CN110951663A - Recombinant bacterium for expressing PD-1 antibody and construction method and application thereof - Google Patents

Recombinant bacterium for expressing PD-1 antibody and construction method and application thereof Download PDF

Info

Publication number
CN110951663A
CN110951663A CN201911369182.9A CN201911369182A CN110951663A CN 110951663 A CN110951663 A CN 110951663A CN 201911369182 A CN201911369182 A CN 201911369182A CN 110951663 A CN110951663 A CN 110951663A
Authority
CN
China
Prior art keywords
seq
antibody
nucleotide sequence
recombinant
expressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911369182.9A
Other languages
Chinese (zh)
Inventor
陈廷涛
魏泓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Qianhai Jinzhuo Biotechnology Co ltd
Original Assignee
Shenzhen Qianhai Jinzhuo Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Qianhai Jinzhuo Biotechnology Co ltd filed Critical Shenzhen Qianhai Jinzhuo Biotechnology Co ltd
Priority to CN201911369182.9A priority Critical patent/CN110951663A/en
Publication of CN110951663A publication Critical patent/CN110951663A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a recombinant bacterium for expressing a PD-1 antibody and a construction method and application thereof. The recombinant bacterium for expressing the PD-1 antibody is obtained by transforming a recombinant expression vector for expressing the PD-1 antibody into attenuated salmonella typhimurium or escherichia coli Nissle 1917. The recombinant bacteria expressing the PD-1 antibody have good anti-tumor effect.

Description

Recombinant bacterium for expressing PD-1 antibody and construction method and application thereof
Technical Field
The invention relates to the technical field of biology, in particular to a recombinant bacterium for expressing a PD-1 antibody and a construction method and application thereof.
Background
Programmed death receptor 1(PD-1) is an immunosuppressive molecule consisting of 288 amino acids, and is a type I transmembrane glycoprotein consisting of an intracellular region, an extracellular region, and a hydrophobic transmembrane region. The intracellular domain of PD-1 consists of two independent immunoreceptor tyrosine switch motifs and inhibitory motifs in the tail, and the extracellular domain consists of a signal sequence and an immunoglobulin variable domain at the top.
PD-1 can be expressed in various cells after induction, such as activated T cells, B cells, natural killer cells, monocytes, dendritic cells and the like. Research shows that the specific combination of PD-L1 expressed by tumor cells and PD-1 expressed by T cells can inhibit the proliferation and differentiation capacity of T cells, reduce the expression of various immune factors and promote the apoptosis of activated effector T cells, thereby mediating the immune escape of tumor cells. In this case, if a PD-1 antibody drug can be administered to specifically bind to PD-1 to block the binding of PD-L1 to PD-1 of T cells in tumor cells, a therapeutic effect on tumors can be achieved.
Although the above therapeutic pathway has proved to be effective, the current antitumor drugs containing PD-1 antibody as the main active ingredient have not been ideal in tumor treatment.
Disclosure of Invention
In view of this, it is necessary to provide a recombinant bacterium expressing a PD-1 antibody which has a good antitumor effect.
A recombinant bacterium for expressing PD-1 antibody is obtained by transforming a recombinant expression vector for expressing PD-1 antibody into attenuated Salmonella typhimurium or Escherichia coli Nissle 1917.
The recombinant bacterium for expressing the PD-1 antibody directly expresses the PD-1 antibody at a tumor by utilizing the tumor targeting property and the tumor inhibiting effect of attenuated salmonella typhimurium and escherichia coli Nissle1917, so that the PD-1 antibody has targeting property, the specific aggregation of the PD-1 antibody in tumor cells is avoided, the effective utilization rate of the PD-1 antibody is improved, and the anti-tumor effect of the PD-1 antibody is improved.
In one embodiment, the attenuated salmonella typhimurium is attenuated salmonella typhimurium VNP 20009.
In one embodiment, the recombinant expression vector for expressing the PD-1 antibody comprises an expression fragment of interest, wherein the expression fragment of interest comprises a nucleotide sequence shown as SEQ ID No.1, or the expression fragment of interest comprises a nucleotide sequence shown as SEQ ID No.2, or the expression fragment of interest comprises a nucleotide sequence shown as SEQ ID No. 3.
A method for constructing a recombinant bacterium expressing a PD-1 antibody, comprising the steps of:
introducing a target expression fragment containing a nucleotide sequence for encoding the PD-1 antibody into an expression empty vector to obtain a recombinant expression vector; and
and transforming the recombinant expression vector into a host to obtain the recombinant bacteria for expressing the PD-1 antibody, wherein the host is attenuated salmonella typhimurium or escherichia coli Nissle 1917.
In one embodiment, the attenuated salmonella typhimurium is attenuated salmonella typhimurium VNP 20009.
In one embodiment, the expression fragment of interest comprises a nucleotide sequence shown as SEQ ID No.1, or the expression fragment of interest comprises a nucleotide sequence shown as SEQ ID No.2, or the expression fragment of interest comprises a nucleotide sequence shown as SEQ ID No. 3.
In one embodiment, the method further comprises a step of preparing the expression fragment of interest, wherein the step of preparing the expression fragment of interest comprises:
using pUC57-hPD-1 as a template, and carrying out PCR amplification to obtain a target expression fragment containing a nucleotide sequence shown as SEQ ID No. 1; or
And using pUC57-mPD-1 as a template, and carrying out PCR amplification to obtain a target expression fragment containing the nucleotide sequence shown as SEQ ID No.2 or a target expression fragment containing the nucleotide sequence shown as SEQ ID No. 3.
In one embodiment, in the step of obtaining the expression fragment of interest having the nucleotide sequence shown in SEQ ID No.1, the primers for PCR are shown in SEQ ID No.6 and SEQ ID No. 7; in the step of obtaining the target expression fragment containing the nucleotide sequence shown as SEQ ID No.2, the primers of PCR are shown as SEQ ID No.8 and SEQ ID No. 9; in the step of obtaining the target expression fragment containing the nucleotide sequence shown as SEQ ID No.3, the primers of PCR are shown as SEQ ID No.10 and SEQ ID No. 11.
In one embodiment, the expression empty vector is an Abvec-Igk plasmid or a pET-28c plasmid.
In one embodiment, the target expression fragment contains a nucleotide sequence shown as SEQ ID No.1, or the target expression fragment contains a nucleotide sequence shown as SEQ ID No.2, the expression empty vector is an Abvec-Igk plasmid, and the host is attenuated Salmonella typhimurium.
The recombinant bacterium for expressing the PD-1 antibody or the recombinant bacterium for expressing the PD-1 antibody prepared by the construction method can be applied to the preparation of antitumor drugs.
In one embodiment, the tumor is melanoma, cervical cancer.
An anti-tumor drug, which comprises the recombinant bacterium expressing the PD-1 antibody or the recombinant bacterium expressing the PD-1 antibody prepared by the construction method of the recombinant bacterium expressing the PD-1 antibody.
Drawings
FIG. 1 is a schematic structural diagram of the recombinant plasmid Abvec-Igk-hPD-1, the recombinant plasmid Abvec-Igk-mPD-1 and the recombinant plasmid pET-28c-mPD-1 in example 1;
FIG. 2 is a graph of the change in tumor volume in cervical cancer model mice after injection of Abvec-Igk-hPD-1-VNP20009 in example 1;
FIG. 3 is a graph showing the change in tumor volume of melanoma model mice after injection of Abvec-Igk-mPD-1-VNP20009, pET-28c-mPD-1-VNP20009, and pET-28c-mPD-1-Nissle1917 in example 1.
Detailed Description
To facilitate an understanding of the invention, the invention will now be described more fully with reference to the accompanying drawings. Some embodiments of the invention are presented in the drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.
The recombinant bacterium expressing the PD-1 antibody according to one embodiment is obtained by transforming a recombinant expression vector expressing the PD-1 antibody into attenuated Salmonella typhimurium or Escherichia coli Nissle 1917.
Although the PD-1 antibody can be used as an effective component of an antitumor drug, the PD-1 antibody cannot be specifically aggregated in a tumor in a conventional administration mode, so that the targeting property of the PD-1 antibody is poor. The recombinant bacteria expressing the PD-1 antibody directly express the PD-1 antibody at a tumor by utilizing the tumor targeting property and the tumor inhibiting effect of attenuated salmonella typhimurium and escherichia coli Nissle1917, so that the PD-1 antibody has targeting property, the specific aggregation of the PD-1 antibody on tumor cells is avoided, the effective utilization rate of the PD-1 antibody is improved, and the anti-tumor effect of the PD-1 antibody is improved.
Specifically, recombinant expression vectors expressing PD-1 antibodies include an expression fragment of interest. Expression fragments of interest include nucleotide fragments that express the PD-1 antibody. Further, the expression fragment of interest includes a nucleotide fragment expressing the PD-1 monoclonal antibody. In this embodiment, the desired expression fragment further comprises an enzyme cleavage site corresponding to the expression empty vector for preparing the recombinant expression vector.
In one embodiment, the expression fragment of interest comprises a nucleotide fragment encoding an expression of a human PD-1 monoclonal antibody. Furthermore, the target expression fragment contains a nucleotide sequence shown as SEQ ID No. 1. The nucleotide sequence shown as SEQ ID No.1 comprises enzyme cutting sites of Age I and Hind III and a nucleotide sequence for coding the human PD-1 monoclonal antibody. Specifically, the nucleotide sequence shown as SEQ ID No.1 is: 5'-ACCGGTCACCATCATCATCATCATTCTTCTGGTGAGAACCTGTACTTCCAAGGTGCTAGCGAACTGGTGGTAACTCAAGAACCGTCTCTGACCGTGTCTCCAGGTGGCACCGTCACTCTGACCTGTGGTTCTAGCACTGGTGCAGTCACCAGCGGTAACTATCCGAGCTGGCCGCAACAGAAACCAGCACAGGCTCCGCGTCCACTGATCTACACTACCACTAACAAACACTCTTGGACCCCAGCTCAGTTCTCTGGCTCTCTGCTCGGTGGCAAAGCTGTACTGACTCTGTCTGGTGTTCAGCCAGAAGACGAAGCTGACTATTACTGCCGTCTGTTCTATGGTGGTCCGTGGGTCTTTGGTGGCGGTACTCAGCTGACCGACCTGGGTGGTGGCTCTTCTCGTAGCTCCGAAGTTCAGCTGCTGGAATCTGGTCGTGGCCTGGTACAGCCAGGTGGCTCTCTGCGTCTGTCTTGTGCAGCTTCTGGCTTCACCTTCAGCAGCTATGCTACCAACTGGGTACGTCAGGCTCCAGGTAAAGGTCTGGAGTGGGTCTCTCTGATCTCTGGTAGCGGTGGTTCTACCTTCTACGCAGACTCTGTGAAAGACCGTTACACCATCTCTCGTGACAACTCCAAGAACACGGTGTATCTGCAGATGAACAGCCTGCGTGATGAAGACACTGCAGTCTATTACTGTGCACGTGTGTCTCCGTTCGACTACGGTGCTGATTATTGGGGTCAAGGTACTCTGGTCACCGTCAGCTCTGCATCTACTCAGTCTCCATCTGTCACTAGCTGAAAGCTT-3' are provided.
In one embodiment, the expression fragment of interest comprises a nucleotide fragment encoding an expression murine PD-1 monoclonal antibody. Furthermore, the target expression fragment contains a nucleotide sequence shown as SEQ ID No. 2. The nucleotide sequence shown as SEQ ID No.2 comprises enzyme cutting sites of Age I and Hind III and a nucleotide sequence for coding the murine PD-1 monoclonal antibody. Specifically, the nucleotide sequence shown as SEQ ID No.2 is:
5’-ACCGGTTATGAGCTGACTCAGCCACCTTCAGCATCAGTCAATGTAGGAGAGACTGTCAAAATCACCTGCTCTGGGGACCAATTGCCGAAATATTTTGCAGATTGGTTTCATCAAAGGTCAGACCAGACCATTTTGCAAGTGATATATGATGATAATAAGCGCCCCTCGGGGATCCCTGAAAGAATCTCTGGGTCCAGCTCAGGGACAACAGCCACCTTGACCATCAGAGATGTCCGGGCTGAGGATGAAGGTGACTATTACTGTATCTCAGGATATGTTGATAGTGATAGCAAATTGTATGTTTTTGGCAGCGGAACCCAGCTCACCGTCCTAGGTTGTGGCTGCGGCGGAGGCGGAAGCGGAGGCGGATGTGGCTGCTCATCCGTCACTGTCCAAACCGGGCAAGGTTGGTTCGATCTGTCTCCCTATGGAAGCGGAGATAGATCATGTTACTATACTGCCACGGACGAGACTAGACTGAACAACATGCAACTGTACGTTATGAGCCGATCCGATGATAGATCCATCACCTTCAGAGGCAAAGTGTCGGGTTCGTACTATACTGCATATAATTATAGTAAAACGTACATACACGCTGTTTGGGAGCTGGGGAAGGGGCCAGCTCAGCGCGTCTGGAGCATGTTCTATGACAGTTTCACCTTCGGATCTGCCGTGTGTTCCCTCAAACTGTCAGGGCAGCCTAAGGTGTTAGGAGGAGGTTCTGAGCTGCTTCGGGTGGAGCATCATCACCATCACCATTAAATGCTT-3’。
in another embodiment, the expression fragment of interest comprises a nucleotide fragment encoding an expression murine PD-1 monoclonal antibody, and the expression fragment of interest comprises the nucleotide sequence shown in SEQ ID No. 3. The nucleotide sequence shown in SEQ ID No.3 includes restriction sites of Nco I and Xho I and a nucleotide sequence encoding a murine PD-1 monoclonal antibody. Specifically, the nucleotide sequence shown as SEQID No.3 is as follows:
5’-ATGGAGTATGAGCTGACTCAGCCACCTTCAGCATCAGTCAATGTAGGAGAGACTGTCAAAATCACCTGCTCTGGGGACCAATTGCCGAAATATTTTGCAGATTGGTTTCATCAAAGGTCAGACCAGACCATTTTGCAAGTGATATATGATGATAATAAGCGCCCCTCGGGGATCCCTGAAAGAATCTCTGGGTCCAGCTCAGGGACAACAGCCACCTTGACCATCAGAGATGTCCGGGCTGAGGATGAAGGTGACTATTACTGTTTCTCAGGATATGTTGATAGTGATAGCAAATTGTATGTTTTTGGCAGCGGAACCCAGCTCACCGTCCTAGGTTGTGGCTGCGGCGGAGGCGGAAGCGGAGGCGGATGTGGCTGCTCATCCGTCACTGTCCAAACCGGGCAAGGTTGGTTCGATCTGTCTCCCTATGGAAGCGGAGATAGAACATGTTACTATACTGCCACGGACGAGACTAGACTGAACAACATGCAACTGTACGTCATGAGCCGATCCGATGATAGATCCATCACCTTCAGAGGCAAAGTGTCGGGTTCGTACTATACTGCATATAATTATAGTAAAACGTACATACACGCTGTTTGGGAGCTGGGGAAGGGGCCAGCTCAGCGCGTCTGGAGCATGTTCTATGACAGTTTCACCTTCGGATCTGCCGTGTGTTCCCTCAAACTGTCAGGGGAGCCTAAGGTGTTAGGAGGAGGTTCTGAGCTGCTTCGGGTGGAGCTCGAG-3’。
preferably, the attenuated salmonella typhimurium is attenuated salmonella typhimurium VNP 20009. The attenuated salmonella typhimurium VNP20009 is a salmonella typhimurium with tumor targeting and tumor inhibiting effects; and the attenuated salmonella typhimurium VNP20009 has the advantages of reduced genetic toxicity (puri gene deletion), lowered septic shock potential (msbb gene deletion) and antibiotic sensitivity, and has excellent safety.
In one embodiment, the recombinant bacterium expressing the PD-1 antibody is obtained by transforming a recombinant expression vector expressing the PD-1 antibody into attenuated Salmonella typhimurium VNP20009, wherein the recombinant expression vector expressing the PD-1 antibody comprises an expression fragment of interest comprising the nucleotide sequence shown in SEQ ID No. 1.
In one embodiment, the recombinant bacterium expressing the PD-1 antibody is obtained by transforming a recombinant expression vector expressing the PD-1 antibody into attenuated Salmonella typhimurium VNP20009, wherein the recombinant expression vector expressing the PD-1 antibody comprises an expression fragment of interest comprising the nucleotide sequence shown in SEQ ID No. 2.
In one embodiment, the recombinant bacterium expressing the PD-1 antibody is obtained by transforming a recombinant expression vector expressing the PD-1 antibody into attenuated Salmonella typhimurium VNP20009, wherein the recombinant expression vector expressing the PD-1 antibody comprises an expression fragment of interest comprising the nucleotide sequence shown in SEQ ID No. 3.
In one embodiment, the recombinant bacterium expressing the PD-1 antibody is obtained by transforming a recombinant expression vector expressing the PD-1 antibody into Escherichia coli Nissle1917, wherein the recombinant expression vector expressing the PD-1 antibody comprises a target expression fragment containing a nucleotide sequence shown as SEQ ID No. 3.
In one embodiment, the empty vector of the recombinant expression vector is an Abvec-Igk plasmid or a pET-28c plasmid. The Abvec-Igk plasmid is a DNA molecule with a nucleotide sequence shown as SEQ ID No. 4; the pET-28c plasmid is a DNA molecule having the nucleotide sequence shown in SEQ ID No. 5. Specifically, the nucleotide sequence shown as SEQ ID No.4 is:
5'-TTCGAGCTCGCCCGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGCCGGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAGGCCCACCCCCTTGGCTTCGTTAGAACGCGGCTACAATTAATACATAACCTTATGTATCATACACATACGATTTAGGTGACACTATAGAATAACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCACCATGGGATGGTCATGTATCATCCTTTTTCTAGTAGCAACTGCAACCGGTGTACACTCGAGCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCGATCGGGAATTAATTCGGCGCAGCACCATGGCCTGAAATAACCTCTGAAAGAGGAACTTGGTTAGGTACCTTCTGAGGCGGAAAGAACCAGCTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTGTTAACAGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGTAGCCTGAATGGCGAATGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGTATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGATGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCAGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCA-3' are provided. Specifically, the nucleotide sequence shown as SEQ ID No.5 is:
5’-ATCCGGATATAGTTCCTCCTTTCAGCAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAGTTATTGCTCAGCGGTGGCAGCAGCCAACTCAGCTTCCTTTCGGGCTTTGTTAGCAGCCGGATCTCAGTGGTGGTGGTGGTGGTGCTCGAGTGCGGCCGCAAGCTTGTCGACGGAGCTCGAATTCGGATCCGACCCATTTGCTGTCCACCAGTCATGCTAGCCATATGGCTGCCGCGCGGCACCAGGCCGCTGCTGTGATGATGATGATGATGGCTGCTGCCCATGGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGGGGAATTGTTATCCGCTCACAATTCCCCTATAGTGAGTCGTATTAATTTCGCGGGATCGAGATCTCGATCCTCTACGCCGGACGCATCGTGGCCGGCATCACCGGCGCCACAGGTGCGGTTGCTGGCGCCTATATCGCCGACATCACCGATGGGGAAGATCGGGCTCGCCACTTCGGGCTCATGAGCGCTTGTTTCGGCGTGGGTATGGTGGCAGGCCCCGTGGCCGGGGGACTGTTGGGCGCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGTGCTCAACGGCCTCAACCTACTACTGGGCTGCTTCCTAATGCAGGAGTCGCATAAGGGAGAGCGTCGAGATCCCGGACACCATCGAATGGCGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTAAGTTAGCTCACTCATTAGGCACCGGGATCTCGACCGATGCCCTTGAGAGCCTTCAACCCAGTCAGCTCCTTCCGGTGGGCGCGGGGCATGACTATCGTCGCCGCACTTATGACTGTCTTCTTTATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTCTGGGTCATTTTCGGCGAGGACCGCTTTCGCTGGAGCGCGACGATGATCGGCCTGTCGCTTGCGGTATTCGGAATCTTGCACGCCCTCGCTCAAGCCTTCGTCACTGGTCCCGCCACCAAACGTTTCGGCGAGAAGCAGGCCATTATCGCCGGCATGGCGGCCCCACGGGTGCGCATGATCGTGCTCCTGTCGTTGAGGACCCGGCTAGGCTGGCGGGGTTGCCTTACTGGTTAGCAGAATGAATCACCGATACGCGAGCGAACGTGAAGCGACTGCTGCTGCAAAACGTCTGCGACCTGAGCAACAACATGAATGGTCTTCGGTTTCCGTGTTTCGTAAAGTCTGGAAACGCGGAAGTCAGCGCCCTGCACCATTATGTTCCGGATCTGCATCGCAGGATGCTGCTGGCTACCCTGTGGAACACCTACATCTGTATTAACGAAGCGCTGGCATTGACCCTGAGTGATTTTTCTCTGGTCCCGCCGCATCCATACCGCCAGTTGTTTACCCTCACAACGTTCCAGTAACCGGGCATGTTCATCATCAGTAACCCGTATCGTGAGCATCCTCTCTCGTTTCATCGGTATCATTACCCCCATGAACAGAAATCCCCCTTACACGGAGGCATCAGTGACCAAACAGGAAAAAACCGCCCTTAACATGGCCCGCTTTATCAGAAGCCAGACATTAACGCTTCTGGAGAAACTCAACGAGCTGGACGCGGATGAACAGGCAGACATCTGTGAATCGCTTCACGACCACGCTGATGAGCTTTACCGCAGCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAACAATAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAACGTCTTGCTCTAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGGAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAACTTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAAGAATTAATTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGAAATTGTAAACGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCCATTCGCCA-3’。
the method for constructing a recombinant bacterium that expresses a PD-1 antibody according to an embodiment includes step S110 to step S120. Specifically, the method comprises the following steps:
step S110: and introducing the target expression fragment containing the nucleotide sequence for encoding the PD-1 antibody into an expression empty vector to obtain a recombinant expression vector.
Specifically, the target expression fragment containing the nucleotide sequence encoding the PD-1 antibody is introduced into an expression empty vector by enzyme digestion and enzyme ligation. The target expression fragment comprises enzyme cutting sites corresponding to the enzyme cutting sites on the expression empty vector. The enzyme cutting site on the target expression fragment is used for connecting the target expression fragment and the expression empty vector under the action of ligase after the target expression fragment and the expression empty vector are cut by the same restriction enzyme so as to prepare the recombinant expression vector. Further, the ligase is T4 ligase.
In one embodiment, the expression fragment of interest comprises a nucleotide sequence as shown in SEQ ID No. 1; or the target expression fragment contains a nucleotide sequence shown as SEQ ID No. 2; or the target expression fragment contains a nucleotide sequence shown as SEQID No. 3.
In one embodiment, the method further comprises a step of preparing the target expression fragment. Specifically, the preparation method of the target expression fragment comprises the following steps: using pUC57-hPD-1 as a template, a target expression fragment containing the nucleotide sequence shown in SEQ ID No.1 was obtained by PCR amplification. Further, primers for PCR are shown as SEQ ID No.6 and SEQ ID No. 7. The nucleotide sequence of the primer shown as SEQID No.6 is as follows: 5'-CTTCACCGGTCACCATCATCATCATCAT-3', respectively; the nucleotide sequence of the primer shown as SEQ ID No.7 is as follows: 5'-TGCGAAGCTTTCAGCTAGTGACAGATGG-3' are provided.
In another embodiment, the step of preparing the expression fragment of interest comprises: and using pUC57-mPD-1 as a template, and carrying out PCR amplification to obtain a target expression fragment containing the nucleotide sequence shown as SEQ ID No.2 or a target expression fragment containing the nucleotide sequence shown as SEQ ID No. 3.
Further, in the step of obtaining the target expression fragment containing the nucleotide sequence shown as SEQ ID No.2, the primers of PCR are shown as SEQ ID No.8 and SEQ ID No. 9; specifically, the nucleotide sequence of the primer shown as SEQ ID No.8 is as follows: 5'-CTTCACCGGTTATGAGCTGACTCAG-3' are provided. Specifically, the nucleotide sequence of the primer shown as SEQ ID No.9 is as follows: 5'-TATTAAGCTTTTAATGGTGATGGTGATGATGCTCCACCCGAAGCAG-3' are provided.
Further, in the step of obtaining the target expression fragment containing the nucleotide sequence shown as SEQ ID No.3, the primers for PCR are shown as SEQ ID No.10 and SEQ ID No. 11. Specifically, the nucleotide sequence of the primer shown as SEQ ID No.10 is as follows: 5'-CTTCCCATGGAGTATGAGCTGACTCAG-3' are provided. The nucleotide sequence of the primer shown as SEQ ID No.11 is as follows: 5'-TATTCTCGAGCTCCACCCGAAGCAG-3' are provided.
The expression empty vector may be an empty vector commonly used in the art for expression. In this embodiment, the empty expression vector is an Abvec-Igk plasmid or a pET-28c plasmid. The Abvec-Igk plasmid is a DNA molecule with a nucleotide sequence shown as SEQ ID No. 4; the pET-28c plasmid is a DNA molecule having the nucleotide sequence shown in SEQ ID No. 5.
Furthermore, the target expression fragment containing the nucleotide sequence shown in SEQ ID No.1 is introduced into an Abvec-Igk plasmid to obtain an Abvec-Igk-hPD-1 recombinant plasmid. Introducing a target expression fragment containing a nucleotide sequence shown as SEQ ID No.2 into an Abvec-Igk plasmid to obtain an Abvec-Igk-mPD-1 recombinant plasmid. The target expression fragment containing the nucleotide sequence shown as SEQ ID No.3 is introduced into pET-28c plasmid to obtain pET-28c-mPD-1 recombinant plasmid.
Of course, the method further comprises the steps of verifying whether the target expression fragment is correctly introduced into the expression empty vector and performing scale-up culture on the recombinant expression vector into which the target expression fragment has been correctly inserted, after the target expression fragment is introduced into the expression empty vector. Specifically, the means for verifying whether the expression fragment of interest is correctly introduced into the expression empty vector includes colony resistance screening or sequencing.
Step S120: and transforming the recombinant expression vector into a host to obtain the recombinant bacteria for expressing the PD-1 antibody, wherein the host is attenuated salmonella typhimurium or escherichia coli Nissle 1917.
Preferably, the attenuated salmonella typhimurium is attenuated salmonella typhimurium VNP 20009.
In one embodiment, the recombinant expression vector is transformed into attenuated Salmonella typhimurium by electroporation. Specifically, a 0.1cm electric rotating cup is adopted, and the recombinant expression vector is electrically rotated into the sensitive attenuated salmonella typhimurium VNP20009 under the conditions of 1.8kV, 200 omega, 25 muF and 4.7 ms; then screening positive clones through ampicillin resistance to obtain recombinant bacteria expressing the PD-1 antibody.
Further, the Abvec-Igk-hPD-1 recombinant plasmid, the Abvec-Igk-mPD-1 recombinant plasmid and the pET-28c-mPD-1 recombinant plasmid are respectively electrically transferred into a competent attenuated Salmonella typhimurium VNP 20009; then screening positive clones through ampicillin resistance to obtain three recombinant bacteria expressing PD-1 antibodies.
In one embodiment, the preparation of competent attenuated salmonella typhimurium VNP20009 comprises: the attenuated salmonella typhimurium VNP20009 is streaked and inoculated to an LB plate without resistance and cultured overnight at 37 ℃; picking a single colony in 5mL LB culture medium, and carrying out shake culture at 37 ℃ for 12 h; inoculating the strain into 100mL LB culture medium according to the proportion of 1:100, and performing shaking culture until the OD value of bacteria is 0.4; ice-cooling for 20min, and centrifuging at 4 deg.C and 3000rpm for 10 min; washing thallus precipitate twice with 1/10 volume pre-cooled sterile deionized water, centrifuging at 4 deg.C and 3000rpm for 10 min; washing thallus with 1/100 volume precooled 10% glycerol, centrifuging at 4 deg.C and 3000rpm for 10 min; the pellet was resuspended in 1/100 volumes of pre-cooled 10% glycerol to give a competent attenuated Salmonella typhimurium VNP 20009.
In one example, the recombinant expression vector is transformed into E.coli Nissle1917 by heat shock transformation. Specifically, the recombinant expression vector and competent Escherichia coli Nissle1917 are mixed and iced for 30min, heat shock is carried out for 60s at 42 ℃, and iced for 2 min; then positive clones are screened out through kanamycin resistance, and recombinant bacteria expressing the PD-1 antibody are obtained. Further, the pET-28c-mPD-1 recombinant plasmid and competent Escherichia coli Nissle1917 are mixed and iced for 30min, heat shock is carried out for 60s at 42 ℃, and iced for 2 min; then positive clones are screened out through kanamycin resistance, and recombinant bacteria expressing the PD-1 antibody are obtained.
Further, competent E.coli Nissle1917 was prepared by the following method: coli Nissle1917 was streaked on a non-resistant LB plate and cultured overnight at 37 ℃; selecting a single colony, inoculating the single colony in 5mL LB culture medium, and carrying out shaking culture at 37 ℃ for 12 h; inoculating the strain into 100mL LB culture medium according to the proportion of 1:100, and performing shaking culture until the OD value of bacteria is 0.4; ice-cooling for 30min, and centrifuging at 4 deg.C and 5000rpm for 10 min; the thalli sediment is pre-cooled with 1/10 volumes of 0.1M CaCl2Resuspending, washing for 1 time after ice bath for 20min, and centrifuging at 4 deg.C and 5000rpm for 10 min; resuspending the pellet in 1/100 volume of precooled CaCl-0.1M2In 10% glycerol, a competent E.coli Nissle1917 was obtained.
Of course, in other embodiments, other transformation means commonly used in the art may be used to transform the recombinant expression vector into competent attenuated salmonella typhimurium.
The construction method of the recombinant bacteria for expressing the PD-1 antibody is simple, convenient and easy to operate, and is suitable for industrial production. In addition, the construction method of the recombinant bacteria for expressing the PD-1 antibody adopts attenuated salmonella typhimurium VNP20009 to mediate eukaryotic and prokaryotic plasmid transfected cells to realize eukaryotic and prokaryotic expression, and adopts escherichia coli Nissle1917 to mediate prokaryotic plasmid transfected cells to realize prokaryotic expression.
The recombinant bacterium for expressing the PD-1 antibody or the recombinant bacterium for expressing the PD-1 antibody prepared by the construction method can be applied to the preparation of antitumor drugs.
An anti-tumor drug, which comprises the recombinant bacterium expressing the PD-1 antibody or the recombinant bacterium expressing the PD-1 antibody prepared by the construction method of the recombinant bacterium expressing the PD-1 antibody.
The anti-tumor drug comprises the recombinant bacterium expressing the PD-1 antibody, and the hPD-1 antibody or mPD-1 antibody is expressed by the recombinant bacterium expressing the PD-1 antibody at a solid tumor and is combined with PD-1 of a T cell, so that the combination of PD-L1 in the tumor cell and PD-1 of the T cell is blocked, and the effect of gathering at the tumor to kill the tumor cell is further realized. The anti-tumor medicament can kill tumor cells specifically and in a targeted manner, simultaneously reduces the damage of the tumor cells to normal cells of an organism, and has good anti-tumor effect.
DETAILED DESCRIPTION OF EMBODIMENT (S) OF INVENTION
The experimental methods without specific conditions in the examples are realized according to conventional conditions, such as the conditions described in documents and books or the methods recommended by manufacturers, the original plasmids pet28c, E.coli DH5 α, Escherichia coli Nissle1917, restriction enzymes, T4DNA ligase, LB solid medium and liquid medium used in the following experiments are all conventional biochemical experimental materials and are all purchased from the market, and the Abvec-Igk plasmid can be prepared according to the prior art.
Example 1
(1) Obtaining the target expression fragment:
using pUC57-hPD-1 plasmid containing humanized hPD-1 sequence as template, nucleotide sequences shown in SEQ ID No.6 and SEQ ID No.7 as primers, and obtaining the target expression fragment shown in SEQ ID No.1 by PCR amplification: Age-I-hPD-1-Hind III fragment.
Using pUC57-mPD-1 plasmid containing murine mPD-1 as a template, using nucleotide sequences shown as SEQ ID No.8 and SEQ ID No.9 as primers, and carrying out PCR amplification to obtain a target expression fragment shown as SEQ ID No. 2; Age-I-mPD-1-Hind III fragment.
Using pUC57-mPD-1 plasmid containing murine mPD-1 as a template, using nucleotide sequences shown as SEQ ID No.10 and SEQ ID No.11 as primers, and carrying out PCR amplification to obtain a target expression fragment shown as SEQ ID No. 3: nco I-mPD-1-Xho I fragment.
(2) Construction of recombinant expression vectors:
and (2) carrying out double digestion on the Age-I-hPD-1-Hind III fragment obtained in the step (1) and the Abvec-Igk plasmid (SEQ ID No.4) by Age I and Hind III respectively, purifying double digestion products, and then connecting the double digestion products by using T4 ligase to obtain a recombinant expression vector Abvec-Igk-hPD-1 or a recombinant plasmid Abvec-Igk-hPD-1. The structural schematic diagram of the recombinant plasmid Abvec-Igk-hPD-1 is shown in FIG. 1.
And (2) carrying out double enzyme digestion on the Age-I-mPD-1-Hind III fragment and the Abvec-Igk plasmid obtained in the step (1) respectively through Age I and Hind III, purifying double enzyme digestion products, and then connecting the double enzyme digestion products by adopting T4 ligase to obtain a recombinant expression vector Abvec-Igk-mPD-1, or called a recombinant plasmid Abvec-Igk-mPD-1. The structural schematic diagram of the recombinant plasmid Abvec-Igk-mPD-1 is shown in FIG. 1.
The Nco I-mPD-1-Xho I fragment obtained in the step (1) and pET-28c (SEQ ID No.5) are subjected to double enzyme digestion by Nco I and Xho I respectively, and after the double enzyme digestion products are purified, T4 ligase is adopted for connection to obtain a recombinant expression vector pET-28c-mPD-1 or recombinant plasmid pET-28 c-mPD-1. The structural schematic diagram of the recombinant plasmid pET-28c-mPD-1 is shown in figure 1.
(3) And (3) competent preparation:
the attenuated salmonella typhimurium VNP20009 preserved at-80 ℃ is streaked and inoculated to an LB plate without resistance and cultured overnight at 37 ℃; picking a single colony in 5mL LB, and carrying out shake culture at 37 ℃ for 12 h; according to the following steps: inoculating 100 proportion of the strain in 100mL LB, and performing shaking culture until the OD of the bacteria is about 0.4; after ice-bath for 20min, centrifuging at 4 ℃ and 5000rpm for 10 min; washing thallus precipitate twice with 1/10 volume of precooled sterile deionized water, and centrifuging at 4 ℃ and 5000rpm for 10 min; washing thallus with 1/100 volume precooled 10% glycerol, centrifuging at 4 deg.C and 5000rpm for 10 min; and (3) suspending the thallus precipitate in 1/100 volume of precooled 10% glycerol to obtain competent attenuated salmonella typhimurium VNP20009, and keeping the competent attenuated salmonella typhimurium at-80 ℃ for later use after subpackaging.
Escherichia coli Nissle1917 stored at-80 ℃ is streaked and inoculated on an LB plate without resistance, and cultured overnight at 37 ℃; picking a single colony in 5mL LB, and carrying out shake culture at 37 ℃ for 12 h; according to the following steps: inoculating 100 proportion of the strain in 100mL LB, and performing shaking culture until the OD of the bacteria is about 0.4; after ice-cooling for 30min, centrifuging at 5000rpm for 10mi at 4 DEG Cn; the thalli sediment is pre-cooled with 1/10 volumes of 0.1M CaCl2Resuspending, washing for 1 time after ice bath for 20min, centrifuging for 10min at 4 ℃ and 5000 rpm; resuspending the pellet in 1/100 volume of precooled CaCl-0.1M2In 10% glycerol, making into competent Escherichia coli Nissle1917, subpackaging, and keeping at-80 deg.C for use.
(4) Transformation and screening:
and (3) respectively electrotransfering the recombinant plasmid Abvec-Igk-hPD-1, the recombinant plasmid Abvec-Igk-mPD-1 and the recombinant plasmid pET-28c-mPD-1 obtained in the step (2) into competent attenuated salmonella typhimurium VNP20009 by adopting a 0.1cm electrotransfer cup, wherein the electrotransfer conditions are as follows: 1.8kv 200 omega 25 muF, 4.7ms of electric conversion; then screening out positive clones through ampicillin and kanamycin resistance to obtain three recombinant attenuated salmonella typhimurium VNP 20009. The three recombinant attenuated salmonella typhimurium VNP20009 are correspondingly named as Abvec-Igk-hPD-1-VNP20009, Abvec-Igk-mPD-1-VNP20009 and pET-28c-mP D-1-VNP 20009.
Transforming the recombinant plasmid pET-28c-mPD-1 obtained in the step (2) into competent Escherichia coli Nissle1917, and carrying out the following conditions: ice-cooling for 30min, and then 60s at 42 ℃ for 2 min; positive clones were screened for kanamycin resistance to obtain recombinant E.coli Nissle1917, which was designated pET-28c-mPD-1-Nissle 1917.
(5) And (3) effect testing:
human cervical carcinoma HeLa cells (2X 10)7/mL) of the compound is dissolved in PBS solution, and is injected into vaginal submucosa of a unbl-c nude mouse close to the cervix, 25 mu L of each mouse, and the injection is continued for 7 days, so as to obtain a mouse cervical cancer model. Mouse melanoma B16F10 cells were inoculated subcutaneously into C57BL/6 mice to obtain melanoma model mice.
The cervical cancer Model mice were randomly and equally divided into 3 groups of 10 mice each, and named Model group, VNP20009 group and Abvec-Igk-hPD-1-VNP20009 group. Then the attenuated Salmonella typhimurium VNP20009 and the Abvec-Igk-hPD-1-VNP20009 obtained in the step (4) are respectively passed through the tail vein at 1 × 105The injection amount of CFU was injected into the cervical cancer Model mice of the corresponding group, wherein the Model group was a blank control using physiological saline as an injection. Treatment of groups of cervical cancer model mice every three daysThe tumor volume of the cervical cancer model mouse was measured once every 3 days, and the tumor was taken out of the cervical cancer model mouse after the end of the experiment (or the death of the mouse) and the diameter was measured and weighed, and the results are shown in fig. 2. In FIG. 2, the abscissa is time (day) and the ordinate is tumor volume (mm)3)。
Melanoma Model mice were randomly divided equally into 5 groups of 10 mice each, and named Model group, VNP20009 group, Abvec-Igk-mPD-1-VNP20009 group, pET-28c-mPD-1-VNP20009 group, and pET-28c-mPD-1-Nissle1917 group. Attenuated Salmonella typhimurium VNP20009, Abvec-Igk-mPD-1-VNP20009 obtained in step (4), pET-28c-mPD-1-VNP20009 and pET-28c-mPD-1-Nissle1917 were introduced through the tail vein at 1X 105The injection amount of CFU was injected into melanoma Model mice of the corresponding group, wherein the Model group was a blank control with saline as an injection. Treatment of each group of melanoma model mice was performed every three days, and the tumor volume of the melanoma model mice was measured every 3 days, and after the experiment was completed (or the mice died), the tumors were removed from the mice and measured for diameter and weighed, and the results are shown in fig. 3. In FIG. 3, the abscissa is time (day) and the ordinate is tumor volume (mm)3)
As shown in FIG. 2, Abvec-Igk-hPD-1-VNP20009 has significant inhibition on the growth of cervical cancer cells.
As shown in FIG. 3, Abvec-Igk-mPD-1-VNP20009, pET-28c-mPD-1-VNP20009 and pET-28c-mPD-1-Nissle1917 have obvious inhibition on the growth of melanoma cells.
The technical features of the embodiments described above may be arbitrarily combined, and for the sake of brevity, all possible combinations of the technical features in the embodiments described above are not described, but should be considered as being within the scope of the present specification as long as there is no contradiction between the combinations of the technical features.
The above-mentioned embodiments only express several embodiments of the present invention, and the description thereof is more specific and detailed, but not construed as limiting the scope of the invention. It should be noted that, for a person skilled in the art, several variations and modifications can be made without departing from the inventive concept, which falls within the scope of the present invention. Therefore, the protection scope of the present patent shall be subject to the appended claims.
Sequence listing
<110> Shenzhen Shenzhu Biotechnology Limited
<120> recombinant bacterium expressing PD-1 antibody, and construction method and application thereof
<160>11
<170>SIPOSequenceListing 1.0
<210>1
<211>807
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>1
accggtcacc atcatcatca tcattcttct ggtgagaacc tgtacttcca aggtgctagc 60
gaactggtgg taactcaaga accgtctctg accgtgtctc caggtggcac cgtcactctg 120
acctgtggtt ctagcactgg tgcagtcacc agcggtaact atccgagctg gccgcaacag 180
aaaccagcac aggctccgcg tccactgatc tacactacca ctaacaaaca ctcttggacc 240
ccagctcagt tctctggctc tctgctcggt ggcaaagctg tactgactct gtctggtgtt 300
cagccagaag acgaagctga ctattactgc cgtctgttct atggtggtcc gtgggtcttt 360
ggtggcggta ctcagctgac cgacctgggt ggtggctctt ctcgtagctc cgaagttcag 420
ctgctggaat ctggtcgtgg cctggtacag ccaggtggct ctctgcgtct gtcttgtgca 480
gcttctggct tcaccttcag cagctatgct accaactggg tacgtcaggc tccaggtaaa 540
ggtctggagt gggtctctct gatctctggt agcggtggtt ctaccttcta cgcagactct 600
gtgaaagacc gttacaccat ctctcgtgac aactccaaga acacggtgta tctgcagatg 660
aacagcctgc gtgatgaaga cactgcagtc tattactgtg cacgtgtgtc tccgttcgac 720
tacggtgctg attattgggg tcaaggtact ctggtcaccg tcagctctgc atctactcag 780
tctccatctg tcactagctg aaagctt 807
<210>2
<211>768
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>2
accggttatg agctgactca gccaccttca gcatcagtca atgtaggaga gactgtcaaa 60
atcacctgct ctggggacca attgccgaaa tattttgcag attggtttca tcaaaggtca 120
gaccagacca ttttgcaagt gatatatgat gataataagc gcccctcggg gatccctgaa 180
agaatctctg ggtccagctc agggacaaca gccaccttga ccatcagaga tgtccgggct 240
gaggatgaag gtgactatta ctgtatctca ggatatgttg atagtgatag caaattgtat 300
gtttttggca gcggaaccca gctcaccgtc ctaggttgtg gctgcggcgg aggcggaagc 360
ggaggcggat gtggctgctc atccgtcact gtccaaaccg ggcaaggttg gttcgatctg 420
tctccctatg gaagcggaga tagatcatgt tactatactg ccacggacga gactagactg 480
aacaacatgc aactgtacgt tatgagccga tccgatgata gatccatcac cttcagaggc 540
aaagtgtcgg gttcgtacta tactgcatat aattatagta aaacgtacat acacgctgtt 600
tgggagctgg ggaaggggcc agctcagcgc gtctggagca tgttctatga cagtttcacc 660
ttcggatctg ccgtgtgttc cctcaaactg tcagggcagc ctaaggtgtt aggaggaggt 720
tctgagctgc ttcgggtgga gcatcatcac catcaccatt aaatgctt 768
<210>3
<211>747
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>3
atggagtatg agctgactca gccaccttca gcatcagtca atgtaggaga gactgtcaaa 60
atcacctgct ctggggacca attgccgaaa tattttgcag attggtttca tcaaaggtca 120
gaccagacca ttttgcaagt gatatatgat gataataagc gcccctcggg gatccctgaa 180
agaatctctg ggtccagctc agggacaaca gccaccttga ccatcagaga tgtccgggct 240
gaggatgaag gtgactatta ctgtttctca ggatatgttg atagtgatag caaattgtat 300
gtttttggca gcggaaccca gctcaccgtc ctaggttgtg gctgcggcgg aggcggaagc 360
ggaggcggat gtggctgctc atccgtcact gtccaaaccg ggcaaggttg gttcgatctg 420
tctccctatg gaagcggaga tagaacatgt tactatactg ccacggacga gactagactg 480
aacaacatgc aactgtacgt catgagccga tccgatgata gatccatcac cttcagaggc 540
aaagtgtcgg gttcgtacta tactgcatat aattatagta aaacgtacat acacgctgtt 600
tgggagctgg ggaaggggcc agctcagcgc gtctggagca tgttctatga cagtttcacc 660
ttcggatctg ccgtgtgttc cctcaaactg tcaggggagc ctaaggtgtt aggaggaggt 720
tctgagctgc ttcgggtgga gctcgag 747
<210>4
<211>4119
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>4
ttcgagctcg cccgacattg attattgact agttattaat agtaatcaat tacggggtca 60
ttagttcata gcccatatat ggagttccgc gttacataac ttacggtaaa tggcccgcct 120
ggctgaccgc ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta 180
acgccaatag ggactttcca ttgacgtcaa tgggtggagt atttacggta aactgcccac 240
ttggcagtac atcaagtgta tcatatgcca agtacgcccc ctattgacgt caatgacggt 300
aaatggcccg cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag 360
tacatctacg tattagtcat cgctattacc atggtgatgc ggttttggca gtacatcaat 420
gggcgtggat agcggtttga ctcacgggga tttccaagtc tccaccccat tgacgtcaat 480
gggagtttgt tttggcacca aaatcaacgg gactttccaa aatgtcgtaa caactccgcc 540
ccattgacgc aaatgggcgg taggcgtgta cggtgggagg tctatataag cagagctcgt 600
ttagtgaacc gtcagatcgc ctggagacgc catccacgct gttttgacct ccatagaaga 660
caccgggacc gatccagcct ccgcggccgg gaacggtgca ttggaacgcg gattccccgt 720
gccaagagtg acgtaagtac cgcctataga gtctataggc ccaccccctt ggcttcgtta 780
gaacgcggct acaattaata cataacctta tgtatcatac acatacgatt taggtgacac 840
tatagaataa catccacttt gcctttctct ccacaggtgt ccactcccag gtccaactgc 900
acctcggttc tatcgattga attccaccat gggatggtca tgtatcatcc tttttctagt 960
agcaactgca accggtgtac actcgagcgt acggtggctg caccatctgt cttcatcttc 1020
ccgccatctg atgagcagtt gaaatctgga actgcctctg ttgtgtgcct gctgaataac 1080
ttctatccca gagaggccaa agtacagtgg aaggtggata acgccctcca atcgggtaac 1140
tcccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct cagcagcacc 1200
ctgacgctga gcaaagcaga ctacgagaaa cacaaagtct acgcctgcga agtcacccat 1260
cagggcctga gctcgcccgt cacaaagagc ttcaacaggg gagagtgtta gaagcttggc 1320
cgccatggcc caacttgttt attgcagctt ataatggtta caaataaagc aatagcatca 1380
caaatttcac aaataaagca tttttttcac tgcattctag ttgtggtttg tccaaactca 1440
tcaatgtatc ttatcatgtc tggatcgatc gggaattaat tcggcgcagc accatggcct 1500
gaaataacct ctgaaagagg aacttggtta ggtaccttct gaggcggaaa gaaccagctg 1560
tggaatgtgt gtcagttagg gtgtggaaag tccccaggct ccccagcagg cagaagtatg 1620
caaagcatgc atctcaatta gtcagcaacc aggtgtggaa agtccccagg ctccccagca 1680
ggcagaagta tgcaaagcat gcatctcaat tagtcagcaa ccatagtccc gcccctaact 1740
ccgcccatcc cgcccctaac tccgcccagt tccgcccatt ctccgcccca tggctgacta 1800
atttttttta tttatgcaga ggccgaggcc gcctcggcct ctgagctatt ccagaagtag 1860
tgaggaggct tttttggagg cctaggcttt tgcaaaaagc tgttaacagc ttggcactgg 1920
ccgtcgtttt acaacgtcgt gactgggaaa accctggcgt tacccaactt aatcgccttg 1980
cagcacatcc ccccttcgcc agctggcgta atagcgaaga ggcccgcacc gatcgccctt 2040
cccaacagtt gcgtagcctg aatggcgaat ggcgcctgat gcggtatttt ctccttacgc 2100
atctgtgcgg tatttcacac cgcatacgtc aaagcaacca tagtacgcgc cctgtagcgg 2160
cgcattaagc gcggcgggtg tggtggttac gcgcagcgtg accgctacac ttgccagcgc 2220
cctagcgccc gctcctttcg ctttcttccc ttcctttctc gccacgttcg ccggctttcc 2280
ccgtcaagct ctaaatcggg ggctcccttt agggttccga tttagtgctt tacggcacct 2340
cgaccccaaa aaacttgatt tgggtgatgg ttcacgtagt gggccatcgc cctgatagac 2400
ggtttttcgc cctttgacgt tggagtccac gttctttaat agtggactct tgttccaaac 2460
tggaacaaca ctcaacccta tctcgggcta ttcttttgat ttataaggga ttttgccgat 2520
ttcggcctat tggttaaaaa atgagctgat ttaacaaaaa tttaacgcga attttaacaa 2580
aatattaacg tttacaattt tatggtgcac tctcagtaca atctgctctg atgccgcata 2640
gttaagccaa ctccgctatc gctacgtgac tgggtcatgg ctgcgccccg acacccgcca 2700
acacccgctg acgcgccctg acgggcttgt ctgctcccgg catccgctta cagacaagct 2760
gtgaccgtct ccgggagctg catgtgtcag aggttttcac cgtcatcacc gaaacgcgcg 2820
aggcagtatt cttgaagacg aaagggcctc gtgatacgcc tatttttata ggttaatgtc 2880
atgataataa tggtttctta gacgtcaggt ggcacttttc ggggaaatgt gcgcggaacc 2940
cctatttgtt tatttttcta aatacattca aatatgtatc cgctcatgag acaataaccc 3000
tgataaatgc ttcaataata ttgaaaaagg aagagtatga gtattcaaca tttccgtgtc 3060
gcccttattc ccttttttgc ggcattttgc cttcctgttt ttgctcaccc agaaacgctg 3120
gtgaaagtaa aagatgctga agatcagttg ggtgcacgag tgggttacat cgaactggat 3180
ctcaacagcg gtaagatcct tgagagtttt cgccccgaag aacgttttcc aatgatgagc 3240
acttttaaag ttctgctatg tggcgcggta ttatcccgtg atgacgccgg gcaagagcaa 3300
ctcggtcgcc gcatacacta ttctcagaat gacttggttg agtactcacc agtcacagaa 3360
aagcatctta cggatggcat gacagtaaga gaattatgca gtgctgccat aaccatgagt 3420
gataacactg cggccaactt acttctgaca acgatcggag gaccgaagga gctaaccgct 3480
tttttgcaca acatggggga tcatgtaact cgccttgatc gttgggaacc ggagctgaat 3540
gaagccatac caaacgacga gcgtgacacc acgatgccag cagcaatggc aacaacgttg 3600
cgcaaactat taactggcga actacttact ctagcttccc ggcaacaatt aatagactgg 3660
atggaggcgg ataaagttgc aggaccactt ctgcgctcgg cccttccggc tggctggttt 3720
attgctgata aatctggagc cggtgagcgt gggtctcgcg gtatcattgc agcactgggg 3780
ccagatggta agccctcccg tatcgtagtt atctacacga cggggagtca ggcaactatg 3840
gatgaacgaa atagacagat cgctgagata ggtgcctcac tgattaagca ttggtaactg 3900
tcagaccaag tttactcata tatactttag attgatttaa aacttcattt ttaatttaaa 3960
aggatctagg tgaagatcct ttttgataat ctcatgacca aaatccctta acgtgagttt 4020
tcgttccact gagcgtcaga ccccgtagaa aagatcaaag gatcttcttg agatcctttt 4080
tttctgcgcg taatctgctg cttgcaaaca aaaaaacca 4119
<210>5
<211>5367
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>5
atccggatat agttcctcct ttcagcaaaa aacccctcaa gacccgttta gaggccccaa 60
ggggttatgc tagttattgc tcagcggtgg cagcagccaa ctcagcttcc tttcgggctt 120
tgttagcagc cggatctcag tggtggtggt ggtggtgctc gagtgcggcc gcaagcttgt 180
cgacggagct cgaattcgga tccgacccat ttgctgtcca ccagtcatgc tagccatatg 240
gctgccgcgc ggcaccaggc cgctgctgtg atgatgatga tgatggctgc tgcccatggt 300
atatctcctt cttaaagtta aacaaaatta tttctagagg ggaattgtta tccgctcaca 360
attcccctat agtgagtcgt attaatttcg cgggatcgag atctcgatcc tctacgccgg 420
acgcatcgtg gccggcatca ccggcgccac aggtgcggtt gctggcgcct atatcgccga 480
catcaccgat ggggaagatc gggctcgcca cttcgggctc atgagcgctt gtttcggcgt 540
gggtatggtg gcaggccccg tggccggggg actgttgggc gccatctcct tgcatgcacc 600
attccttgcg gcggcggtgc tcaacggcct caacctacta ctgggctgct tcctaatgca 660
ggagtcgcat aagggagagc gtcgagatcc cggacaccat cgaatggcgc aaaacctttc 720
gcggtatggc atgatagcgc ccggaagaga gtcaattcag ggtggtgaat gtgaaaccag 780
taacgttata cgatgtcgca gagtatgccg gtgtctctta tcagaccgtt tcccgcgtgg 840
tgaaccaggc cagccacgtt tctgcgaaaa cgcgggaaaa agtggaagcg gcgatggcgg 900
agctgaatta cattcccaac cgcgtggcac aacaactggc gggcaaacag tcgttgctga 960
ttggcgttgc cacctccagt ctggccctgc acgcgccgtc gcaaattgtc gcggcgatta 1020
aatctcgcgc cgatcaactg ggtgccagcg tggtggtgtc gatggtagaa cgaagcggcg 1080
tcgaagcctg taaagcggcg gtgcacaatc ttctcgcgca acgcgtcagt gggctgatca 1140
ttaactatcc gctggatgac caggatgcca ttgctgtgga agctgcctgc actaatgttc 1200
cggcgttatt tcttgatgtc tctgaccaga cacccatcaa cagtattatt ttctcccatg 1260
aagacggtac gcgactgggc gtggagcatc tggtcgcatt gggtcaccag caaatcgcgc 1320
tgttagcggg cccattaagt tctgtctcgg cgcgtctgcg tctggctggc tggcataaat 1380
atctcactcg caatcaaatt cagccgatag cggaacggga aggcgactgg agtgccatgt 1440
ccggttttca acaaaccatg caaatgctga atgagggcat cgttcccact gcgatgctgg 1500
ttgccaacga tcagatggcg ctgggcgcaa tgcgcgccat taccgagtcc gggctgcgcg 1560
ttggtgcgga tatctcggta gtgggatacg acgataccga agacagctca tgttatatcc 1620
cgccgttaac caccatcaaa caggattttc gcctgctggg gcaaaccagc gtggaccgct 1680
tgctgcaact ctctcagggc caggcggtga agggcaatca gctgttgccc gtctcactgg 1740
tgaaaagaaa aaccaccctg gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg 1800
attcattaat gcagctggca cgacaggttt cccgactgga aagcgggcag tgagcgcaac 1860
gcaattaatg taagttagct cactcattag gcaccgggat ctcgaccgat gcccttgaga 1920
gccttcaacc cagtcagctc cttccggtgg gcgcggggca tgactatcgt cgccgcactt 1980
atgactgtct tctttatcat gcaactcgta ggacaggtgc cggcagcgct ctgggtcatt 2040
ttcggcgagg accgctttcg ctggagcgcg acgatgatcg gcctgtcgct tgcggtattc 2100
ggaatcttgc acgccctcgc tcaagccttc gtcactggtc ccgccaccaa acgtttcggc 2160
gagaagcagg ccattatcgc cggcatggcg gccccacggg tgcgcatgat cgtgctcctg 2220
tcgttgagga cccggctagg ctggcggggt tgccttactg gttagcagaa tgaatcaccg 2280
atacgcgagc gaacgtgaag cgactgctgc tgcaaaacgt ctgcgacctg agcaacaaca 2340
tgaatggtct tcggtttccg tgtttcgtaa agtctggaaa cgcggaagtc agcgccctgc 2400
accattatgt tccggatctg catcgcagga tgctgctggc taccctgtgg aacacctaca 2460
tctgtattaa cgaagcgctg gcattgaccc tgagtgattt ttctctggtc ccgccgcatc 2520
cataccgcca gttgtttacc ctcacaacgt tccagtaacc gggcatgttc atcatcagta 2580
acccgtatcg tgagcatcct ctctcgtttc atcggtatca ttacccccat gaacagaaat 2640
cccccttaca cggaggcatc agtgaccaaa caggaaaaaa ccgcccttaa catggcccgc 2700
tttatcagaa gccagacatt aacgcttctg gagaaactca acgagctgga cgcggatgaa 2760
caggcagaca tctgtgaatc gcttcacgac cacgctgatg agctttaccg cagctgcctc 2820
gcgcgtttcg gtgatgacgg tgaaaacctc tgacacatgc agctcccgga gacggtcaca 2880
gcttgtctgt aagcggatgc cgggagcaga caagcccgtc agggcgcgtc agcgggtgtt 2940
ggcgggtgtc ggggcgcagc catgacccag tcacgtagcg atagcggagt gtatactggc 3000
ttaactatgc ggcatcagag cagattgtac tgagagtgca ccatatatgc ggtgtgaaat 3060
accgcacaga tgcgtaagga gaaaataccg catcaggcgc tcttccgctt cctcgctcac 3120
tgactcgctg cgctcggtcg ttcggctgcg gcgagcggta tcagctcact caaaggcggt 3180
aatacggtta tccacagaat caggggataa cgcaggaaag aacatgtgag caaaaggcca 3240
gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg tttttccata ggctccgccc 3300
ccctgacgag catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact 3360
ataaagatac caggcgtttc cccctggaag ctccctcgtg cgctctcctg ttccgaccct 3420
gccgcttacc ggatacctgt ccgcctttct cccttcggga agcgtggcgc tttctcatag 3480
ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca 3540
cgaacccccc gttcagcccg accgctgcgc cttatccggt aactatcgtc ttgagtccaa 3600
cccggtaaga cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc 3660
gaggtatgta ggcggtgcta cagagttctt gaagtggtgg cctaactacg gctacactag 3720
aaggacagta tttggtatct gcgctctgct gaagccagtt accttcggaa aaagagttgg 3780
tagctcttga tccggcaaac aaaccaccgc tggtagcggt ggtttttttg tttgcaagca 3840
gcagattacg cgcagaaaaa aaggatctca agaagatcct ttgatctttt ctacggggtc 3900
tgacgctcag tggaacgaaa actcacgtta agggattttg gtcatgaaca ataaaactgt 3960
ctgcttacat aaacagtaat acaaggggtg ttatgagcca tattcaacgg gaaacgtctt 4020
gctctaggcc gcgattaaat tccaacatgg atgctgattt atatgggtat aaatgggctc 4080
gcgataatgt cgggcaatca ggtgcgacaa tctatcgatt gtatgggaag cccgatgcgc 4140
cagagttgtt tctgaaacat ggcaaaggta gcgttgccaa tgatgttaca gatgagatgg 4200
tcagactaaa ctggctgacg gaatttatgc ctcttccgac catcaagcat tttatccgta 4260
ctcctgatga tgcatggtta ctcaccactg cgatccccgg gaaaacagca ttccaggtat 4320
tagaagaata tcctgattca ggtgaaaata ttgttgatgc gctggcagtg ttcctgcgcc 4380
ggttgcattc gattcctgtt tgtaattgtc cttttaacag cgatcgcgta tttcgtctcg 4440
ctcaggcgca atcacgaatg aataacggtt tggttgatgc gagtgatttt gatgacgagc 4500
gtaatggctg gcctgttgaa caagtctgga aagaaatgca taaacttttg ccattctcac 4560
cggattcagt cgtcactcat ggtgatttct cacttgataa ccttattttt gacgagggga 4620
aattaatagg ttgtattgat gttggacgag tcggaatcgc agaccgatac caggatcttg 4680
ccatcctatg gaactgcctc ggtgagtttt ctccttcatt acagaaacgg ctttttcaaa 4740
aatatggtat tgataatcct gatatgaata aattgcagtt tcatttgatg ctcgatgagt 4800
ttttctaaga attaattcat gagcggatac atatttgaat gtatttagaa aaataaacaa 4860
ataggggttc cgcgcacatt tccccgaaaa gtgccacctg aaattgtaaa cgttaatatt 4920
ttgttaaaat tcgcgttaaa tttttgttaa atcagctcat tttttaacca ataggccgaa 4980
atcggcaaaa tcccttataa atcaaaagaa tagaccgaga tagggttgag tgttgttcca 5040
gtttggaaca agagtccact attaaagaac gtggactcca acgtcaaagg gcgaaaaacc 5100
gtctatcagg gcgatggccc actacgtgaa ccatcaccct aatcaagttt tttggggtcg 5160
aggtgccgta aagcactaaa tcggaaccct aaagggagcc cccgatttag agcttgacgg 5220
ggaaagccgg cgaacgtggc gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg 5280
gcgctggcaa gtgtagcggt cacgctgcgc gtaaccacca cacccgccgc gcttaatgcg 5340
ccgctacagg gcgcgtccca ttcgcca 5367
<210>6
<211>28
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>6
cttcaccggt caccatcatc atcatcat 28
<210>7
<211>28
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>7
tgcgaagctt tcagctagtg acagatgg 28
<210>8
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>8
cttcaccggt tatgagctga ctcag 25
<210>9
<211>46
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>9
tattaagctt ttaatggtga tggtgatgat gctccacccg aagcag 46
<210>10
<211>27
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>10
cttcccatgg agtatgagct gactcag 27
<210>11
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>11
tattctcgag ctccacccga agcag 25

Claims (13)

1. A recombinant bacterium expressing a PD-1 antibody, which is obtained by transforming a recombinant expression vector expressing the PD-1 antibody into attenuated Salmonella typhimurium or Escherichia coli Nissle 1917.
2. The recombinant bacterium expressing a PD-1 antibody according to claim 1, wherein said attenuated salmonella typhimurium is attenuated salmonella typhimurium VNP 20009.
3. The recombinant bacterium expressing a PD-1 antibody according to claim 1 or 2, characterized in that said recombinant expression vector expressing a PD-1 antibody comprises an expression fragment of interest, said expression fragment of interest containing the nucleotide sequence shown as SEQ ID No.1, or said expression fragment of interest containing the nucleotide sequence shown as SEQ ID No.2, or said expression fragment of interest containing the nucleotide sequence shown as SEQ ID No. 3.
4. A method for constructing a recombinant bacterium expressing a PD-1 antibody, comprising the steps of:
introducing a target expression fragment containing a nucleotide sequence for encoding the PD-1 antibody into an expression empty vector to obtain a recombinant expression vector; and
and transforming the recombinant expression vector into a host to obtain the recombinant bacteria for expressing the PD-1 antibody, wherein the host is attenuated salmonella typhimurium or escherichia coli Nissle 1917.
5. The method of claim 4, wherein the attenuated Salmonella typhimurium is attenuated Salmonella typhimurium VNP 20009.
6. The method for constructing the recombinant bacterium expressing the PD-1 antibody according to claim 4, characterized in that the expression fragment of interest contains a nucleotide sequence shown as SEQ ID No.1, or the expression fragment of interest contains a nucleotide sequence shown as SEQ ID No.2, or the expression fragment of interest contains a nucleotide sequence shown as SEQ ID No. 3.
7. The method of claim 6, further comprising a step of preparing the expression fragment of interest, wherein the step of preparing the expression fragment of interest comprises:
using pUC57-hPD-1 as a template, and carrying out PCR amplification to obtain a target expression fragment containing a nucleotide sequence shown as SEQ ID No. 1; or
And using pUC57-mPD-1 as a template, and carrying out PCR amplification to obtain a target expression fragment containing the nucleotide sequence shown as SEQ ID No.2 or a target expression fragment containing the nucleotide sequence shown as SEQ ID No. 3.
8. The method for constructing a recombinant bacterium that expresses a PD-1 antibody according to claim 7, wherein in the step of obtaining a target expression fragment containing a nucleotide sequence represented by SEQ ID No.1, primers for PCR are represented by SEQ ID nos. 6 and 7; in the step of obtaining the target expression fragment containing the nucleotide sequence shown as SEQ ID No.2, the primers of PCR are shown as SEQ ID No.8 and SEQ ID No. 9; in the step of obtaining the target expression fragment containing the nucleotide sequence shown as SEQ ID No.3, the primers of PCR are shown as SEQ ID No.10 and SEQ ID No. 11.
9. The method for constructing recombinant bacteria expressing PD-1 antibody according to any one of claims 4 to 6, characterized in that the expression empty vector is an Abvec-Igk plasmid or a pET-28c plasmid.
10. The method for constructing the recombinant bacterium expressing the PD-1 antibody according to claim 4, characterized in that the target expression fragment contains a nucleotide sequence shown as SEQ ID No.1, or the target expression fragment contains a nucleotide sequence shown as SEQ ID No.2, the expression empty vector is an Abvec-Igk plasmid, and the host is attenuated Salmonella typhimurium.
11. Use of the recombinant bacterium expressing the PD-1 antibody according to any one of claims 1 to 3 or the recombinant bacterium expressing the PD-1 antibody according to any one of claims 4 to 10 in the preparation of an antitumor drug.
12. The use according to claim 11, wherein the tumor is melanoma, cervical cancer.
13. An antitumor agent comprising the recombinant bacterium expressing a PD-1 antibody according to any one of claims 1 to 3 or the recombinant bacterium expressing a PD-1 antibody produced by the method for constructing the recombinant bacterium expressing a PD-1 antibody according to any one of claims 4 to 10.
CN201911369182.9A 2019-12-26 2019-12-26 Recombinant bacterium for expressing PD-1 antibody and construction method and application thereof Pending CN110951663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911369182.9A CN110951663A (en) 2019-12-26 2019-12-26 Recombinant bacterium for expressing PD-1 antibody and construction method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911369182.9A CN110951663A (en) 2019-12-26 2019-12-26 Recombinant bacterium for expressing PD-1 antibody and construction method and application thereof

Publications (1)

Publication Number Publication Date
CN110951663A true CN110951663A (en) 2020-04-03

Family

ID=69984327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911369182.9A Pending CN110951663A (en) 2019-12-26 2019-12-26 Recombinant bacterium for expressing PD-1 antibody and construction method and application thereof

Country Status (1)

Country Link
CN (1) CN110951663A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196604A (en) * 2021-10-09 2022-03-18 上海交通大学医学院附属仁济医院 Double-modified engineered bacterium and application thereof
CN114522229A (en) * 2022-02-25 2022-05-24 南京大学 Attenuated salmonella and PD-1 antibody inhibitor combined medicine and application thereof in preparation of tumor treatment medicines
CN114736840A (en) * 2022-02-25 2022-07-12 江苏靶标生物医药研究所有限公司 Recombinant attenuated salmonella expressing anti-PD-L1 nano antibody and preparation method and application thereof
CN114736861A (en) * 2022-03-18 2022-07-12 江苏靶标生物医药研究所有限公司 Mononuclear or macrophage loaded with salmonella attenuated by secreting and expressing immune checkpoint nano antibody and preparation method and application thereof
CN114958698A (en) * 2022-02-25 2022-08-30 江苏靶标生物医药研究所有限公司 Attenuated salmonella recombinant engineering bacterium for expressing anti-PD 1 nano antibody and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017139366A1 (en) * 2016-02-09 2017-08-17 The General Hospital Corporation D/B/A Massachusetts General Hospital Methods and compositions relating to engineered microbial cells
CN108472352A (en) * 2016-01-22 2018-08-31 比得-C有限责任两合公司 Bacterium ghost use for cancer treatment
CN110234358A (en) * 2016-07-18 2019-09-13 昆士兰医学研究所理事会 The T cell immunotherapy of more virus-specifics
US10449237B1 (en) * 2014-09-18 2019-10-22 David Gordon Bermudes Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10449237B1 (en) * 2014-09-18 2019-10-22 David Gordon Bermudes Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity
CN108472352A (en) * 2016-01-22 2018-08-31 比得-C有限责任两合公司 Bacterium ghost use for cancer treatment
WO2017139366A1 (en) * 2016-02-09 2017-08-17 The General Hospital Corporation D/B/A Massachusetts General Hospital Methods and compositions relating to engineered microbial cells
CN110234358A (en) * 2016-07-18 2019-09-13 昆士兰医学研究所理事会 The T cell immunotherapy of more virus-specifics

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHINOHARA,T.,ET AL.: "NCBI Accession Q15116", 《NCBI PROTEIN》 *
ZHANG YX,ET AL: "NCBI Accession NP_032824", 《NCBI PROTEIN》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196604A (en) * 2021-10-09 2022-03-18 上海交通大学医学院附属仁济医院 Double-modified engineered bacterium and application thereof
CN114196604B (en) * 2021-10-09 2024-01-23 上海交通大学医学院附属仁济医院 Double-modified engineering bacteria and application thereof
CN114522229A (en) * 2022-02-25 2022-05-24 南京大学 Attenuated salmonella and PD-1 antibody inhibitor combined medicine and application thereof in preparation of tumor treatment medicines
CN114736840A (en) * 2022-02-25 2022-07-12 江苏靶标生物医药研究所有限公司 Recombinant attenuated salmonella expressing anti-PD-L1 nano antibody and preparation method and application thereof
CN114958698A (en) * 2022-02-25 2022-08-30 江苏靶标生物医药研究所有限公司 Attenuated salmonella recombinant engineering bacterium for expressing anti-PD 1 nano antibody and preparation method and application thereof
CN114522229B (en) * 2022-02-25 2023-09-29 南京大学 Attenuated salmonella and PD-1 antibody inhibitor combined medicament and application thereof in preparation of medicaments for treating tumors
CN114736861A (en) * 2022-03-18 2022-07-12 江苏靶标生物医药研究所有限公司 Mononuclear or macrophage loaded with salmonella attenuated by secreting and expressing immune checkpoint nano antibody and preparation method and application thereof
CN114736861B (en) * 2022-03-18 2024-05-28 江苏靶标生物医药研究所有限公司 Mononuclear or macrophage loaded with immune checkpoint nano antibody attenuated salmonella and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN110951663A (en) Recombinant bacterium for expressing PD-1 antibody and construction method and application thereof
KR100564376B1 (en) Antibodies against human cd40
JP2023113885A (en) modified oncolytic virus
AU690802B2 (en) Activation of T-cells by modified, antigenic immunoglobulins
Yang et al. Transient subversion of CD40 ligand function diminishes immune responses to adenovirus vectors in mouse liver and lung tissues
CA2321161A1 (en) Compositions containing an ox-40 receptor binding agent or a nucleic acid encoding the same and methods for enhancing antigen-specific immune response
JP2852515B2 (en) Vector virus and medicinal composition containing vector virus
CN110845604B (en) African swine fever preventing and/or treating neutralizing antibody, preparation method and application thereof
US20160362474A1 (en) Immunoglobulin fusion proteins and uses thereof
WO2009061739A1 (en) Neutralization of hcv
CN111635913B (en) Construct and application thereof
CN109295098A (en) For knocking out the adeno-associated virus recombinant vector and its construction method and purposes of Egr3 gene
CA3065112A1 (en) Long-acting recombinant porcine fsh fusion protein, and preparation method and application thereof
CN111548411B (en) Monoclonal antibody for neutralizing EB virus and application thereof
CN108315351B (en) Mammalian cell expression vector for industrial production
Gardner et al. Production of anti-idiotypic antisera to rat GH antibodies capable of binding to GH receptors and increasing body weight gain in hypophysectomized rats
CN108727490A (en) A kind of monoclonal antibody ZK2B10 and application
JP2018537433A (en) CD200 inhibitor and method of use thereof
WO1990002757A1 (en) Heteropolymeric protein
CN111574621B (en) Monoclonal antibody for neutralizing EB virus and application thereof
KR102264535B1 (en) Recombinant expression vector for production of encapsulin-based vaccine and method for manufacturing the same
CN106929483A (en) Express structure and its application of the recombinant herpesvirus of turkeys of F gene of Newcastle disease virus
CN113943752A (en) Constructs, oncolytic viruses with improved sensitivity and uses thereof
JP2022536850A (en) Combination of hepatitis B virus (HBV) vaccine and anti-PD-1 or anti-PD-L1 antibody
CN108727489B (en) Monoclonal antibody ZK2C2 and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Chen Tingtao

Inventor before: Chen Tingtao

Inventor before: Wei Hong

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200403