CN110943458A - 一种电力系统鲁棒解列方法 - Google Patents

一种电力系统鲁棒解列方法 Download PDF

Info

Publication number
CN110943458A
CN110943458A CN201910586298.1A CN201910586298A CN110943458A CN 110943458 A CN110943458 A CN 110943458A CN 201910586298 A CN201910586298 A CN 201910586298A CN 110943458 A CN110943458 A CN 110943458A
Authority
CN
China
Prior art keywords
power
reactive
splitting
node
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910586298.1A
Other languages
English (en)
Other versions
CN110943458B (zh
Inventor
林振智
刘晟源
章天晗
文福拴
杨莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910586298.1A priority Critical patent/CN110943458B/zh
Publication of CN110943458A publication Critical patent/CN110943458A/zh
Application granted granted Critical
Publication of CN110943458B publication Critical patent/CN110943458B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1864Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein the stepless control of reactive power is obtained by at least one reactive element connected in series with a semiconductor switch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明涉及一种电力系统鲁棒解列方法,其包括步骤:确定解列的目标函数和基本约束条件;构建解列的无功调整约束;构建解列的连通性约束;基于上述步骤构建考虑可再生能源不确定性的可调鲁棒解列模型,获取解列方案。其可以为电力系统运行人员进行主动解列控制提供相应支持。

Description

一种电力系统鲁棒解列方法
技术领域
本发明涉及电力系统领域,特别是涉及一种电力系统鲁棒解列方法。
背景技术
主动解列是电力系统稳定运行的最后一道防线,因此系统研究控制孤岛策略,预防停电和连锁故障事件的发生具有重要的理论和现实意义。可控孤岛的本质可以抽象为寻找一组受到各种安全约束的最优孤岛输电断面(即割集),从而将大规模电力系统分解为多个子电力系统,最小化电力中断和不平衡。
发明内容
基于此,本发明提出一种电力系统鲁棒解列方法。
一种电力系统鲁棒解列方法,包括如下步骤:
1)确定解列的目标函数和基本约束条件;
2)构建解列的无功调整约束;
3)构建解列的连通性约束;
4)基于步骤1)、2)、3)构建考虑可再生能源不确定性的可调鲁棒解列模型,获取解列方案。
上述技术方案中,步骤1)中确定解列的目标函数和基本约束条件,具体如下:
切负荷量是评价电力系统功率不平衡程度的一个重要指标,若考虑可再生能源的不确定性,则其不平衡程度会增加。因此,可调鲁棒解列是为了在可再生能源输入最极端的情况下极小化切负荷量
Figure BDA0002114683900000021
式中:x=[Pup,i,Pdown,i,Qup,i,Qdown,i,PLS,i,QLS,i,QSVC,i,QCB,i]是控制向量,ξ=[Pwind,i, Psolar,i,Qwind,i,Qsolar,i]是不确定参数向量;Ψ是不确定集。Pup,i,Pdown,i,Qup,i,Qdown,i分别是发电机i的上调、下调的有功和无功输出功率。PLS,i和QLS,i分别是节点i 的有功和无功切负荷量,QSVC,i和QCB,i分别是SVC和并联电容器在节点i的总无功补偿。Pwind,i,Qwind,i,Psolar,i,Qsolar,i分别是风电和光伏的有功、无功输出功率。Nbus是节点的数量。
节点注入功率与节点输出功率应当是相等的,因此功率平衡方程可以表示为:
Figure BDA0002114683900000022
Figure BDA0002114683900000023
Figure BDA0002114683900000024
Figure BDA0002114683900000025
式中:Pi和Qi是节点i的有功和无功注入功率,PL,i和QL,i分别是节点i出的有功和无功负荷,Pij和Qij分别是节点i到节点j的线路Li-j上流过的有功和无功潮流, Pgen,i和Qgen,i分别是发电机在节点i的有功和无功注入功率。Vii,Vjj分别是节点i和j的电压幅值和相角;Gij和Bij分别是Li-j的电导和电纳,yij是01变量。
发电机的输出应在其最大和最小输出范围内;此外,发电机在短时间内的上、下功率输出也受到限制。因此,发电机输出约束可以表示为
Figure BDA0002114683900000026
Figure BDA0002114683900000027
Figure BDA0002114683900000028
Figure BDA0002114683900000031
Figure BDA0002114683900000032
Figure BDA0002114683900000033
式中:
Figure BDA0002114683900000034
分别是Pgen,i,Qgen,i,Pup,i,Pdown,i,Qup,i,Qdown,i的上限,
Figure BDA0002114683900000035
Figure BDA0002114683900000036
分别是Pgen,i和Qgen,i的下限。
由于热稳定性、电压稳定性和经济性的考虑,输电线路的潮流、母线电压和线路开关数受到限制。因此,这些物理极限约束可以分别表示为
Figure BDA0002114683900000037
Figure BDA0002114683900000038
Vi min≤Vi≤Vi max
Figure BDA0002114683900000039
式中:Pij,Qij,
Figure BDA00021146839000000310
分别是线路Li-j上的潮流和其上限。Vi min和Vi max是节点i电压幅值的上下限。Nline是解列前的线路数,
Figure BDA00021146839000000311
最大的可切线路数。
显然,所要切除的有功和无功负荷不能超过原负荷,此约束可以表示为:
0≤PLS,i≤PL,i
0≤QLS,i≤QL,i
步骤2)中构建解列的无功调整约束,方法为:
在输电系统中,无功补偿广泛采用SVC和并联电容器技术。SVC可以连续输出或吸收无功功率,而并联器只能离散输出无功功率。因此,无功功率调节约束可以表示为
Figure BDA00021146839000000312
QCB,i=NCB,iQCB_each
Figure BDA00021146839000000313
式中:
Figure BDA0002114683900000041
Figure BDA0002114683900000042
分别是节点i的SVC无功输出的上下限。QCB_each是单个电容器在节点i可发出的无功功率,NCB,i
Figure BDA0002114683900000043
分别是在节点i上已投入和可投入的电容器数量。
步骤3)中构建解列的连通性约束,方法为:
一般地,每个孤岛都应该是一个连通图。因此采用如下约束
Figure BDA0002114683900000044
Figure BDA0002114683900000045
Figure BDA0002114683900000046
式中:上标“CN”代表用于连通性约束的虚拟变量,Ωgen表示所有发电机的集合,
Figure BDA0002114683900000047
表示虚拟平衡机的集合。
Figure BDA0002114683900000048
是一个小的常数,例如0.01;
Figure BDA0002114683900000049
也是一个小的常数,例如0.01。δi CN,
Figure BDA00021146839000000410
是可以为任意值的变量。
步骤4)中计算构建考虑可再生能源不确定性的可调鲁棒解列模型,进行假设检验,方法为:
为了考虑随机变量的不确定性,采用不确定性集描述变量的不确定性的鲁棒优化方法。第i个可再生能源的有功功率输出的相对不确定性可以定义为
Figure BDA00021146839000000411
式中:
Figure BDA00021146839000000412
PRES,i=(Pwind,i,Psolar,i)和ΔPRES,i=(ΔPwind,i,ΔPsolar,i)分别是有功出力的实际值、预测值和实际值与预测值的范围之差,其中下标“wind”对应风电,“solar”对应光伏。建立不确定集Ψ为
Figure BDA00021146839000000413
Figure BDA00021146839000000414
式中:NRES是可再生能源的个数,ΓRES∈[0,NRES]是含可再生能源电力系统的总不确定性,可根据需求设定。可调参数ΠRES=ΓRES/NRES。因此,考虑可再生能源不确定性后的线路潮流有功约束可修正为:
Figure BDA0002114683900000051
式中:ΩRES是可再生能源的集合。用对偶范数理论形成鲁棒对等模型将上式转化为
Figure BDA0002114683900000052
相应地,线路潮流无功约束可以被转化为
Figure BDA0002114683900000053
式中:
Figure 1
是对偶范数算子,ΔQRES,i=(ΔQwind,i,ΔQsolar,i)是实际值与预测值的范围之差。
最后,采用线性表示和大M方法将所有非线性约束线性化为线性约束即可得到鲁棒解列模型为
obj.
Figure BDA0002114683900000055
s.t.
Figure BDA0002114683900000061
Figure BDA0002114683900000062
Figure BDA0002114683900000063
Figure BDA0002114683900000064
Vi min≤Vi≤Vi max,
Figure BDA0002114683900000065
0≤PLS,i≤PL,i,0≤QLS,i≤QL,i
Figure BDA0002114683900000066
QCB,i=NCB,iQCB_each,
Figure BDA0002114683900000067
Figure BDA0002114683900000068
Figure BDA0002114683900000069
Figure BDA00021146839000000610
Figure BDA00021146839000000611
Figure BDA00021146839000000612
Figure BDA00021146839000000613
式中:上标“a”代表线性化时产生的辅助变量。
本发明的方法可以有效实现电力系统的鲁棒解列,而且与现有方法相比,本发明方法所得到的解列方案会根据系统状态发生改变,且可使得切负荷量始终保持最小,本发明为电力系统运行人员进行主动解列控制提供相应支持。
附图说明
图1为一个实施例的一种电力系统鲁棒解列方法流程图。
具体实施方式
为了更好地理解本发明的目的、技术方案以及技术效果,以下结合附图对本发明进行进一步的讲解说明。
参考图1,图1所示为一个实施例的一种电力系统鲁棒解列方法,包括如下步骤:
S10,确定解列的目标函数和基本约束条件:
切负荷量是评价电力系统功率不平衡程度的一个重要指标,若考虑可再生能源的不确定性,则其不平衡程度会增加。因此,可调鲁棒解列是为了在可再生能源输入最极端的情况下极小化切负荷量
Figure BDA0002114683900000071
式中:x=[Pup,i,Pdown,i,Qup,i,Qdown,i,PLS,i,QLS,i,QSVC,i,QCB,i]是控制向量,ξ=[Pwind,i, Psolar,i,Qwind,i,Qsolar,i]是不确定参数向量;Ψ是不确定集。Pup,i,Pdown,i,Qup,i,Qdown,i分别是发电机i的上调、下调的有功和无功输出功率。PLS,i和QLS,i分别是节点i 的有功和无功切负荷量,QSVC,i和QCB,i分别是SVC和并联电容器在节点i的总无功补偿。Pwind,i,Qwind,i,Psolar,i,Qsolar,i分别是风电和光伏的有功、无功输出功率。Nbus是节点的数量。
节点注入功率与节点输出功率应当是相等的,因此功率平衡方程可以表示为:
Figure BDA0002114683900000072
Figure BDA0002114683900000073
Figure BDA0002114683900000074
Figure BDA0002114683900000075
式中:Pi和Qi是节点i的有功和无功注入功率,PL,i和QL,i分别是节点i出的有功和无功负荷,Pij和Qij分别是节点i到节点j的线路Li-j上流过的有功和无功潮流, Pgen,i和Qgen,i分别是发电机在节点i的有功和无功注入功率。Vii,Vjj分别是节点i和j的电压幅值和相角;Gij和Bij分别是Li-j的电导和电纳,yij是01变量。
发电机的输出应在其最大和最小输出范围内;此外,发电机在短时间内的上、下功率输出也受到限制。因此,发电机输出约束可以表示为
Figure BDA0002114683900000081
Figure BDA0002114683900000082
Figure BDA0002114683900000083
Figure BDA0002114683900000084
Figure BDA0002114683900000085
Figure BDA0002114683900000086
式中:
Figure BDA0002114683900000087
分别是Pgen,i,Qgen,i,Pup,i,Pdown,i,Qup,i,Qdown,i的上限,
Figure BDA0002114683900000088
Figure BDA0002114683900000089
分别是Pgen,i和Qgen,i的下限。
由于热稳定性、电压稳定性和经济性的考虑,输电线路的潮流、母线电压和线路开关数受到限制。因此,这些物理极限约束可以分别表示为
Figure BDA00021146839000000810
Figure BDA00021146839000000811
Vi min≤Vi≤Vi max
Figure BDA00021146839000000812
式中:Pij,Qij,
Figure BDA00021146839000000813
分别是线路Li-j上的潮流和其上限。Vi min和Vi max是节点i电压幅值的上下限。Nline是解列前的线路数,
Figure BDA00021146839000000814
最大的可切线路数。
显然,所要切除的有功和无功负荷不能超过原负荷,此约束可以表示为:
0≤PLS,i≤PL,i
0≤QLS,i≤QL,i
S20,构建解列的无功调整约束;在一个实施例中:
在输电系统中,无功补偿广泛采用SVC和并联电容器技术。SVC可以连续输出或吸收无功功率,而并联器只能离散输出无功功率。因此,无功功率调节约束可以表示为
Figure BDA0002114683900000091
QCB,i=NCB,iQCB_each
Figure BDA0002114683900000092
式中:
Figure BDA0002114683900000093
Figure BDA0002114683900000094
分别是节点i的SVC无功输出的上下限。QCB_each是单个电容器在节点i可发出的无功功率,NCB,i
Figure BDA0002114683900000095
分别是在节点i上已投入和可投入的电容器数量。
S30,构建解列的连通性约束;在一个实施例中:
一般地,每个孤岛都应该是一个连通图。因此采用如下约束
Figure BDA0002114683900000096
Figure BDA0002114683900000097
Figure BDA0002114683900000098
式中:上标“CN”代表用于连通性约束的虚拟变量,
Figure BDA0002114683900000099
表示虚拟平衡机的集合。
Figure BDA00021146839000000910
是一个小的常数,例如0.01;
Figure BDA00021146839000000911
也是一个小的常数,例如0.01。δi CN,
Figure BDA00021146839000000912
是可以为任意值的变量。
S40,基于S10、S20、S30构建考虑可再生能源不确定性的可调鲁棒解列模型,进行假设检验;在一个实施例中:
为了考虑随机变量的不确定性,采用不确定性集描述变量的不确定性的鲁棒优化方法。第i个可再生能源的有功功率输出的相对不确定性可以定义为
Figure BDA0002114683900000101
式中:
Figure BDA0002114683900000102
PRES,i=(Pwind,i,Psolar,i)和ΔPRES,i=(ΔPwind,i,ΔPsolar,i)分别是有功出力的实际值、预测值和实际值与预测值的范围之差,其中下标“wind”对应风电,“solar”对应光伏。建立不确定集Ψ为
Figure BDA0002114683900000103
Figure BDA0002114683900000104
式中:NRES是可再生能源的个数,ΓRES∈[0,NRES]是含可再生能源电力系统的总不确定性,可根据需求设定。可调参数ΠRES=ΓRES/NRES。因此,考虑可再生能源不确定性后的线路潮流有功约束可修正为:
Figure BDA0002114683900000105
式中:ΩRES是可再生能源的集合。用对偶范数理论形成鲁棒对等模型将上式转化为
Figure BDA0002114683900000106
相应地,线路潮流无功约束可以被转化为
Figure BDA0002114683900000107
式中:
Figure 1
是对偶范数算子,ΔQRES,i=(ΔQwind,i,ΔQsolar,i)是实际值与预测值的范围之差。
最后,采用线性表示和大M方法将所有非线性约束线性化为线性约束即可得到鲁棒解列模型为
obj.
Figure BDA0002114683900000109
s.t.
Figure BDA0002114683900000111
Figure BDA0002114683900000112
Figure BDA0002114683900000113
Figure BDA0002114683900000114
Vi min≤Vi≤Vi max,
Figure BDA0002114683900000115
0≤PLS,i≤PL,i,0≤QLS,i≤QL,i
Figure BDA0002114683900000116
QCB,i=NCB,iQCB_each,
Figure BDA0002114683900000117
Figure BDA0002114683900000118
Figure BDA0002114683900000119
Figure BDA00021146839000001110
Figure BDA00021146839000001111
Figure BDA00021146839000001112
Figure BDA00021146839000001113
式中:上标“a”代表线性化时产生的辅助变量。
为了证明本发明的有效性,将本发明与目前已有文献中的有序决策二叉树(OBDD)模型以及线性规划(MILP)模型进行了对比。由表1可以看出:i) 当PRES=0时,采用OBDD和MILP模型时,有五条线路被分断,其中OBDD切负荷量是最大的(108.1MW),MILP模型切负荷量较少;应用本发明所提模型时,只有三条线被分断,且其切负荷量最小(0MW)。ii)当PRES从0增大到1时,OBDD 和MILP模型的解列方案是不变的,而本发明所提的解列方案会根据系统状态发生改变,同时切负荷量也一直是最小的。因此,本发明所提的电力系统鲁棒解列方法相比其它方法具有很大的优越性。
表1不同解列模型的对比
Figure BDA0002114683900000121

Claims (5)

1.一种电力系统鲁棒解列方法,其特征在于,包括如下步骤:
1)确定解列的目标函数和基本约束条件;
2)构建解列的无功调整约束;
3)构建解列的连通性约束;
4)基于步骤1)、2)、3)构建考虑可再生能源不确定性的可调鲁棒解列模型,获取解列方案。
2.根据权利要求1所述的电力系统鲁棒解列方法,其特征在于,确定解列的目标函数和基本约束条件,具体如下:
切负荷量是评价电力系统功率不平衡程度的一个重要指标,若考虑可再生能源的不确定性,则其不平衡程度会增加,因此,可调鲁棒解列是为了在可再生能源输入最极端的情况下极小化切负荷量,即目标函数为:
Figure FDA0002114683890000011
式中:x=[Pup,i,Pdown,i,Qup,i,Qdown,i,PLS,i,QLS,i,QSVC,i,QCB,i]是控制向量,ξ=[Pwind,i,Psolar,i,Qwind,i,Qsolar,i]是不确定参数向量;Ψ是不确定集;Pup,i,Pdown,i,Qup,i,Qdown,i分别是发电机i的上调、下调的有功和无功输出功率。PLS,i和QLS,i分别是节点i的有功和无功切负荷量,QSVC,i和QCB,i分别是SVC和并联电容器在节点i的总无功补偿。Pwind,i,Qwind,i,Psolar,i,Qsolar,i分别是风电和光伏的有功、无功输出功率,Nbus是节点的数量;
节点注入功率与节点输出功率应当是相等的,因此功率平衡方程表示为:
Figure FDA0002114683890000012
Figure FDA0002114683890000013
Figure FDA0002114683890000021
Figure FDA0002114683890000022
式中:Pi和Qi是节点i的有功和无功注入功率,PL,i和QL,i分别是节点i出的有功和无功负荷,Pij和Qij分别是节点i到节点j的线路Li-j上流过的有功和无功潮流,Pgen,i和Qgen,i分别是发电机在节点i的有功和无功注入功率,Vii,Vjj分别是节点i和j的电压幅值和相角;Gij和Bij分别是Li-j的电导和电纳,yij是01变量;
发电机的输出应在其最大和最小输出范围内,此外,发电机在短时间内的上、下功率输出也受到限制,因此,发电机输出约束为
Figure FDA0002114683890000023
Figure FDA0002114683890000024
Figure FDA0002114683890000025
Figure FDA0002114683890000026
Figure FDA0002114683890000027
Figure FDA0002114683890000028
式中:
Figure FDA0002114683890000029
分别是Pgen,i,Qgen,i,Pup,i,Pdown,i,Qup,i,Qdown,i的上限,
Figure FDA00021146838900000210
Figure FDA00021146838900000211
分别是Pgen,i和Qgen,i的下限;
由于热稳定性、电压稳定性和经济性的考虑,输电线路的潮流、母线电压和线路开关数受到限制,因此,这些物理极限约束分别表示为
Figure FDA00021146838900000212
Figure FDA00021146838900000213
Vi min≤Vi≤Vi max
Figure FDA00021146838900000214
式中:Pij,Qij,
Figure FDA0002114683890000031
分别是线路Li-j上的潮流和其上限,Vi min和Vi max是节点i电压幅值的上下限,Nline是解列前的线路数,
Figure FDA0002114683890000032
最大的可切线路数;
显然,所要切除的有功和无功负荷不能超过原负荷,此约束表示为:
0≤PLS,i≤PL,i
0≤QLS,i≤QL,i
3.根据权利要求1所述的电力系统鲁棒解列方法,其特征在于,构建解列的无功调整约束,具体如下:
Figure FDA0002114683890000033
QCB,i=NCB,iQCB_each
Figure FDA0002114683890000034
式中:
Figure FDA0002114683890000035
Figure FDA0002114683890000036
分别是节点i的SVC无功输出的上下限,QCB_each是单个电容器在节点i可发出的无功功率,NCB,i
Figure FDA0002114683890000037
分别是在节点i上已投入和可投入的电容器数量。
4.根据权利要求1所述的电力系统鲁棒解列方法,其特征在于,构建解列的连通性约束,具体如下:
Figure FDA0002114683890000038
Figure FDA0002114683890000039
Figure FDA00021146838900000310
式中:上标“CN”代表用于连通性约束的虚拟变量,Ωgen表示所有发电机的集合,
Figure FDA00021146838900000311
表示虚拟平衡机的集合,
Figure FDA00021146838900000312
是一个小的常数,取0.01;
Figure FDA00021146838900000313
也是一个小的常数,取0.01,
Figure FDA00021146838900000314
是可以为任意值的变量。
5.根据权利要求1所述的电力系统鲁棒解列方法,其特征在于,构建考虑可再生能源不确定性的可调鲁棒解列模型,具体如下:
为了考虑随机变量的不确定性,采用不确定性集描述变量的不确定性的鲁棒优化方法,第i个可再生能源的有功功率输出的相对不确定性可以定义为
Figure FDA0002114683890000041
式中:
Figure FDA0002114683890000042
PRES,i=(Pwind,i,Psolar,i)和ΔPRES,i=(ΔPwind,i,ΔPsolar,i)分别是有功出力的实际值、预测值和实际值与预测值的范围之差,其中下标“wind”对应风电,“solar”对应光伏,建立不确定集Ψ为
Figure FDA0002114683890000043
Figure FDA0002114683890000044
式中:NRES是可再生能源的个数,ΓRES∈[0,NRES]是含可再生能源电力系统的总不确定性,可根据需求设定,可调参数ΠRES=ΓRES/NRES,因此,考虑可再生能源不确定性后的线路潮流有功约束可修正为:
Figure FDA0002114683890000045
式中:ΩRES是可再生能源的集合,用对偶范数理论形成鲁棒对等模型将上式转化为
Figure FDA0002114683890000046
相应地,线路潮流无功约束可以被转化为
Figure FDA0002114683890000047
式中:
Figure DEST_PATH_1
是对偶范数算子,ΔQRES,i=(ΔQwind,i,ΔQsolar,i)是实际值与预测值的范围之差;
最后,采用线性表示和大M方法将所有非线性约束线性化为线性约束即可得到鲁棒解列模型为
Figure FDA0002114683890000051
s.t.
Figure FDA0002114683890000052
Figure FDA0002114683890000053
Figure FDA0002114683890000054
Figure FDA0002114683890000055
Figure FDA0002114683890000056
0≤PLS,i≤PL,i,0≤QLS,i≤QL,i
Figure FDA0002114683890000057
Figure FDA0002114683890000058
Figure FDA0002114683890000059
Figure FDA00021146838900000510
Figure FDA00021146838900000511
Figure FDA00021146838900000512
Figure FDA00021146838900000513
Figure FDA00021146838900000514
式中:上标“a”代表线性化时产生的辅助变量。
CN201910586298.1A 2019-07-01 2019-07-01 一种电力系统鲁棒解列方法 Active CN110943458B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910586298.1A CN110943458B (zh) 2019-07-01 2019-07-01 一种电力系统鲁棒解列方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910586298.1A CN110943458B (zh) 2019-07-01 2019-07-01 一种电力系统鲁棒解列方法

Publications (2)

Publication Number Publication Date
CN110943458A true CN110943458A (zh) 2020-03-31
CN110943458B CN110943458B (zh) 2021-08-06

Family

ID=69905702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910586298.1A Active CN110943458B (zh) 2019-07-01 2019-07-01 一种电力系统鲁棒解列方法

Country Status (1)

Country Link
CN (1) CN110943458B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110234352A1 (en) * 2004-06-17 2011-09-29 Ctm Magnetics, Inc. Inductor apparatus and method of manufacture thereof
CN102946098A (zh) * 2012-10-23 2013-02-27 四川大学 基于网络拓扑聚类的电力系统主动解列方法
CN108288132A (zh) * 2018-03-19 2018-07-17 云南电网有限责任公司电力科学研究院 一种基于源荷互动电力系统调度的建模方法
CN109871587A (zh) * 2019-01-21 2019-06-11 南京铭越创信电气有限公司 一种极端天气条件下电力系统受控解列的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110234352A1 (en) * 2004-06-17 2011-09-29 Ctm Magnetics, Inc. Inductor apparatus and method of manufacture thereof
CN102946098A (zh) * 2012-10-23 2013-02-27 四川大学 基于网络拓扑聚类的电力系统主动解列方法
CN108288132A (zh) * 2018-03-19 2018-07-17 云南电网有限责任公司电力科学研究院 一种基于源荷互动电力系统调度的建模方法
CN109871587A (zh) * 2019-01-21 2019-06-11 南京铭越创信电气有限公司 一种极端天气条件下电力系统受控解列的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
C. G. WANG: "A Novel Real-Time Searching Method for Power System Splitting Boundary", 《IEEE TRANSACTIONS ON POWER SYSTEMS》 *
TAO DING: "Robust Co-Optimization to Energy and Ancillary Service Joint Dispatch Considering Wind Power Uncertainties in Real-Time Electricity Markets", 《IEEE TRANSACTIONS ON SUSTAINABLE ENERGY》 *
向月: "考虑可再生能源出力不确定性的微电网能量优化鲁棒模型", 《中国电机工程学报》 *
宋洪磊: "基于WAMS信息的大区域互联网主动解列控制策略研究", 《中国博士学位论文全文数据库》 *
汪海瑛: "含大规模可再生能源的电力系统可靠性问题研究", 《中国博士学位论文全文数据库》 *
王乙斐: "正文第20-63、65-120页", 《电力系统及其自动化学报》 *

Also Published As

Publication number Publication date
CN110943458B (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
Tafti et al. Extended functionalities of photovoltaic systems with flexible power point tracking: Recent advances
Eriksson et al. Optimizing DC voltage droop settings for AC/DC system interactions
Peng et al. Adaptive decentralized output-constrained control of single-bus DC microgrids
Kasa et al. Effective grid interfaced renewable sources with power quality improvement using dynamic active power filter
Andani et al. Controller design for voltage-source converter using LQG/LTR
Benhalima et al. Real‐time experimental implementation of an LMS‐adaline‐based ANFIS controller to drive PV interfacing power system
Vu et al. Model predictive control for power control in islanded DC microgrids
CN107910876B (zh) 一种基于链式statcom的外环电压控制方法及装置
Karimi et al. Compensation of voltage sag and voltage interruption using DVR‐PV based on fuzzy‐adaptive controller
Asawa et al. Impact of FACTS device in electrical power system
Hamoud et al. Hybrid PI-Sliding Mode Control of a voltage source converter based STATCOM
CN110943458B (zh) 一种电力系统鲁棒解列方法
Mahmud et al. Control of islanded DC microgrids using nonlinear adaptive decentralized controllers
Jewel et al. A Hybrid Reaching Law Based Double-Integral Sliding Mode Controller Design to Mitigate SSR Effects in a DFIG-Based Wind Farm
Jain et al. A frequency shifter-based simple control for solar PV grid-interfaced system
CN114362191A (zh) 一种海上风电场无功协调控制方法、装置及存储介质
CN113922384A (zh) 一种风电场分散式无功电压优化协调控制方法
Hamache et al. Stabilization of a DC electrical network via backstepping approach
Shi et al. Coordinated control of generator excitation and TCSC based on Hamilton energy function
Elgammal et al. Minimum Harmonic Distortion Losses and Power Quality Improvement of Grid Integration Photovoltaic-Wind Based Smart Grid Utilizing MOPSO
CN105633979B (zh) 一种无功功率补偿方法及系统
Akhtar et al. Flexible hybrid system power quality improvement using advanced control architecture
Francis et al. Automatic Generation Control for an Interconnected Reheat Thermal Power Systems Using Wavelet Neural Network Controller
Adams et al. Distributed control scheme for a 5-level modular multilevel STATCOM
El Khlifi et al. Output-feedback control of a grid-connected photovoltaic system based on a multilevel flying-capacitor inverter with power smoothing capability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant