CN110943617A - 一种双开关型dc/dc变换器电路拓扑结构 - Google Patents
一种双开关型dc/dc变换器电路拓扑结构 Download PDFInfo
- Publication number
- CN110943617A CN110943617A CN201911265335.5A CN201911265335A CN110943617A CN 110943617 A CN110943617 A CN 110943617A CN 201911265335 A CN201911265335 A CN 201911265335A CN 110943617 A CN110943617 A CN 110943617A
- Authority
- CN
- China
- Prior art keywords
- diode
- converter
- anode
- switch tube
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明一种双开关型DC/DC变换器电路拓扑结构,在工作过程中通过耦合电感原副边不同匝比设计,电容器C1和C2充放电以及漏感能量回收,在实现变换器高电压增益同时,降低变换器损耗,提高效率。另外,本发明电路结构相对简单,电路工作模式少,器件电压应力低,且能够实现耦合电感原副边能量以及漏感能量回馈,适用于光伏电池输出侧与微电网直流母线电压间升压变换器系统。
Description
技术领域
本发明属于高频开关变换器技术领域,具体涉及一种双开关型DC/DC变换器电路拓扑结构。
背景技术
随着社会不断进步以及经济快速发展,全球能源消耗正日益增加,化石能源存储量日益减少。除此以外由化石能源燃烧而产生的大气污染等环境问题已经开始影响人们日常生活,威胁人类生存安全及自然生态安全。随着科学技术的不断发展以及绿色环保等理念的不断普及,许多新型可再生清洁能源如风能、太阳能、生物质能已经可以被人类加以开发和利用,新能源技术正在迅速发展,逐渐取代着化石能源。除此以外,伴随着新能源发展,新能源所占比例日益增大,对系统储能单元有了更高要求和更广泛需求。
作为新能源、储能单元与能源系统进行能量交换的接口,电力电子装置在新能源的开发与利用中起着重要作用。就目前而言,在已经可以被人类利用的可再生能源,如光伏、燃料电池以及各种储能元件大多具有天然直流低输出电压特性。所以高增益DC/DC变换器作为可再生能源与能源系统接口装置,在微电网可再生能源分布式发电等系统中扮演着重要角色,其在光伏发电系统、燃料电池发电系统、不间断电源系统及储能系统等众多领域得到了广泛应用。但是目前DC/DC变流器在实现高增益时,存在损耗大,效率低、体积大等问题。
发明内容
本发明提供了一种能够实现变换器电压高增益要求,同时可以降低损耗,提高效率,减小设备体积的双开关型DC/DC变换器电路拓扑结构。
本发明一种双开关型DC/DC变换器电路拓扑结构,开关管S1、电容C3、输出滤波电感Lo和输出滤波电容Co串联连接到输入电源Vin正负极;功率开关管S2漏极连接到二极管D3阴极;功率开关管S2源极连接到二极管D4阳极;耦合电感原边电感分别连接功率开关管S1源极和二极管D1阳极;二极管D1阴极连接到输入电源Vin负极;耦合电感副边电感分别连接到二极管D4阴极和电容器C2;二极管D3阳极连接功率开关管S源极;二极管D4阴极连接到二极管D2阳极;二极管D2阴极连接到输入电源Vin负极;电容C1两端分别连接二极管D1阳极和二极管D2阳极;二极管D5阳极连接到输入电源Vin负极,阴极连接电容C3。
作为优选方案,所述双开关型DC/DC变换器电路拓扑结构工作模态包括:
工作模态一[t0,t1]:功率开关管S1导通,开关管S2关断;
工作模态二[t1,t2]:功率开关管S1关断,开关管S2导通。
作为优选方案,所述双开关型高增益DC/DC变换器电路拓扑结构应用于光伏电池输出侧与微电网直流母线电压之间升压变换器系统。
所述双开关型高增益DC/DC变换器电路拓扑结构包含输入电源Vin、功率开关管S1和S2,耦合电感原边电感L1、耦合电感副边电感L2、耦合电感漏感Lk、二极管D1、D2、D3、D4、D5,电容C1、C2、C3,输出滤波电容Co、输出滤波电感Lo和输出负载R。功率开关管S1栅极连接控制信号电压Vgs1,开关管S1漏极连接输入电压Vin,源极连接耦合电感一次侧。功率开关管S2栅极连接控制信号电压Vgs2,开关管S2漏极连接电容C1,源极连接二极管D4阳极。本发明在工作过程中通过耦合电感原副边不同匝比设计,电容器C1和C2充放电以及漏感能量回收,在实现变换器高电压增益同时,降低变换器损耗,提高效率。另外,本发明电路结构相对简单,电路工作模式少,器件电压应力低,且能够实现耦合电感原副边能量以及漏感能量回馈,适用于光伏电池输出侧与微电网直流母线电压间升压变换器系统。
附图说明
图1为双开关型DC/DC变换器电路拓扑图;
图2为双开关型DC/DC变换器电路拓扑结构主要工作波形图;
图3为双开关型DC/DC变换器电路拓扑结构工作模式1等效电路图;
图4为双开关型DC/DC变换器电路拓扑结构工作模式2等效电路图。
具体实施方式
本发明双开关型DC/DC变换器电路拓扑结构,包含输入电源Vin、功率开关管S1和S2,耦合电感原边电感L1、耦合电感副边电感L2、耦合电感漏感Lk、二极管D1、D2、D3、D4、D5,电容C1、C2、C3,输出滤波电容Co、输出滤波电感Lo和输出负载R。功率开关管S1栅极连接控制信号电压Vgs1,开关管S1漏极连接输入电压Vin,源极连接耦合电感一次侧。功率开关管S2栅极连接控制信号电压Vgs2,开关管S2漏极连接电容C1,源极连接二极管D4阳极。
实现方式,如图1和图2所示,其中,功率开关管S1、电容C3、输出滤波电感Lo和输出滤波电容Co串联连接到输入电源Vin正负极;功率开关管S2漏极连接到二极管D3阴极;功率开关管S2源极连接到二极管D4阳极;耦合电感原边电感分别连接功率开关管S1源极和二极管D1阳极;二极管D1阴极连接到输入电源Vin负极;耦合电感副边电感分别连接到二极管D4阴极和电容器C2;二极管D3阳极连接功率开关管S源极;二极管D4阴极连接到二极管D2阳极;二极管D2阴极连接到输入电源Vin负极;电容C1两端分别连接二极管D1阳极和二极管D2阳极;二极管D5阳极连接到输入电源Vin负极,阴极连接电容C3。
如图3和图4所示,双开关型DC/DC变换器电路拓扑结构实施过程如下:
工作模态一中,功率开关管S1导通,开关管S2关断。外部输入电源Vin一部分能量用于给耦合电感原边电感L1和漏感Lk充电。于此同时,耦合电感原边电感L1给自举电容C1充电。因此,耦合电感原边电感L1电感电流和电容器C1两端电压线性上升。同理,外部输入电源Vin另一部分能量通过耦合电感给自举电容C2充电;于此同时,外部输入电源Vin一部分能量以及电容器C3一部分能量共同给输出滤波电感Lo、输出滤波电容Co以及输出负载R提供能量。因此耦合电感原边电感L2电感电流和输出滤波电感Lo电流线性上升;
工作模态二中,功率开关管S1关断,开关管S2导通。此过程中,耦合电感L1和L2中存储能量以及自举电容C1和C2中存储能量全部给电容C3充电。因此,耦合电感L1和L2电流以及自举电容C1和C2两端电压线性降低。输出滤波电感Lo和输出滤波电容Co对输出负载R放电,输出滤波电感电流和输出滤波电容电流线性降低。
本发明在工作过程中通过耦合电感原副边不同匝比设计,电容器C1和C2充放电以及漏感能量回收,在实现变换器高电压增益同时,降低变换器损耗,提高效率。另外,本发明电路结构相对简单,电路工作模式少,器件电压应力低,且能够实现耦合电感原副边能量以及漏感能量回馈,适用于光伏电池输出侧与微电网直流母线电压间升压变换器系统。
以上描述的仅是本发明专利基本原理,本领域技术人员根据本所做其他设计,属于本发明专利保护范围。
Claims (3)
1.一种双开关型DC/DC变换器电路拓扑结构,开关管S1、电容C3、输出滤波电感Lo和输出滤波电容Co串联连接到输入电源Vin正负极;功率开关管S2漏极连接到二极管D3阴极;功率开关管S2源极连接到二极管D4阳极;耦合电感原边电感分别连接功率开关管S1源极和二极管D1阳极;二极管D1阴极连接到输入电源Vin负极;耦合电感副边电感分别连接到二极管D4阴极和电容器C2;二极管D3阳极连接功率开关管S源极;二极管D4阴极连接到二极管D2阳极;二极管D2阴极连接到输入电源Vin负极;电容C1两端分别连接二极管D1阳极和二极管D2阳极;二极管D5阳极连接到输入电源Vin负极,阴极连接电容C3。
2.根据权利要求1所述的一种双开关型DC/DC变换器电路拓扑结构,其特征在于,所述双开关型DC/DC变换器电路拓扑结构工作模态包括:
工作模态一[t0,t1]:功率开关管S1导通,开关管S2关断;
工作模态二[t1,t2]:功率开关管S1关断,开关管S2导通。
3.一种双开关型DC/DC变换器电路拓扑结构,其特征在于,所述双开关型高增益DC/DC变换器电路拓扑结构应用于光伏电池输出侧与微电网直流母线电压之间升压变换器系统。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911265335.5A CN110943617B (zh) | 2019-12-11 | 2019-12-11 | 一种双开关型dc/dc变换器电路拓扑结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911265335.5A CN110943617B (zh) | 2019-12-11 | 2019-12-11 | 一种双开关型dc/dc变换器电路拓扑结构 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110943617A true CN110943617A (zh) | 2020-03-31 |
CN110943617B CN110943617B (zh) | 2022-04-19 |
Family
ID=69910110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911265335.5A Active CN110943617B (zh) | 2019-12-11 | 2019-12-11 | 一种双开关型dc/dc变换器电路拓扑结构 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110943617B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112152463A (zh) * | 2020-08-27 | 2020-12-29 | 北京精密机电控制设备研究所 | 一种双向充放电变换电路及其实现方法 |
CN117254669A (zh) * | 2023-11-14 | 2023-12-19 | 中山市宝利金电子有限公司 | 基于开关耦合电感的二叉型多端口变换器 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060226816A1 (en) * | 2005-04-11 | 2006-10-12 | Yuan Ze University | Boost converter utilizing bi-directional magnetic energy transfer of coupling inductor |
JP2012124974A (ja) * | 2009-04-02 | 2012-06-28 | Mitsubishi Electric Corp | Dc/dcコンバータ |
US20120249102A1 (en) * | 2011-03-28 | 2012-10-04 | Slobodan Cuk | Hybrid-switching Step-down Converter with a Hybrid Transformer |
CN103457460A (zh) * | 2013-08-26 | 2013-12-18 | 华南理工大学 | 一种基于耦合电感和电压转移技术的高增益升压变换器 |
CN203491895U (zh) * | 2013-09-27 | 2014-03-19 | 王琳 | 高升压比双开关直流变换器 |
CN105391287A (zh) * | 2015-11-23 | 2016-03-09 | 中国矿业大学 | 基于双耦合电感和单开关的零输入电流纹波高增益变换器 |
CN106329903A (zh) * | 2016-11-18 | 2017-01-11 | 郑州云海信息技术有限公司 | 一种用于Buck变换器的缓冲电路 |
CN105471253B (zh) * | 2015-11-24 | 2018-07-06 | 哈尔滨工业大学 | T型耦合电感网络升压变换器 |
-
2019
- 2019-12-11 CN CN201911265335.5A patent/CN110943617B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060226816A1 (en) * | 2005-04-11 | 2006-10-12 | Yuan Ze University | Boost converter utilizing bi-directional magnetic energy transfer of coupling inductor |
JP2012124974A (ja) * | 2009-04-02 | 2012-06-28 | Mitsubishi Electric Corp | Dc/dcコンバータ |
US20120249102A1 (en) * | 2011-03-28 | 2012-10-04 | Slobodan Cuk | Hybrid-switching Step-down Converter with a Hybrid Transformer |
CN103457460A (zh) * | 2013-08-26 | 2013-12-18 | 华南理工大学 | 一种基于耦合电感和电压转移技术的高增益升压变换器 |
CN203491895U (zh) * | 2013-09-27 | 2014-03-19 | 王琳 | 高升压比双开关直流变换器 |
CN105391287A (zh) * | 2015-11-23 | 2016-03-09 | 中国矿业大学 | 基于双耦合电感和单开关的零输入电流纹波高增益变换器 |
CN105471253B (zh) * | 2015-11-24 | 2018-07-06 | 哈尔滨工业大学 | T型耦合电感网络升压变换器 |
CN106329903A (zh) * | 2016-11-18 | 2017-01-11 | 郑州云海信息技术有限公司 | 一种用于Buck变换器的缓冲电路 |
Non-Patent Citations (1)
Title |
---|
陈章勇等: "基于LC吸收电路的耦合电感倍压单元高升压增益Boost变换器", 《电工技术学报》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112152463A (zh) * | 2020-08-27 | 2020-12-29 | 北京精密机电控制设备研究所 | 一种双向充放电变换电路及其实现方法 |
CN112152463B (zh) * | 2020-08-27 | 2021-12-07 | 北京精密机电控制设备研究所 | 一种双向充放电变换电路及其实现方法 |
CN117254669A (zh) * | 2023-11-14 | 2023-12-19 | 中山市宝利金电子有限公司 | 基于开关耦合电感的二叉型多端口变换器 |
CN117254669B (zh) * | 2023-11-14 | 2024-02-02 | 中山市宝利金电子有限公司 | 基于开关耦合电感的二叉型多端口变换器 |
Also Published As
Publication number | Publication date |
---|---|
CN110943617B (zh) | 2022-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | A hybrid cascaded DC–DC boost converter with ripple reduction and large conversion ratio | |
CN111371316B (zh) | 一种基于耦合电感的零输入纹波高增益直流变换器 | |
CN210041650U (zh) | 一种非隔离型高增益三端口变换器 | |
CN106026657A (zh) | 非隔离高增益dc-dc升压变换器 | |
CN107919797B (zh) | 燃料电池用宽输入范围交错并联型高效升压直流变换器 | |
CN111541369A (zh) | 基于开关电感/开关电容单元的交错并联dc/dc升压变换器 | |
CN103312153B (zh) | 一种并联式多输入耦合电感升降压变换器 | |
CN110649805A (zh) | 一种高增益Boost变换器 | |
CN205123579U (zh) | 一种基于耦合电感的高增益dc-dc光伏升压变换器 | |
CN110943617B (zh) | 一种双开关型dc/dc变换器电路拓扑结构 | |
CN110086340B (zh) | 一种耦合电感双向大变比dc-dc变换器 | |
CN112968603B (zh) | 一种宽变比无变压器buck-boost变换器 | |
CN111786555B (zh) | 基于新型升压单元的零纹波高增益dc-dc变换器 | |
Suryoatmojo et al. | Implementation of high voltage gain dc-dc boost converter for fuel cell application | |
CN102611304A (zh) | 一种新型双输入Buck-Boost直流变换器 | |
CN105978322B (zh) | 一种开关电容型高增益准z源dc-dc变换器 | |
CN108736707B (zh) | 一种具有开关电感结构的boost变换器 | |
Cao et al. | Non-isolated ultrahigh boost ratio DCDC converter with coupled inductor and charge pump | |
CN103312154B (zh) | 一种串联式多输入耦合电感升降压变换器 | |
CN202798466U (zh) | 一种隔离型基于三端口功率变换器的新能源供电设备 | |
CN112234821B (zh) | 一种基于有源网络的高增益直流变换器拓扑结构 | |
CN212367152U (zh) | 一种集成开关电容电路的单极可升压逆变器 | |
CN114285279A (zh) | 一种高增益升压变换器 | |
CN109921638B (zh) | 一种双开关高升压比直流变换器 | |
CN202524289U (zh) | 一种新型双输入Buck-Boost直流变换器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |