(7),以及两个阳极金属电极(8)及一个阴极金属电极(9),两个阳极金属电极(8)分别与延长短波红外InGaAs阳极接触层(2)、近红外InGaAs阳极接触层(7)相接触,阴极金属电极(9)与延长短波红外InGaAs/GaAsSb二类量子阱阴极接触层(4)相接触;所述延长短波红外InGaAs阳极接触层(2)、近红外InGaAs阳极接触层(7)采用n型重掺杂的半导体材料;所述延长短波红外InGaAs/GaAsSb二类量子阱阴极接触层(4)、近红外InGaAs阴极接触层(5)采用p型重掺杂的半导体材料。
2.如权利要求1所述的基于二类量子阱的双波段红外光电探测器,其特征在于,所述双波段红外光电探测器响应0.9-1.7μm及1.7-2.8μm两个波段。
3.如权利要求1所述的基于二类量子阱的双波段红外光电探测器,其特征在于,所述延长短波红外InGaAs/GaAsSb二类量子阱吸收层(3)用于吸收用是吸收波长在1.7-2.8μm波段的光子,其由周期性重复的InGaAs和GaAsSb层构成。
CN201911279951.6A 2019-12-13 2019-12-13 一种基于二型量子阱的双波段红外光电探测器 Active CN110970514B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911279951.6A CN110970514B (zh) 2019-12-13 2019-12-13 一种基于二型量子阱的双波段红外光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911279951.6A CN110970514B (zh) 2019-12-13 2019-12-13 一种基于二型量子阱的双波段红外光电探测器

Publications (2)

Publication Number Publication Date
CN110970514A CN110970514A (zh) 2020-04-07
CN110970514B true CN110970514B (zh) 2021-12-07

Family

ID=70034157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911279951.6A Active CN110970514B (zh) 2019-12-13 2019-12-13 一种基于二型量子阱的双波段红外光电探测器

Country Status (1)

Country Link
CN (1) CN110970514B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019912A1 (en) * 1997-10-16 1999-04-22 California Institute Of Technology Dual-band quantum-well infrared sensing array
CN103325862A (zh) * 2013-05-23 2013-09-25 中国科学院半导体研究所 一种双色量子阱红外光探测器
CN104576811A (zh) * 2015-01-27 2015-04-29 苏州苏纳光电有限公司 近中红外波双色探测器及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018182261A (ja) * 2017-04-21 2018-11-15 住友電気工業株式会社 半導体受光デバイス
JP6787240B2 (ja) * 2017-04-26 2020-11-18 住友電気工業株式会社 赤外線検知半導体デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019912A1 (en) * 1997-10-16 1999-04-22 California Institute Of Technology Dual-band quantum-well infrared sensing array
CN103325862A (zh) * 2013-05-23 2013-09-25 中国科学院半导体研究所 一种双色量子阱红外光探测器
CN104576811A (zh) * 2015-01-27 2015-04-29 苏州苏纳光电有限公司 近中红外波双色探测器及其制备方法

Also Published As

Publication number Publication date
CN110970514A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
Tian et al. Interband cascade infrared photodetectors with enhanced electron barriers and p-type superlattice absorbers
Stiff et al. Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector
JP6080092B2 (ja) 受光素子、半導体エピタキシャルウエハ、検出装置および受光素子の製造方法
CN109285911B (zh) 一种短波/中波/长波三波段红外探测器及其制备方法
CN110323289B (zh) 一种单载流子光电探测器
CN111430497B (zh) 用于中红外波段的半导体光电探测器及其制备方法
WO2012073539A1 (ja) 受光素子、検出装置、半導体エピタキシャルウエハ、およびこれらの製造方法
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
Xie et al. InP-based near infrared/extended-short wave infrared dual-band photodetector
JP2012256826A (ja) 受光素子、半導体エピタキシャルウエハ、これらの製造方法および検出装置
US20190109252A1 (en) Cdte-based double heterostructures and related light-conversion devices
CN106384755A (zh) InP基量子阱远红外探测器及其制作方法
US8927965B2 (en) Light receiving element and optical device
CN114823947A (zh) 一种InP基超宽光谱光电探测器及其制备方法
US20210210646A1 (en) Broadband uv-to-swir photodetectors, sensors and systems
CN110970514B (zh) 一种基于二型量子阱的双波段红外光电探测器
Parakh et al. Ensemble GaAsSb/GaAs axial configured nanowire-based separate absorption, charge, and multiplication avalanche near-infrared photodetectors
CN113178497B (zh) 一种基于量子点的紫外探测器及制作方法
Shao et al. High detectivity AlGaAsSb/InGaAsSb photodetectors grown by molecular beam epitaxy with cutoff wavelength up to 2.6 μm
CN112652719B (zh) 高eqe和低fwhm的钙钛矿光电探测器及其制作方法
Bansal et al. Photodetectors for security application
Gravrand et al. Status of very long infrared-wave focal plane array development at DEFIR
Perera Quantum structures for multiband photon detection
RU221645U1 (ru) Полупроводниковый фотодиод для инфракрасного излучения
Chao et al. High-speed and high-power GaSb based photodiode for 2.5 μm wavelength operations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant