CN110938193A - 一种d-a-d结构聚合物膜pefe及其制备方法和应用 - Google Patents

一种d-a-d结构聚合物膜pefe及其制备方法和应用 Download PDF

Info

Publication number
CN110938193A
CN110938193A CN201911023275.6A CN201911023275A CN110938193A CN 110938193 A CN110938193 A CN 110938193A CN 201911023275 A CN201911023275 A CN 201911023275A CN 110938193 A CN110938193 A CN 110938193A
Authority
CN
China
Prior art keywords
pefe
electrolyte
efe
polymer film
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911023275.6A
Other languages
English (en)
Inventor
刘军磊
许若腾
张�诚
罗俊涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201911023275.6A priority Critical patent/CN110938193A/zh
Publication of CN110938193A publication Critical patent/CN110938193A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/44Electrochemical polymerisation, i.e. oxidative or reductive coupling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/54Physical properties electrochromatic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

一种D‑A‑D结构聚合物膜PEFE,按照如下方法进行制备:(1)将2,7‑二溴‑9芴酮与预先制得的三丁基(2,3‑二氢[3,4‑b][1,4]二恶英‑5‑基锡烷及双三苯基磷二氯化钯按比例混合,在氮气环境下溶于有机溶剂中,在回流温度下反应,得到反应混合液,萃取后,过硅胶柱分离得单体EFE;(2)将D‑A‑D单体EFE和电解质溶于支持电解溶剂中得到电解液,将电解液加入到电解池三电极体系中,与电化学工作站相连,在聚合电压下进行电化学CV聚合反应,用有机溶剂色谱级混合溶液清洗薄膜,干燥。以及提供D‑A‑D结构聚合物膜PEFE的制备方法和应用。本发明既有明显颜色变化,还有较高的比容量及稳定性。

Description

一种D-A-D结构聚合物膜PEFE及其制备方法和应用
技术领域
本发明涉及一种具有高比容量及高稳定性的聚合物膜及其制备方法和应用,可应用于在电致变色型超级电容器方向。
背景技术
近年来,随着电子设备便携化的发展,可以显示工作状态的储能器件也变得越来越重要。电致变色是通过改变工作电压的大小,材料发生氧化还原反应致使其对光的透射或者反射产生可逆变化,在外观上则反映出颜色的可逆变化。通过颜色变化来显示储能器件的储能状态是一种较为可行的办法,但制备能够满足该需求的大比容量、高对比度以及稳定性能好的材料成为一大问题。
在超级电容器中,与金属氧化物材料相比,导电聚合物材料具有更加相对合适的表面形貌、更好的柔韧性以及低成本等优点。D-A结构是一种有效调节分子能带的一种技术手段,可以降低聚合物的氧化电位,拥有更高的稳定性。迄今为止,也有多种D-A结构的物质在文献中报导过,如苯并噻二唑、喹喔啉及其衍生物等。D-A-D结构不但拥有D-A的优势,而且由于其内消旋作用,有更低的能带隙,还有电子给受体双重基团性质。因此我们设计合成了D-A类似的D-A-D结构的EDOT-芴酮-EDOT,在合适的电压条件下进行电聚合,制备聚合物薄膜。在满足电致变色的应用条件下,同时兼具超级电容器的较高的比容量的特点。
发明内容
为解决在超级电容器储能过程中如何显示工作状态的问题,本发明的目的是提供一种在其工作电压范围下有明显颜色变化的超级电容器聚合物膜电极材料的D-A-D结构聚合物膜PEFE及其制备方法和应用。
为实现上述目的,本发明采用如下技术方案:
一种D-A-D结构聚合物膜PEFE,按照如下方法进行制备:
(1)将式I中的2,7-二溴-9芴酮与预先制得的三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基锡烷及双三苯基磷二氯化钯按(1:1~2:0.002~0.01)比例混合,在氮气环境下溶于有机溶剂A中,在回流温度下反应24~36小时,得到反应混合液B,用去离子水和二氯甲烷萃取后,过硅胶柱分离可得单体EFE,如式II所示;
Figure BDA0002247892750000021
(2)将步骤(1)所得式2所示的D-A-D单体EFE和电解质溶于支持电解溶剂中得到电解液,单体EFE的浓度为0.1~10mmol/L,支持电解质的初始终浓度为0.01~1mol/L电解溶剂.将电解液加入到电解池三电极体系中,与电化学工作站相连,在聚合电压-0.5~1.4Vvs Ag/AgCl下,聚合圈数在5~20圈下,进行电化学CV聚合反应,得到D-A-D结构聚合物膜PEFE,如式III所示;用有机溶剂色谱级二氯甲烷:乙腈体积比(0.1~10:1)的混合溶液清洗薄膜,干燥即可;
Figure BDA0002247892750000022
进一步,所述步骤(2)中,电解溶剂为色谱级二氯甲烷:乙腈体积比(0.1~10:1)的混合溶液。
一种D-A-D结构聚合物膜PEFE制备方法,包括以下步骤:
(1)将式I中的2,7-二溴-9芴酮与预先制得的三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基锡烷及双三苯基磷二氯化钯按(1:1~2:0.002~0.01)比例混合,在氮气环境下溶于有机溶剂A中,在回流温度下反应24~36小时,得到反应混合液B,用去离子水和二氯甲烷萃取后,过硅胶柱分离可得单体EFE,如式II所示;
Figure BDA0002247892750000023
(2)将步骤(1)所得式2所示的D-A-D单体EFE和电解质溶于支持电解溶剂中得到电解液,单体EFE的浓度为0.1~10mmol/L,支持电解质的初始终浓度为0.01~1mol/L电解溶剂.将电解液加入到电解池三电极体系中,与电化学工作站相连,在聚合电压-0.5~1.4Vvs Ag/AgCl下,聚合圈数在5~20圈下,进行电化学CV聚合反应,得到D-A-D结构聚合物膜PEFE,如式III所示;用有机溶剂色谱级二氯甲烷:乙腈体积比(0.1~10:1)的混合溶液清洗薄膜,干燥即可;
Figure BDA0002247892750000024
进一步,所述步骤(2)中,电解溶剂为色谱级二氯甲烷:乙腈体积比(0.1~10:1)的混合溶液。
一种D-A-D结构聚合物膜PEFE,所述D-A-D结构聚合物膜PEFE用于电致变色型超级电容器。
本发明的有益效果为:所述的聚合物薄膜PEFE,通过扫描电镜(SEM)对其进行表征,证明通过电化学聚合的方式形成形貌均匀的聚合物薄膜材料;通过使用电化学工作站和紫外-可见分光光度计对其电化学性能及光谱电化学测试进行分析,可以看出该聚合物既有明显颜色变化,还有较高的比容量及稳定性。
附图说明
图1是D-A-D结构单体EFE在扫速100mV下循环伏安聚合曲线图。
图2是D-A-D结构聚合物PEFE膜的SEM图像。
图3是D-A-D结构聚合物PEFE薄膜在电流密度0.1mA/cm2、0.2mA/cm2、0.5mA/cm2下恒电流充放电曲线图。
图4是PEFE聚合物膜在电流密度为0.5mA/cm2时循环500圈的循环稳定性图。
图5是PEFE聚合物膜在不同不同光谱下的对比度及响应时间图。
具体实施方式
下面通过具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。
实施例1
参照图1~图5,一种D-A-D结构聚合物膜PEFE,按照如下方法进行制备:
(1)单体EFE的合成
对3,4-乙烯二氧噻吩(EDOT)锡化,将EDOT(6mmol,0.852g)溶解在干燥的四氢呋喃(40mL)中,在-78℃的N2氛围下,缓慢滴加正丁基锂(6.6mmol,4.125mL,1.6M),缓慢升温至-40℃,搅拌1h,再降温至-78℃,缓慢滴加三丁基氯化锡(7.2mmol,2.347g),并在室温下搅拌8h,过中性氧化铝柱过滤去除固体杂质,得到产物三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基)锡烷,将2,7-二溴-9芴酮(3mmol,1.014g),三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基)锡烷(6mmol,2.593g)及双三苯基磷二氯化钯(0.025mmol,0.01755g)在N2氛围下溶解于50ml干燥甲苯中,加热至110℃下保持回流24小时。体系冷却后,用去离子水和二氯甲烷萃取,并加入无水硫酸镁搅拌干燥,之后旋转蒸发掉溶剂拌样,选择流动相(PE:DCM=1:2)层析过柱。最终得到目标产物(EWE)。1H NMR(500MHz,CDCl3)δ8.07(d,J=1.6Hz,1H),7.82(dd,J=7.9,1.7Hz,1H),7.78(d,J=1.8Hz,1H),7.61(dd,J=7.9,1.8Hz,1H),7.49(d,J=7.9Hz,1H),7.39(d,J=7.9Hz,1H),6.36(s,1H),4.38-4.34(m,2H),4.30-4.25(m,3H).MALDI-TOF-MS(M)(m/z):461.1[M+H]+.
(2)聚合物(PEFE)材料的制备
将EFE单体(0.01mmol,0.0048g),四丁基六氟磷酸铵(TBAPF6)(1mmol,0.387g)溶解于9ml色谱级二氯甲烷与1ml色谱级乙腈的混合溶液中,配制成单体浓度0.001mol/L、电解质浓度0.1mol/L的电解液。在室温下,以氧化铟锡导电玻璃(ITO)作为工作电极,以抛光后的铂丝作为辅助电极(铂丝长度4cm),以双液接型银/氯化银电极作为参比电极,采用循环伏安阳极氧化法制备聚合物薄膜。设定初始电压为-0.5V、终止电压1.4V、扫速100mV/s,聚合圈数设定为20圈(聚合膜厚度为450nm)。观察EFE聚合曲线,可知氧化还原峰对(1.00V/0.62V)。用二氯甲烷与乙腈(体积比9:1)的混和溶液冲洗,洗掉聚合物薄膜上的低聚物。其中,PEWE聚集态易团聚形成较为致密的整体,但该聚合物薄膜形成较小的团聚体,不易清洗干净,可能对其电化学性能产生一定的影响。
(3)聚合物(PEFE)电化学性能测试
将四丁基六氟磷酸铵(TBAPF6)(1mmol,0.387g)溶解于9ml色谱级二氯甲烷与1ml色谱级乙腈混合溶液中,配制成电解质浓度0.1mol/L的电解液。选择三电极体系,涂有聚合物(PEFE)薄膜的氧化铟锡(ITO)导电玻璃为工作电极,以抛光后的铂丝作为辅助电极(铂丝长度4cm),以双液接型银/氯化银电极作为参比电极。在室温下,测试其循环伏安曲线,即在0~1.4V电压范围下,以100mV/s的扫速循环伏安扫描一圈。观察PEFE聚合物曲线,可知氧化还原峰对(1.00V/0.62V)。聚合膜均具有两种颜色显示,其中PEWE在中性态下显日晒色,氧化态显灰紫色。依旧在此电解液下进行恒电流充放电测试,在0.1mA/cm2的电流密度下,有较大的比容量及较好的循环稳定性。在0.1mol/L的TBAPF6的二氯甲烷(CH2Cl2)和乙腈(ACN)(v/v=9/1)混合溶液(空白溶液)中,对各聚合膜进行全波段(UV–vis–NIR)吸光度的测试,改变电压,并测试不同电压下聚合物掺杂态吸光度的变化。共轭聚合膜PEWE在中性态下的最大吸收峰在370nm,该波长下的吸收峰即为聚合物的本征吸收峰;在可见光谱区,其最大吸收峰为450nm,此时聚合物薄膜呈现日晒色,随着电压的增加,该吸收峰逐渐减弱直至消失;在500-850nm吸收带的吸收强度逐渐增加,表明增加电压使该聚合链的掺杂逐渐加深,形成单极子态,且发生电子跃迁的单极子态逐步增加,聚合膜慢慢变为灰紫色。除此之外,近红外区出现新的吸收带且随着电压的升高逐渐增强,表明了该材料双极子态的形成及其电子跃迁的变化。
实施例2
一种D-A-D结构聚合物膜PEFE,按照如下方法进行制备:
(1)单体EFE的合成
对3,4-乙烯二氧噻吩(EDOT)锡化,将EDOT(6mmol,0.852g)溶解在干燥的四氢呋喃(40mL)中,在-78℃的N2氛围下,缓慢滴加正丁基锂(6.6mmol,4.125mL,1.6M),缓慢升温至-40℃,搅拌1h,再降温至-78℃,缓慢滴加三丁基氯化锡(7.2mmol,2.347g),并在室温下搅拌8h,过中性氧化铝柱过滤去除固体杂质,得到产物三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基)锡烷。将2,7-二溴-9芴酮(3mmol,1.014g),三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基)锡烷(6mmol,2.593g)及双三苯基磷二氯化钯(0.025mmol,0.01755g)在N2氛围下溶解于50ml干燥甲苯中,加热至110℃下保持回流36小时。体系冷却后,用去离子水和二氯甲烷萃取,并加入无水硫酸镁搅拌干燥,之后旋转蒸发掉溶剂拌样,选择流动相(PE:DCM=1:2)层析过柱。最终得到目标产物(EWE)。1H NMR(500MHz,CDCl3)δ8.07(d,J=1.6Hz,1H),7.82(dd,J=7.9,1.7Hz,1H),7.78(d,J=1.8Hz,1H),7.61(dd,J=7.9,1.8Hz,1H),7.49(d,J=7.9Hz,1H),7.39(d,J=7.9Hz,1H),6.36(s,1H),4.38-4.34(m,2H),4.30-4.25(m,3H).MALDI-TOF-MS(M)(m/z):461.1[M+H]+.
(2)聚合物(PEFE)材料的制备
将EFE单体(0.01mmol,0.0048g),四丁基六氟磷酸铵(TBAPF6)(1mmol,0.387g)溶解于9ml色谱级二氯甲烷与1ml色谱级乙腈的混合溶液中,配制成单体浓度0.001mol/L、电解质浓度0.1mol/L的电解液。在室温下,以氧化铟锡导电玻璃(ITO)作为工作电极,以抛光后的铂丝作为辅助电极(铂丝长度4cm),以双液接型银/氯化银电极作为参比电极,采用循环伏安阳极氧化法制备聚合物薄膜。设定初始电压为-0.5V、终止电压1.4V、扫速100mV/s,聚合圈数设定为20圈(聚合膜厚度为450nm)。观察EFE聚合曲线,可知氧化还原峰对(1.00V/0.62V)。用二氯甲烷与乙腈(体积比9:1)的混和溶液冲洗,洗掉聚合物薄膜上的低聚物。其中,PEWE聚集态易团聚形成较为致密的整体,但该聚合物薄膜形成较小的团聚体,不易清洗干净,可能对其电化学性能产生一定的影响。
(3)聚合物(PEFE)电化学性能测试
将四丁基六氟磷酸铵(TBAPF6)(1mmol,0.387g)溶解于9ml色谱级二氯甲烷与1ml色谱级乙腈混合溶液中,配制成电解质浓度0.1mol/L的电解液。选择三电极体系,涂有聚合物(PEFE)薄膜的氧化铟锡(ITO)导电玻璃为工作电极,以抛光后的铂丝作为辅助电极(铂丝长度4cm),以双液接型银/氯化银电极作为参比电极。在室温下,测试其循环伏安曲线,即在0~1.4V电压范围下,以100mV/s的扫速循环伏安扫描一圈。观察PEFE聚合物曲线,可知氧化还原峰对(1.00V/0.62V)。聚合膜均具有两种颜色显示,其中PEWE在中性态下显日晒色,氧化态显灰紫色。依旧在此电解液下进行恒电流充放电测试,在0.1mA/cm2的电流密度下,有较大的比容量及较好的循环稳定性。在0.1mol/L的TBAPF6的二氯甲烷(CH2Cl2)和乙腈(ACN)(v/v=9/1)混合溶液(空白溶液)中,对各聚合膜进行全波段(UV–vis–NIR)吸光度的测试,改变电压,并测试不同电压下聚合物掺杂态吸光度的变化。共轭聚合膜PEWE在中性态下的最大吸收峰在370nm,该波长下的吸收峰即为聚合物的本征吸收峰;在可见光谱区,其最大吸收峰为450nm,此时聚合物薄膜呈现日晒色,随着电压的增加,该吸收峰逐渐减弱直至消失;在500-850nm吸收带的吸收强度逐渐增加,表明增加电压使该聚合链的掺杂逐渐加深,形成单极子态,且发生电子跃迁的单极子态逐步增加,聚合膜慢慢变为灰紫色。除此之外,近红外区出现新的吸收带且随着电压的升高逐渐增强,表明了该材料双极子态的形成及其电子跃迁的变化。
实施例3
一种D-A-D结构聚合物膜PEFE,按照如下方法进行制备:
(1)单体EFE的合成
对3,4-乙烯二氧噻吩(EDOT)锡化,将EDOT(6mmol,0.852g)溶解在干燥的四氢呋喃(40mL)中,在-78℃的N2氛围下,缓慢滴加正丁基锂(6.6mmol,4.125mL,1.6M),缓慢升温至-40℃,搅拌1h,再降温至-78℃,缓慢滴加三丁基氯化锡(7.2mmol,2.347g),并在室温下搅拌8h,过中性氧化铝柱过滤去除固体杂质,得到产物三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基)锡烷。将2,7-二溴-9芴酮(3mmol,1.014g),三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基)锡烷(6mmol,2.593g)及双三苯基磷二氯化钯(0.025mmol,0.01755g)在N2氛围下溶解于50ml干燥甲苯中,加热至110℃下保持回流36小时。体系冷却后,用去离子水和二氯甲烷萃取,并加入无水硫酸镁搅拌干燥,之后旋转蒸发掉溶剂拌样,选择流动相(PE:DCM=1:2)层析过柱。最终得到目标产物(EWE)。1H NMR(500MHz,CDCl3)δ8.07(d,J=1.6Hz,1H),7.82(dd,J=7.9,1.7Hz,1H),7.78(d,J=1.8Hz,1H),7.61(dd,J=7.9,1.8Hz,1H),7.49(d,J=7.9Hz,1H),7.39(d,J=7.9Hz,1H),6.36(s,1H),4.38-4.34(m,2H),4.30-4.25(m,3H).MALDI-TOF-MS(M)(m/z):461.1[M+H]+.
(2)聚合物(PEFE)材料的制备
将EFE单体(0.01mmol,0.0048g),六氟磷酸锂(LiPF6)(1mmol,0.387g)溶解于9ml色谱级二氯甲烷与1ml色谱级乙腈的混合溶液中,配制成单体浓度0.001mol/L、电解质浓度0.1mol/L的电解液。在室温下,以氧化铟锡导电玻璃(ITO)作为工作电极,以抛光后的铂丝作为辅助电极(铂丝长度4cm),以双液接型银/氯化银电极作为参比电极,采用循环伏安阳极氧化法制备聚合物薄膜。设定初始电压为-0.5V、终止电压1.4V、扫速100mV/s,聚合圈数设定为20圈(聚合膜厚度为450nm)。观察EFE聚合曲线,可知氧化还原峰对(1.00V/0.62V)。用二氯甲烷与乙腈(体积比9:1)的混和溶液冲洗,洗掉聚合物薄膜上的低聚物。其中,PEWE聚集态易团聚形成较为致密的整体,但该聚合物薄膜形成较小的团聚体,不易清洗干净,可能对其电化学性能产生一定的影响。
(3)聚合物(PEFE)电化学性能测试
将六氟磷酸锂(LiPF6)(1mmol,0.387g)溶解于9ml色谱级二氯甲烷与1ml色谱级乙腈混合溶液中,配制成电解质浓度0.1mol/L的电解液。选择三电极体系,涂有聚合物(PEFE)薄膜的氧化铟锡(ITO)导电玻璃为工作电极,以抛光后的铂丝作为辅助电极(铂丝长度4cm),以双液接型银/氯化银电极作为参比电极。在室温下,测试其循环伏安曲线,即在0~1.4V电压范围下,以100mV/s的扫速循环伏安扫描一圈。观察PEFE聚合物曲线,可知氧化还原峰对(1.00V/0.62V)。聚合膜均具有两种颜色显示,其中PEWE在中性态下显日晒色,氧化态显灰紫色。依旧在此电解液下进行恒电流充放电测试,在0.1mA/cm2的电流密度下,有较大的比容量及较好的循环稳定性。在0.1mol/L的TBAPF6的二氯甲烷(CH2Cl2)和乙腈(ACN)(v/v=9/1)混合溶液(空白溶液)中,对各聚合膜进行全波段(UV–vis–NIR)吸光度的测试,改变电压,并测试不同电压下聚合物掺杂态吸光度的变化。共轭聚合膜PEWE在中性态下的最大吸收峰在370nm,该波长下的吸收峰即为聚合物的本征吸收峰;在可见光谱区,其最大吸收峰为450nm,此时聚合物薄膜呈现日晒色,随着电压的增加,该吸收峰逐渐减弱直至消失;在500-850nm吸收带的吸收强度逐渐增加,表明增加电压使该聚合链的掺杂逐渐加深,形成单极子态,且发生电子跃迁的单极子态逐步增加,聚合膜慢慢变为灰紫色。除此之外,近红外区出现新的吸收带且随着电压的升高逐渐增强,表明了该材料双极子态的形成及其电子跃迁的变化。
实施例4
一种D-A-D结构聚合物膜PEFE,按照如下方法进行制备:
(1)单体EFE的合成
对3,4-乙烯二氧噻吩(EDOT)锡化,将EDOT(6mmol,0.852g)溶解在干燥的四氢呋喃(40mL)中,在-78℃的N2氛围下,缓慢滴加正丁基锂(6.6mmol,4.125mL,1.6M),缓慢升温至-40℃,搅拌1h,再降温至-78℃,缓慢滴加三丁基氯化锡(7.2mmol,2.347g),并在室温下搅拌8h,过中性氧化铝柱过滤去除固体杂质,得到产物三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基)锡烷,将2,7-二溴-9芴酮(3mmol,1.014g),三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基)锡烷(6mmol,2.593g)及双三苯基磷二氯化钯(0.025mmol,0.01755g)在N2氛围下溶解于50ml干燥甲苯中,加热至110℃下保持回流24小时。体系冷却后,用去离子水和二氯甲烷萃取,并加入无水硫酸镁搅拌干燥,之后旋转蒸发掉溶剂拌样,选择流动相(PE:DCM=1:2)层析过柱。最终得到目标产物(EWE)。1H NMR(500MHz,CDCl3)δ8.07(d,J=1.6Hz,1H),7.82(dd,J=7.9,1.7Hz,1H),7.78(d,J=1.8Hz,1H),7.61(dd,J=7.9,1.8Hz,1H),7.49(d,J=7.9Hz,1H),7.39(d,J=7.9Hz,1H),6.36(s,1H),4.38-4.34(m,2H),4.30-4.25(m,3H).MALDI-TOF-MS(M)(m/z):461.1[M+H]+.
(2)聚合物(PEFE)材料的制备
将EFE单体(0.01mmol,0.0048g),四丁基六氟磷酸铵(TBAPF6)(1mmol,0.387g)溶解于10ml色谱级二氯甲烷与1ml色谱级乙腈的混合溶液中,配制成单体浓度0.001mol/L、电解质浓度0.1mol/L的电解液。在室温下,以氧化铟锡导电玻璃(ITO)作为工作电极,以抛光后的铂丝作为辅助电极(铂丝长度4cm),以双液接型银/氯化银电极作为参比电极,采用循环伏安阳极氧化法制备聚合物薄膜。设定初始电压为-0.5V、终止电压1.4V、扫速100mV/s,聚合圈数设定为20圈(聚合膜厚度为450nm)。观察EFE聚合曲线,可知氧化还原峰对(1.00V/0.62V)。用二氯甲烷与乙腈(体积比10:1)的混和溶液冲洗,洗掉聚合物薄膜上的低聚物。其中,PEWE聚集态易团聚形成较为致密的整体,但该聚合物薄膜形成较小的团聚体,不易清洗干净,可能对其电化学性能产生一定的影响。
(3)聚合物(PEFE)电化学性能测试
将四丁基六氟磷酸铵(TBAPF6)(1mmol,0.387g)溶解于9ml色谱级二氯甲烷与1ml色谱级乙腈混合溶液中,配制成电解质浓度0.1mol/L的电解液。选择三电极体系,涂有聚合物(PEFE)薄膜的氧化铟锡(ITO)导电玻璃为工作电极,以抛光后的铂丝作为辅助电极(铂丝长度4cm),以双液接型银/氯化银电极作为参比电极。在室温下,测试其循环伏安曲线,即在0~1.4V电压范围下,以100mV/s的扫速循环伏安扫描一圈。观察PEFE聚合物曲线,可知氧化还原峰对(1.00V/0.62V)。聚合膜均具有两种颜色显示,其中PEWE在中性态下显日晒色,氧化态显灰紫色。依旧在此电解液下进行恒电流充放电测试,在0.1mA/cm2的电流密度下,有较大的比容量及较好的循环稳定性。在0.1mol/L的TBAPF6的二氯甲烷(CH2Cl2)和乙腈(ACN)(v/v=10/1)混合溶液(空白溶液)中,对各聚合膜进行全波段(UV–vis–NIR)吸光度的测试,改变电压,并测试不同电压下聚合物掺杂态吸光度的变化。共轭聚合膜PEWE在中性态下的最大吸收峰在370nm,该波长下的吸收峰即为聚合物的本征吸收峰;在可见光谱区,其最大吸收峰为450nm,此时聚合物薄膜呈现日晒色,随着电压的增加,该吸收峰逐渐减弱直至消失;在500-850nm吸收带的吸收强度逐渐增加,表明增加电压使该聚合链的掺杂逐渐加深,形成单极子态,且发生电子跃迁的单极子态逐步增加,聚合膜慢慢变为灰紫色。除此之外,近红外区出现新的吸收带且随着电压的升高逐渐增强,表明了该材料双极子态的形成及其电子跃迁的变化。
实施例5
一种D-A-D结构聚合物膜PEFE,按照如下方法进行制备:
(1)单体EFE的合成
对3,4-乙烯二氧噻吩(EDOT)锡化,将EDOT(6mmol,0.852g)溶解在干燥的四氢呋喃(40mL)中,在-78℃的N2氛围下,缓慢滴加正丁基锂(6.6mmol,4.125mL,1.6M),缓慢升温至-40℃,搅拌1h,再降温至-78℃,缓慢滴加三丁基氯化锡(7.2mmol,2.347g),并在室温下搅拌8h,过中性氧化铝柱过滤去除固体杂质,得到产物三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基)锡烷。将2,7-二溴-9芴酮(3mmol,1.014g),三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基)锡烷(6mmol,2.593g)及双三苯基磷二氯化钯(0.025mmol,0.01755g)在N2氛围下溶解于50ml干燥甲苯中,加热至110℃下保持回流36小时。体系冷却后,用去离子水和二氯甲烷萃取,并加入无水硫酸镁搅拌干燥,之后旋转蒸发掉溶剂拌样,选择流动相(PE:DCM=1:2)层析过柱。最终得到目标产物(EWE)。1H NMR(500MHz,CDCl3)δ8.07(d,J=1.6Hz,1H),7.82(dd,J=7.9,1.7Hz,1H),7.78(d,J=1.8Hz,1H),7.61(dd,J=7.9,1.8Hz,1H),7.49(d,J=7.9Hz,1H),7.39(d,J=7.9Hz,1H),6.36(s,1H),4.38-4.34(m,2H),4.30-4.25(m,3H).MALDI-TOF-MS(M)(m/z):461.1[M+H]+.
(2)聚合物(PEFE)材料的制备
将EFE单体(0.01mmol,0.0048g),四丁基六氟磷酸铵(TBAPF6)(1mmol,0.387g)溶解于0.01ml色谱级二氯甲烷与9.99ml色谱级乙腈的混合溶液中,配制成单体浓度0.001mol/L、电解质浓度0.1mol/L的电解液。在室温下,以氧化铟锡导电玻璃(ITO)作为工作电极,以抛光后的铂丝作为辅助电极(铂丝长度4cm),以双液接型银/氯化银电极作为参比电极,采用循环伏安阳极氧化法制备聚合物薄膜。设定初始电压为-0.5V、终止电压1.4V、扫速100mV/s,聚合圈数设定为20圈(聚合膜厚度为450nm)。观察EFE聚合曲线,可知氧化还原峰对(1.00V/0.62V)。用二氯甲烷与乙腈(体积比0.1:1)的混和溶液冲洗,洗掉聚合物薄膜上的低聚物。其中,PEWE聚集态易团聚形成较为致密的整体,但该聚合物薄膜形成较小的团聚体,不易清洗干净,可能对其电化学性能产生一定的影响。
(3)聚合物(PEFE)电化学性能测试
将四丁基六氟磷酸铵(TBAPF6)(1mmol,0.387g)溶解于9ml色谱级二氯甲烷与1ml色谱级乙腈混合溶液中,配制成电解质浓度0.1mol/L的电解液。选择三电极体系,涂有聚合物(PEFE)薄膜的氧化铟锡(ITO)导电玻璃为工作电极,以抛光后的铂丝作为辅助电极(铂丝长度4cm),以双液接型银/氯化银电极作为参比电极。在室温下,测试其循环伏安曲线,即在0~1.4V电压范围下,以100mV/s的扫速循环伏安扫描一圈。观察PEFE聚合物曲线,可知氧化还原峰对(1.00V/0.62V)。聚合膜均具有两种颜色显示,其中PEWE在中性态下显日晒色,氧化态显灰紫色。依旧在此电解液下进行恒电流充放电测试,在0.1mA/cm2的电流密度下,有较大的比容量及较好的循环稳定性。在0.1mol/L的TBAPF6的二氯甲烷(CH2Cl2)和乙腈(ACN)(v/v=9/1)混合溶液(空白溶液)中,对各聚合膜进行全波段(UV–vis–NIR)吸光度的测试,改变电压,并测试不同电压下聚合物掺杂态吸光度的变化。共轭聚合膜PEWE在中性态下的最大吸收峰在370nm,该波长下的吸收峰即为聚合物的本征吸收峰;在可见光谱区,其最大吸收峰为450nm,此时聚合物薄膜呈现日晒色,随着电压的增加,该吸收峰逐渐减弱直至消失;在500-850nm吸收带的吸收强度逐渐增加,表明增加电压使该聚合链的掺杂逐渐加深,形成单极子态,且发生电子跃迁的单极子态逐步增加,聚合膜慢慢变为灰紫色。除此之外,近红外区出现新的吸收带且随着电压的升高逐渐增强,表明了该材料双极子态的形成及其电子跃迁的变化。
实施例6
一种D-A-D结构聚合物膜PEFE,用于电致变色型超级电容器。

Claims (5)

1.一种D-A-D结构聚合物膜PEFE,其特征在于,按照如下方法进行制备:
(1)将式I中的2,7-二溴-9芴酮与预先制得的三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基锡烷及双三苯基磷二氯化钯按(1:1~2:0.002~0.01)比例混合,在氮气环境下溶于有机溶剂A中,在回流温度下反应24~36小时,得到反应混合液B,用去离子水和二氯甲烷萃取后,过硅胶柱分离可得单体EFE,如式II所示;
Figure FDA0002247892740000011
(2)将步骤(1)所得式2所示的D-A-D单体EFE和电解质溶于支持电解溶剂中得到电解液,单体EFE的浓度为0.1~10mmol/L,支持电解质的初始终浓度为0.01~1mol/L电解溶剂.将电解液加入到电解池三电极体系中,与电化学工作站相连,在聚合电压-0.5~1.4V vsAg/AgCl下,聚合圈数在5~20圈下,进行电化学CV聚合反应,得到D-A-D结构聚合物膜PEFE,如式III所示;用有机溶剂色谱级二氯甲烷:乙腈体积比(0.1~10:1)的混合溶液清洗薄膜,干燥即可;
Figure FDA0002247892740000012
2.如权利要求1所述的一种D-A-D结构聚合物膜PEFE,其特征在于,所述步骤(2)中,电解溶剂为色谱级二氯甲烷:乙腈体积比(0.1~10:1)的混合溶液。
3.一种如权利要求1所述的D-A-D结构聚合物膜PEFE的制备方法,其特征在于,包括以下步骤:
(1)将式I中的2,7-二溴-9芴酮与预先制得的三丁基(2,3-二氢[3,4-b][1,4]二恶英-5-基锡烷及双三苯基磷二氯化钯按(1:1~2:0.002~0.01)比例混合,在氮气环境下溶于有机溶剂A中,在回流温度下反应24~36小时,得到反应混合液B,用去离子水和二氯甲烷萃取后,过硅胶柱分离可得单体EFE,如式II所示;
Figure FDA0002247892740000013
(2)将步骤(1)所得式2所示的D-A-D单体EFE和电解质溶于支持电解溶剂中得到电解液,单体EFE的浓度为0.1~10mmol/L,支持电解质的初始浓度为0.01~1mol/L电解溶剂。将电解液加入到电解池三电极体系中,与电化学工作站相连,在聚合电压-0.5~1.4V vs Ag/AgCl下,聚合圈数在5~20圈下,进行电化学CV聚合反应,得到D-A-D结构聚合物膜PEFE,如式III所示;用有机溶剂色谱级二氯甲烷:乙腈体积比(0.1~10:1)的混合溶液清洗薄膜,干燥即可;
Figure FDA0002247892740000021
4.如权利要求3所述的制备方法,其特征在于,所述步骤(2)中,电解溶剂为色谱级二氯甲烷:乙腈体积比(0.1~10:1)的混合溶液。
5.一种如权利要求1所述的D-A-D结构聚合物膜PEFE,其特征在于,所述D-A-D结构聚合物膜PEFE用于电致变色型超级电容器。
CN201911023275.6A 2019-10-25 2019-10-25 一种d-a-d结构聚合物膜pefe及其制备方法和应用 Pending CN110938193A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911023275.6A CN110938193A (zh) 2019-10-25 2019-10-25 一种d-a-d结构聚合物膜pefe及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911023275.6A CN110938193A (zh) 2019-10-25 2019-10-25 一种d-a-d结构聚合物膜pefe及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110938193A true CN110938193A (zh) 2020-03-31

Family

ID=69907042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911023275.6A Pending CN110938193A (zh) 2019-10-25 2019-10-25 一种d-a-d结构聚合物膜pefe及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110938193A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113063827A (zh) * 2021-03-12 2021-07-02 长沙理工大学 基于交流阻抗谱的沥青老化评估方法
CN116715683A (zh) * 2023-06-07 2023-09-08 浙江工业大学 一种d-a结构双极性导电聚合物及其制备方法
CN116715683B (zh) * 2023-06-07 2024-06-07 浙江工业大学 一种d-a结构双极性导电聚合物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206021A (zh) * 2015-05-29 2016-12-07 Avx公司 潮湿环境用固体电解电容器
CN109438678A (zh) * 2018-05-21 2019-03-08 浙江工业大学 一种d-a-d`非对称结构聚合物膜pswe及其制备方法与应用
TWI668245B (zh) * 2018-04-18 2019-08-11 國立高雄大學 噻吩類聚合物之拓印電極薄膜的製備方法及用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206021A (zh) * 2015-05-29 2016-12-07 Avx公司 潮湿环境用固体电解电容器
TWI668245B (zh) * 2018-04-18 2019-08-11 國立高雄大學 噻吩類聚合物之拓印電極薄膜的製備方法及用途
CN109438678A (zh) * 2018-05-21 2019-03-08 浙江工业大学 一种d-a-d`非对称结构聚合物膜pswe及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARIF KIVRAK等: "A new processable electrochromic polymer based on an electron deficient fluorene derivative with a high coloration efficiency", 《ELECTROCHIMICA ACTA》 *
BUKET BEZGIN ET AL.: "Electrochemical polymerization of an electron deficient fluorene derivative bearing ethylenedioxythiophene side groups", 《ELECTROCHIMICA ACTA》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113063827A (zh) * 2021-03-12 2021-07-02 长沙理工大学 基于交流阻抗谱的沥青老化评估方法
CN116715683A (zh) * 2023-06-07 2023-09-08 浙江工业大学 一种d-a结构双极性导电聚合物及其制备方法
CN116715683B (zh) * 2023-06-07 2024-06-07 浙江工业大学 一种d-a结构双极性导电聚合物及其制备方法

Similar Documents

Publication Publication Date Title
Liu et al. Synthesis and electrochromic properties of electrochromic polymers based on propylenedioxythiophene, diketopyrrolopyrrole and benzodithiophene units
Xu et al. Solution-processable electrochromic red-to-transmissive polymers with tunable neutral state colors, high contrast and enhanced stability
Cheng et al. Star-shaped conjugated systems derived from thienyl-derivatized poly (triphenylamine) s as active materials for electrochromic devices
Iraqi et al. Covalent binding of redox active centres to preformed regioregular polythiophenes
Kim et al. Electrochemical characterization of newly synthesized polyterthiophene benzoate and its applications to an electrochromic device and a photovoltaic cell
Yao et al. Flexible conjugated polyfurans for bifunctional electrochromic energy storage application
CN110592609B (zh) 一种提高聚合物电致变色薄膜循环稳定性的方法
Guven et al. Electrosyntheses of anthracene clicked poly (thienylpyrrole) s and investigation of their electrochromic properties
Lin et al. Synthesis and electro-optical properties of new conjugated hybrid polymers from EDOT end-capped dibenzothiophene and dibenzofuran
Ouyang et al. Multicolored electrochromic copolymer based on 1, 4-di (thiophen-3-yl) benzene and 3, 4-ethylenedioxythiophene
Qin et al. Poly (3, 4-dioxythiophene) soft nano-network with a compatible ion transporting channel for improved electrochromic performance
Chen et al. Electropolymerization of DA type EDOT-based monomers consisting of camphor substituted quinoxaline unit for electrochromism with enhanced performance
De Lazari Ferreira et al. Electrochromic and spectroelectrochemical properties of polythiophene β-substituted with alkyl and alkoxy groups
Wang et al. Synthesis and electropolymerization of 9H-carbazol-9-ylpyrene and its electrochromic properties and electrochromic device application
CN109369890A (zh) 一种聚3,4-乙烯二氧噻吩纳米网状结构薄膜及其制备方法与应用
Wang et al. One-step electropolymerized thieno [3, 2-b] thiophene-based bifunctional electrode with controlled color conversion for electrochromic energy storage application
Turkoglu et al. Electropolymerization, spectroelectrochemistry and electrochromic properties of cross-conjugated and conjugated selenophenothiophenes with thiophene bridge
Lu et al. Stepwise enhancement on optoelectronic performances of polyselenophene via electropolymerization of mono-, bi-, and tri-selenophene
Yang et al. Integrated electrochromic and electrofluorochromic properties from polyaniline-like polymers with triphenylacrylonitrile as side groups
CN111323980B (zh) 一种二氧化钛/聚三[2-(4-噻吩)苯]胺复合薄膜的制备方法和应用
CN112898543B (zh) 一种噻吩类聚合物薄膜及其制备方法与应用
Pan et al. Electropolymerization of DA type monomers consisting of mono-triphenylamine moiety for electrochromic devices and supercapacitors
CN110938193A (zh) 一种d-a-d结构聚合物膜pefe及其制备方法和应用
Hu et al. Tuning optoelectronic performances for 3-methylselenophene-EDOT hybrid polymer
Yiğit et al. Electrochemical and spectroelectrochemical studies of poly (2, 5-di-2, 3-dihydrothieno [3, 4-b][1, 4] dioxin-5-ylthienyl) derivatives bearing azobenzene, coumarine and fluorescein dyes: Effect of chromophore groups on electrochromic properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200331