CN110929776B - Remote sensing wind field data quality evaluation method and device based on sea surface wind field stability statistical zoning - Google Patents

Remote sensing wind field data quality evaluation method and device based on sea surface wind field stability statistical zoning Download PDF

Info

Publication number
CN110929776B
CN110929776B CN201911128579.9A CN201911128579A CN110929776B CN 110929776 B CN110929776 B CN 110929776B CN 201911128579 A CN201911128579 A CN 201911128579A CN 110929776 B CN110929776 B CN 110929776B
Authority
CN
China
Prior art keywords
wind
wind field
remote sensing
data
direction stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911128579.9A
Other languages
Chinese (zh)
Other versions
CN110929776A (en
Inventor
雷惠
周斌
蒋锦刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Normal University
Original Assignee
Hangzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Normal University filed Critical Hangzhou Normal University
Priority to CN201911128579.9A priority Critical patent/CN110929776B/en
Publication of CN110929776A publication Critical patent/CN110929776A/en
Application granted granted Critical
Publication of CN110929776B publication Critical patent/CN110929776B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/217Validation; Performance evaluation; Active pattern learning techniques
    • G06F18/2193Validation; Performance evaluation; Active pattern learning techniques based on specific statistical tests
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

The invention discloses a wind field remote sensing data quality evaluation method and device based on sea surface wind field stability statistics division, comprising the following steps: establishing a wind speed interval division model and a wind direction stable grade classification model; carrying out space-time matching on the obtained actually measured wind field data and the wind field remote sensing data; calculating a wind direction stability coefficient of actually measured wind field data; carrying out wind speed interval division on the actually measured wind field data by using a wind speed interval division model; utilizing a wind direction stability grade classification model to perform wind direction stability grade classification on actually measured wind field data; and for the measured wind field data and the corresponding wind field remote sensing data contained in each wind direction stability grade, performing quality evaluation on the wind field remote sensing data according to the correlation between the measured wind field data and the wind field remote sensing data. The method and the device accurately evaluate the quality of the wind field remote sensing data.

Description

Remote sensing wind field data quality evaluation method and device based on sea surface wind field stability statistical zoning
Technical Field
The invention belongs to the technical field of ocean information, and particularly relates to a remote sensing wind field data quality evaluation method and device based on sea surface wind field stability statistical zoning.
Background
The sea surface wind field information obtained by the microwave remote sensing sensor and the actual data observed by the equivalent points of the actual buoy have obvious time and space scale difference, and are very unfavorable for quantitative application of remote sensing inversion information. The main sources of errors and uncertainties of remote sensing products mainly include data source errors, model errors, errors caused by variation (space-time variation) in time windows and space scales in the process of verifying data matching, and the like. The process of evaluating the quality of data products output by the system by an independent method, i.e. authenticity check, is mainly working to determine errors of geophysical data products using on-site monitoring data and extrapolation patterns. The monitoring contents comprise atmospheric conditions, optical characteristics of a water-gas interface and a secondary water surface, sea surface meteorological power and geophysical quantities to be detected.
The authenticity check can effectively evaluate the product quality of the remote sensing data, thereby improving the reliability of the satellite remote sensing data. The authenticity verification work of marine remote sensing satellites is always paid attention internationally, a calibration and authenticity verification working Group is established by the international earth observation satellite committee as early as 1984 to coordinate relevant work of authenticity verification of the remote sensing satellites in various countries, and a continuous authenticity verification work is carried out by an NASA (Ocean Biology Processing Group, OBPG) marine biological Processing Group in the life cycle of the satellites by utilizing data in the global range, and a plurality of beneficial achievements are obtained in the aspects of precision evaluation of marine remote sensing products, long-term stability evaluation of satellite measurement, on-orbit calibration precision verification of the satellites and the like.
The satellite product and the field measured data have different space-time sampling characteristics, a reasonable space-time matching window of the measured-remote sensing data is determined according to the spatial resolution of the satellite product and the space-time variation and uniformity of the water body, and the determination principle of the international universal space-time window is as follows: the space window is 3 x 3 or 5 x 5 pixel, and the time window is +/-3 h, however, due to the limitation of remote sensing effective pixel data and sea conditions, the space-time matching principle is difficult to strictly execute. Even if the principle requirement of the space-time matching is met, due to the seasonal and regional variation characteristics of the ocean, particularly the characteristic of high dynamic variation of a wind field, the performance of the precision verification result in different seasons and regions is different, and the reliability and representativeness of the precision verification result need to be further evaluated.
Therefore, how to scientifically and effectively select the time and space matching rules of the actual measurement-remote sensing data, analyze the representative characteristics of the precision evaluation data set and improve the reliability of the precision evaluation result is one of the key scientific problems to be solved.
Disclosure of Invention
The invention aims to provide a wind field remote sensing data quality evaluation method and device based on sea surface wind field stability statistics division.
In order to realize the purpose of the invention, the following technical scheme is provided:
a wind field remote sensing data quality evaluation method based on sea surface wind field stability statistical zoning comprises the following steps:
establishing a wind speed interval division model according to the wind speed;
determining a wind direction stability coefficient based on historical wind field data, and establishing a wind direction stability grade classification model according to the wind direction stability coefficient;
acquiring actually measured wind field data and wind field remote sensing data, and performing space-time matching on the acquired actually measured wind field data and wind field remote sensing data to acquire a corresponding relation between the actually measured wind field data and the wind field remote sensing data;
calculating a wind direction stability coefficient of the actually measured wind field data;
carrying out wind speed interval division on the actually measured wind field data by using a wind speed interval division model to determine a wind speed interval to which the remote sensing wind field data belongs;
aiming at the actually measured wind field data and the wind direction stability coefficient thereof in each wind speed interval, carrying out wind direction stability grade division on the actually measured wind field data by using a wind direction stability grade classification model so as to determine the wind direction stability grade to which the remote sensing wind field data belongs;
and for the measured wind field data and the corresponding wind field remote sensing data contained in each wind direction stability grade, performing quality evaluation on the wind field remote sensing data according to the error indexes and the correlation of the measured wind field data and the wind field remote sensing data.
A wind field remote sensing data quality evaluation device based on sea surface wind field stability statistic zoning comprises a computer memory, a computer processor and a computer program which is stored in the computer memory and can be executed on the computer processor, wherein a wind speed interval division model and a wind direction stability grade classification model are also stored in the computer memory, and the computer processor executes the computer program to realize the following steps:
acquiring actually measured wind field data and wind field remote sensing data, and performing space-time matching on the acquired actually measured wind field data and the acquired wind field remote sensing data to acquire a corresponding relation between the actually measured wind field data and the wind field remote sensing data;
calculating a wind direction stability coefficient of actually measured wind field data;
calling the wind speed interval division model to carry out wind speed interval division on the actually measured wind field data so as to determine a wind speed interval to which the remote sensing wind field data belongs;
aiming at the actually measured wind field data and the wind direction stability coefficient thereof in each wind speed interval, calling a wind direction stability grade classification model to perform wind direction stability grade division on the actually measured wind field data so as to determine the wind direction stability grade to which the remote sensing wind field data belongs;
and for the actually measured wind field data and the corresponding wind field remote sensing data contained in each wind direction stability grade, performing quality evaluation on the wind field remote sensing data according to the correlation between the actually measured wind field data and the wind field remote sensing data.
Compared with the prior art, the invention has the following beneficial effects:
the invention provides a method and a device for comprehensively evaluating wind field remote sensing data by a comprehensive wind speed and wind direction stability grade division from the practical problem of influence of an inversion mechanism and space-time variation of the wind field remote sensing data on verification errors. The method and the device can accurately evaluate the quality of the remote sensing data of the wind field, and a user can scientifically screen and apply the remote sensing data of the wind field according to an evaluation result. The method has the advantages of strong feasibility in the implementation process, convenience in program integration in the calculation process, reliable calculation result precision, high industrial popularization value and application prospect.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to these drawings without creative efforts.
FIG. 1 is a flow chart of a wind field remote sensing data quality evaluation method based on a sea surface wind field stability statistical zoning according to an embodiment;
FIG. 2 is a schematic diagram of calculation of the stability of the time wind field provided by the embodiment;
FIG. 3 is a schematic view of the calculation of the stability of the space wind field provided by the embodiment;
fig. 4 is a schematic diagram of a result of a wind direction stability space zoning according to an embodiment;
FIG. 5 is a wind farm data rating evaluation scatter plot provided by an embodiment.
FIG. 6 is a comparative graph of the evaluation results for different wind speed intervals provided by the embodiment.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention will be further described in detail with reference to the accompanying drawings and examples. It should be understood that the detailed description and specific examples, while indicating the scope of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
Fig. 1 is a flowchart of a wind field remote sensing data quality evaluation method based on a sea surface wind field stability statistical zoning according to an embodiment. As shown in fig. 1, the wind field remote sensing data quality evaluation method based on the sea surface wind field stability statistic zoning comprises the following steps:
s101, establishing a wind speed interval division model according to the wind speed.
The different sea surface roughness caused by different wind speeds and the different interference degrees on satellite receiving signals are different, and the remote sensing wind field data quality evaluation in different wind speed intervals needs to be processed differently, so that the wind speed interval division model provided by the embodiment is mainly used for determining the wind speed interval to which the wind speed belongs according to the size of the wind speed. Specifically, the wind speed interval division model includes a mapping relationship between the wind speed and the wind speed interval, as follows:
magnitude of wind speed Interval of wind speed
0~3m/s The first wind speed interval is recorded as Lsp1
3~15m/s A second wind speed interval, denoted as Lsp2
15m/s The third wind speed interval is recorded as Lsp3
S102, determining a wind direction stability coefficient based on historical wind field data, and establishing a wind direction stability grade classification model according to the wind direction stability coefficient.
The wind field data includes wind speed data and wind direction data. When the wind direction stability grade classification model is constructed, the historical wind field data are used as a data source, namely, the wind direction stability coefficient of the historical wind field data is calculated. In the embodiment, a Wind Sat Wind field historical data set is selected, and a multi-year spatiotemporal Wind direction stability coefficient is calculated.
Specifically, the method for determining the wind direction stability coefficient includes:
calculating a first wind direction stability coefficient of the wind field data on a time sequence;
calculating a second wind direction stability coefficient of the wind field data on the space grid;
and fusing the first wind direction stability coefficient and the second wind direction stability coefficient to determine the wind direction stability coefficient.
As shown in fig. 2, a method for calculating a first wind direction stability coefficient of wind field data in a time series includes:
Figure BDA0002277639060000061
as shown in fig. 3, the method for calculating the second wind direction stability coefficient of the wind field data on the spatial grid includes:
Figure BDA0002277639060000062
/>
the calculation method for fusing the first wind direction stability coefficient and the second wind direction stability coefficient comprises the following steps:
Figure BDA0002277639060000063
wherein S (t) is a first wind direction stability coefficient, u i ,v i Respectively a warp wind and a weft wind, i is an index of a wind field data sample, t is the total number of the wind field data samples, S (j) is a second wind direction stability coefficient, u j ,v j The method is characterized in that the wind direction is latitude wind and longitude wind in the grid window m × m, j is an index of the grid window, and S is a wind direction stability coefficient.
After the wind direction stability coefficient is obtained, a wind direction stability grade classification model can be constructed according to the wind direction stability coefficient. When the wind direction stability levels at different time periods are determined, the grid size of the historical data is consistent with that of the verification data set, and if the grid sizes are inconsistent, a resampling method is needed to enable the sizes of the historical grid data verification data to be consistent. The wind direction stability grade classification model comprises a mapping relation between a wind direction stability coefficient and a wind direction stability grade, and comprises the following steps:
Figure BDA0002277639060000064
Figure BDA0002277639060000071
fig. 4 is a diagram illustrating the results of the wind direction stability space division.
S103, acquiring measured wind field data and wind field remote sensing data, performing space-time matching on the acquired measured wind field data and wind field remote sensing data, and acquiring a corresponding relation between the measured wind field data and the wind field remote sensing data.
And S104, calculating the wind direction stability coefficient of the actually measured wind field data.
The method for calculating the wind direction stability coefficient of the actually measured wind field data in S104 is the same as the method for calculating the wind direction stability coefficient in S103, and is not described herein again.
And S105, carrying out wind speed interval division on the actually measured wind field data by using the wind speed interval division model to determine a wind speed interval to which the remotely sensed wind field data belongs.
And S106, aiming at the actually measured wind field data and the wind direction stability coefficient thereof in each wind speed interval, performing wind direction stability grade division on the actually measured wind field data by using a wind direction stability grade classification model so as to determine the wind direction stability grade to which the remotely sensed wind field data belongs.
And S107, for the actually measured wind field data and the corresponding wind field remote sensing data contained in each wind direction stability grade, performing quality evaluation on the wind field remote sensing data according to the correlation between the actually measured wind field data and the wind field remote sensing data.
In an embodiment, the quality evaluation of the wind field remote sensing data according to the correlation between the actually measured wind field data and the wind field remote sensing data comprises the following steps:
calculating the average absolute relative error, the root mean square error, the average relative deviation and the correlation coefficient of the actually measured wind field data and the wind field remote sensing data:
Figure BDA0002277639060000072
Figure BDA0002277639060000073
/>
Figure BDA0002277639060000081
Figure BDA0002277639060000082
wherein RE is the average absolute relative error, RMSE is the root mean square error, BLAS is the average relative deviation, gamma is the correlation coefficient, the value range of gamma is between-1 and +1, M is the data number, r is the correlation coefficient i As wind field remote sensing data, s i In order to measure the wind field data,
Figure BDA0002277639060000083
and &>
Figure BDA0002277639060000084
Respectively the arithmetic mean values of the wind field remote sensing data and the actually measured wind field data;
and taking the average absolute relative error, the root-mean-square error, the average relative deviation and the correlation coefficient as four evaluation indexes, and integrating the four evaluation indexes to determine the quality of the wind field remote sensing data.
The embodiment also provides a wind field remote sensing data quality evaluation device based on sea surface wind field stability statistics zoning, which comprises a computer memory, a computer processor and a computer program stored in the computer memory and executable on the computer processor, wherein the computer memory further stores a wind speed interval division model and a wind direction stability grade classification model, and the computer processor implements the following steps when executing the computer program:
acquiring actually measured wind field data and wind field remote sensing data, and performing space-time matching on the acquired actually measured wind field data and wind field remote sensing data to acquire a corresponding relation between the actually measured wind field data and the wind field remote sensing data;
calculating a wind direction stability coefficient of the actually measured wind field data;
calling the wind speed interval division model to carry out wind speed interval division on the actually measured wind field data so as to determine a wind speed interval to which the remote sensing wind field data belongs;
aiming at the actually measured wind field data and the wind direction stability coefficient thereof in each wind speed interval, calling a wind direction stability grade classification model to perform wind direction stability grade division on the actually measured wind field data so as to determine the wind direction stability grade to which the remote sensing wind field data belongs;
and for the actually measured wind field data and the corresponding wind field remote sensing data contained in each wind direction stability grade, performing quality evaluation on the wind field remote sensing data according to the correlation between the actually measured wind field data and the wind field remote sensing data.
In the wind field remote sensing data quality evaluation device, a wind speed interval division model is established according to the wind speed, and the wind speed interval division model comprises a mapping relation between the wind speed and the wind speed interval as follows:
wind speed Interval of wind speed
0~3m/s The first wind speed interval is recorded as Lsp1
3~15m/s A second wind speed interval, denoted as Lsp2
Greater than 15m/s A third wind speed interval, denoted as Lsp3
In the wind field remote sensing data quality evaluation device, the construction method of the wind direction stability grade classification model comprises the following steps: and determining a wind direction stability coefficient based on historical wind field data, and establishing a wind direction stability grade classification model according to the wind direction stability coefficient.
In the wind field remote sensing data quality evaluation device, the construction method of the wind speed interval division model and the wind direction stability grade classification model is the same as that of the wind speed interval division model and the wind direction stability grade classification model in the wind field remote sensing data quality evaluation method based on the sea surface wind field stability statistical zoning, and the description is omitted here.
The method and the device can accurately evaluate the quality of the remote sensing data of the wind field, and a user can scientifically screen and apply the remote sensing data of the wind field according to the evaluation result.
Examples of the experiments
In the experimental example, the measured wind speed-wind direction data is NDBC historical data (website information is shown as https:// www.ndbc.noaa.gov) of the American national data buoy center. The remote sensing data is Wind Sat sea surface Wind field microwave remote sensing data provided by an earth microwave data center (the website information is as follows: http:// www.remss.com/missions/widdsat /). The Wind Sat sea surface Wind field microwave remote sensing data to be evaluated is daily Wind speed-Wind direction data in 2014, and the historical remote sensing data is Wind Sat sea surface Wind field microwave remote sensing data in 2004-2013. And 1328 pairs of verification data sets are obtained by performing space-time matching on the actually measured wind field data and the wind field remote sensing data.
The wind field data is divided 1328 by using a wind speed interval division model, and the division result is shown in table 1:
TABLE 1
Interval of wind speed 0~3m/s 3~15m/s >15m/s
Number of data pairs 122 776 430
Then, wind direction stability grade division is performed according to actually measured wind field data and a wind direction stability coefficient of the actually measured wind field data in each wind speed interval, and fig. 5 is a verification data grade evaluation scatter diagram in an experimental example.
And finally, for the actually measured wind field data and the corresponding wind field remote sensing data contained in each wind direction stability grade, performing quality evaluation on the wind field remote sensing data according to the correlation between the actually measured wind field data and the wind field remote sensing data.
The statistical result of the wind direction is: RE gave a Level1 of 18.36% and a maximum Level2 of 20.54%, with an overall RE of 19.59. The Level1 result for RMSE was 27.71, and likewise the maximum Level2, which resulted in 33.09% overall RMSE was 31.14. RE has a Level1 result of 19.22% and a maximum Level2 result of 23.70%, with an overall RE of 19.88. The minimum value of RMSE was Level2, resulting in a value of 1.59, and the maximum value was Level3, resulting in a value of 1.97, with an overall RMSE of 1.74.
FIG. 6 shows the matching analysis result of the measured-remote sensing data in different wind speed intervals, and it can be seen from the figure that the wind speed is 3-15 m/s, the data with the division Level of Level2 has the best inspection precision result, both RE and BIAS are small, and the correlation coefficient is the largest. Therefore, the verification data set is subjected to representative evaluation by using the mutation level zoning result, the precision result of the remote sensing product can be more effectively and comprehensively evaluated, the error source of the remote sensing product is revealed, and guidance is provided for optimizing the space-time strategy of the actual measurement sampling point (navigation and buoy).
The above-mentioned embodiments are intended to illustrate the technical solutions and advantages of the present invention, and it should be understood that the above-mentioned embodiments are only the most preferred embodiments of the present invention, and are not intended to limit the present invention, and any modifications, additions, equivalents, etc. made within the scope of the principles of the present invention should be included in the scope of the present invention.

Claims (8)

1. A wind field remote sensing data quality evaluation method based on sea surface wind field stability statistics zoning is characterized by comprising the following steps:
establishing a wind speed interval division model according to the wind speed;
determining a wind direction stability coefficient based on historical wind field data, and establishing a wind direction stability grade classification model according to the wind direction stability coefficient;
acquiring actually measured wind field data and wind field remote sensing data, and performing space-time matching on the acquired actually measured wind field data and the acquired wind field remote sensing data to acquire a corresponding relation between the actually measured wind field data and the wind field remote sensing data;
calculating the wind direction stability coefficient of the actually measured wind field data, comprising: calculating a first wind direction stability coefficient of the wind field data on a time sequence; calculating a second wind direction stability coefficient of the wind field data on the space grid; fusing the first wind direction stability coefficient and the second wind direction stability coefficient to determine the wind direction stability coefficient;
carrying out wind speed interval division on the actually measured wind field data by using a wind speed interval division model to determine a wind speed interval to which the remote sensing wind field data belongs;
aiming at the actually measured wind field data and the wind direction stability coefficient thereof in each wind speed interval, performing wind direction stability grade division on the actually measured wind field data by using a wind direction stability grade classification model so as to determine the wind direction stability grade to which the remotely sensed wind field data belongs;
and for the measured wind field data and the corresponding wind field remote sensing data contained in each wind direction stability grade, performing quality evaluation on the wind field remote sensing data according to the error indexes and the correlation of the measured wind field data and the wind field remote sensing data.
2. The wind field remote sensing data quality assessment method based on sea surface wind field stability statistic zoning according to claim 1, wherein the wind speed interval division model comprises a mapping relation between wind speed and wind speed interval as follows:
magnitude of wind speed Interval of wind speed 0~3m/s A first wind speed interval, denoted as Lsp1 3~15m/s The second wind speed interval is recorded as Lsp2 Greater than 15m/s A third wind speed interval, denoted as Lsp3
3. The wind field remote sensing data quality evaluation method based on sea surface wind field stability statistic zoning according to claim 1, wherein the calculation method of the first wind direction stability coefficient of the wind field data in the time sequence is as follows:
Figure FDA0003875242280000021
the method for calculating the second wind direction stability coefficient of the wind field data on the spatial grid comprises the following steps:
Figure FDA0003875242280000022
the calculation method for fusing the first wind direction stability coefficient and the second wind direction stability coefficient comprises the following steps:
Figure FDA0003875242280000023
wherein S (t) is a first wind direction stability coefficient, u i ,v i Respectively a warp wind and a weft wind, i is an index of a wind field data sample, t is the total number of the wind field data samples, S (j) is a second wind direction stability coefficient, u j ,v j The method is characterized in that the wind direction is latitude wind and longitude wind in the grid window m × m, j is an index of the grid window, and S is a wind direction stability coefficient.
4. The method for evaluating the quality of wind field remote sensing data based on sea surface wind field stability statistic zoning according to claim 1, wherein the wind direction stability grade classification model comprises a mapping relation between a wind direction stability coefficient and a wind direction stability grade as follows:
coefficient of wind direction stability Grade of wind direction stability 0~30 Wind direction stability class I 30~70 Wind direction stability class II 70~100 Wind direction stability class III
5. The wind field remote sensing data quality assessment method based on sea surface wind field stability statistic zoning according to claim 1, wherein the quality assessment of the wind field remote sensing data according to the correlation between the measured wind field data and the wind field remote sensing data comprises:
calculating the average absolute relative error, the root mean square error, the average relative deviation and the correlation coefficient of the actually measured wind field data and the wind field remote sensing data:
Figure FDA0003875242280000031
Figure FDA0003875242280000032
Figure FDA0003875242280000033
Figure FDA0003875242280000034
wherein RE is the average absolute relative error, RMSE is the root mean square error, BLAS is the average relative deviation, gamma is the correlation coefficient, the value range of gamma is between-1 and +1, M is the data number, r is the correlation coefficient i As wind field remote sensing data, s i In order to measure the wind field data,
Figure FDA0003875242280000035
and &>
Figure FDA0003875242280000036
Respectively the arithmetic mean value of the wind field remote sensing data and the actually measured wind field data;
and taking the average absolute relative error, the root mean square error, the average relative deviation and the correlation coefficient as four evaluation indexes, and integrating the four evaluation indexes to determine the quality of the wind field remote sensing data.
6. A wind field remote sensing data quality assessment device based on sea surface wind field stability statistic zoning comprises a computer memory, a computer processor and a computer program which is stored in the computer memory and can be executed on the computer processor, wherein a wind speed interval division model and a wind direction stability grade classification model are also stored in the computer memory, and the computer processor realizes the following steps when executing the computer program:
acquiring actually measured wind field data and wind field remote sensing data, and performing space-time matching on the acquired actually measured wind field data and the acquired wind field remote sensing data to acquire a corresponding relation between the actually measured wind field data and the wind field remote sensing data;
calculating a wind direction stability coefficient of actually measured wind field data, wherein the wind direction stability coefficient comprises a first wind direction stability coefficient of the wind field data on a time sequence; calculating a second wind direction stability coefficient of the wind field data on the space grid; fusing the first wind direction stability coefficient and the second wind direction stability coefficient to determine the wind direction stability coefficient;
calling the wind speed interval division model to carry out wind speed interval division on the actually measured wind field data so as to determine a wind speed interval to which the remote sensing wind field data belongs;
aiming at the actually measured wind field data and the wind direction stability coefficient thereof in each wind speed interval, calling a wind direction stability grade classification model to perform wind direction stability grade division on the actually measured wind field data so as to determine the wind direction stability grade to which the remote sensing wind field data belongs;
and for the measured wind field data and the corresponding wind field remote sensing data contained in each wind direction stability grade, performing quality evaluation on the wind field remote sensing data according to the correlation between the measured wind field data and the wind field remote sensing data.
7. The device for evaluating the quality of wind field remote sensing data based on the sea surface wind field stability statistic zoning according to claim 6, wherein the wind speed interval division model is established according to the wind speed, and comprises a mapping relation between the wind speed and the wind speed interval as follows:
wind speed Interval of wind speed 0~3m/s The first wind speed interval is recorded as Lsp1 3~15m/s A second wind speed interval, denoted as Lsp2 Greater than 15m/s A third wind speed interval, denoted as Lsp3
8. The wind field remote sensing data quality assessment device based on sea surface wind field stability statistic zoning according to claim 6, wherein the construction method of the wind direction stability grade classification model comprises the following steps:
and determining a wind direction stability coefficient based on historical wind field data, and establishing a wind direction stability grade classification model according to the wind direction stability coefficient.
CN201911128579.9A 2019-11-18 2019-11-18 Remote sensing wind field data quality evaluation method and device based on sea surface wind field stability statistical zoning Active CN110929776B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911128579.9A CN110929776B (en) 2019-11-18 2019-11-18 Remote sensing wind field data quality evaluation method and device based on sea surface wind field stability statistical zoning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911128579.9A CN110929776B (en) 2019-11-18 2019-11-18 Remote sensing wind field data quality evaluation method and device based on sea surface wind field stability statistical zoning

Publications (2)

Publication Number Publication Date
CN110929776A CN110929776A (en) 2020-03-27
CN110929776B true CN110929776B (en) 2023-04-07

Family

ID=69854142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911128579.9A Active CN110929776B (en) 2019-11-18 2019-11-18 Remote sensing wind field data quality evaluation method and device based on sea surface wind field stability statistical zoning

Country Status (1)

Country Link
CN (1) CN110929776B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112232675B (en) * 2020-10-16 2021-09-21 中国气象局气象探测中心 Combined wind field evaluation method, device and system
CN112632862B (en) * 2020-11-09 2023-11-14 北京辰安科技股份有限公司 Wind field stability determining method and device, electronic equipment and storage medium
CN112579980A (en) * 2020-12-22 2021-03-30 深圳航天宏图信息技术有限公司 Wind field data processing method, device, equipment and storage medium
CN112699204B (en) * 2021-01-14 2021-08-27 国家卫星海洋应用中心 Method and device for determining space matching window
CN113255121A (en) * 2021-05-13 2021-08-13 中国南方电网有限责任公司超高压输电公司检修试验中心 Momentum transfer coefficient determination method and device based on full wind speed condition
CN116953703A (en) * 2023-07-21 2023-10-27 国家卫星海洋应用中心 Offshore wind energy assessment method, device and equipment
CN117610940B (en) * 2024-01-18 2024-04-16 航天宏图信息技术股份有限公司 Method, device, equipment and medium for evaluating risk of storm disaster

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088206A (en) * 2011-10-14 2013-05-13 Mitsubishi Heavy Ind Ltd Diffusion situation prediction system
CN104392113A (en) * 2014-11-11 2015-03-04 宁波市气象台 Method for estimating wind speed of cold air wind on offshore sea surface
CN104777526A (en) * 2015-04-16 2015-07-15 宁波市气象台 Method for correcting ASCAT inversion wind speed
CN104951798A (en) * 2015-06-10 2015-09-30 上海大学 Method for predicting non-stationary fluctuating wind speeds by aid of LSSVM (least square support vector machine) on basis of EMD (empirical mode decomposition)
US9535158B1 (en) * 2013-11-21 2017-01-03 Rockwell Collins, Inc. Weather radar system and method with fusion of multiple weather information sources
CN106443830A (en) * 2016-06-16 2017-02-22 杭州师范大学 Method for typhoon monitoring and evaluation of monitoring precision based on multi-source satellite data
CN106778846A (en) * 2016-12-02 2017-05-31 华北电力大学 A kind of method for forecasting based on SVMs
CN108227046A (en) * 2018-01-02 2018-06-29 中国海洋大学 Binary channels sea fog inverting threshold value improved method based on satellite data and website observation data

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8305257B2 (en) * 2009-09-02 2012-11-06 Trizna Dennis B Method and apparatus for coherent marine radar measurements of properties of ocean waves and currents
US10565657B2 (en) * 2015-10-02 2020-02-18 Engie Storage Services Na Llc Methods and apparatuses for risk assessment and insuring intermittent electrical systems
US10338274B2 (en) * 2016-06-02 2019-07-02 The Climate Corporation Computer radar based precipitation estimate errors based on precipitation gauge measurements
US10459078B2 (en) * 2016-09-13 2019-10-29 Honeywell International Inc. Reliability index for weather information

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088206A (en) * 2011-10-14 2013-05-13 Mitsubishi Heavy Ind Ltd Diffusion situation prediction system
US9535158B1 (en) * 2013-11-21 2017-01-03 Rockwell Collins, Inc. Weather radar system and method with fusion of multiple weather information sources
CN104392113A (en) * 2014-11-11 2015-03-04 宁波市气象台 Method for estimating wind speed of cold air wind on offshore sea surface
CN104777526A (en) * 2015-04-16 2015-07-15 宁波市气象台 Method for correcting ASCAT inversion wind speed
CN104951798A (en) * 2015-06-10 2015-09-30 上海大学 Method for predicting non-stationary fluctuating wind speeds by aid of LSSVM (least square support vector machine) on basis of EMD (empirical mode decomposition)
CN106443830A (en) * 2016-06-16 2017-02-22 杭州师范大学 Method for typhoon monitoring and evaluation of monitoring precision based on multi-source satellite data
CN106778846A (en) * 2016-12-02 2017-05-31 华北电力大学 A kind of method for forecasting based on SVMs
CN108227046A (en) * 2018-01-02 2018-06-29 中国海洋大学 Binary channels sea fog inverting threshold value improved method based on satellite data and website observation data

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASCAT近岸风场产品与近岸浮标观测风场对比;谢小萍等;《应用气象学报》;20140715;第25卷(第4期);第445-453页 *
SeaWinds散射计风场反演中的图谱特征研究;陈晓翔等;《热带地理》;20110715;第31卷(第04期);第393-396页 *
青岛沿海ASCAT卫星反演风场与浮标海岛实测风场的对比分析;宫明晓;《气象科技》;20191015;第47卷(第05期);第740-746页 *

Also Published As

Publication number Publication date
CN110929776A (en) 2020-03-27

Similar Documents

Publication Publication Date Title
CN110929776B (en) Remote sensing wind field data quality evaluation method and device based on sea surface wind field stability statistical zoning
Gaillard et al. Quality control of large Argo datasets
US9958346B2 (en) Mechanical strain-based weather sensor
CN107391951B (en) Air pollution tracing method based on annular neighborhood gradient sorting
CN110909449B (en) Multi-source data ionization layer region reporting method
CN112197749B (en) Cross calibration method and device for effective wave height of wave buoy
Kumar et al. A machine learning approach to estimating the error in satellite sea surface temperature retrievals
CN111366195A (en) Multi-scale observation method for surface hydrothermal flux
CN114218786A (en) On-orbit polarization radiation characteristic inversion method for non-polarization satellite sensor
Jin et al. Source backtracking for dust storm emission inversion using an adjoint method: case study of Northeast China
CN113532652A (en) Infrared remote sensing sensor absolute calibration method based on buoy and atmospheric reanalysis data
Rao et al. Evaluation of DBS wind measurement technique in different beam configurations for a VHF wind profiler
US20200142099A1 (en) Rain sensor
Li et al. Toward A globally-applicable uncertainty quantification framework for satellite multisensor precipitation products based on GPM DPR
Shao et al. An explicit index for assessing the accuracy of cover-class areas
Mao et al. Predictive anisotropy of surface winds by linear statistical prediction
CN100504383C (en) Method for measuring degree of roughness of soils
Reid et al. Correlation of real and model wind speeds in different terrains
CN108983313B (en) Method for quantitatively detecting sea surface wind field
Lv et al. A Precise Zenith Hydrostatic Delay Calibration Model in China Based on the Nonlinear Least Square Method
US6430104B1 (en) Sonar system performance method
CN104777526B (en) Method for correcting ASCAT inversion wind speed
Iizumi et al. An ensemble approach to the representation of subgrid-scale heterogeneity of crop phenology and yield in coarse-resolution large-area crop models
Lu et al. Evaluation of Multi-Source Datasets in Characterizing Spatio-Temporal Characteristics of Extreme Precipitation from 2001 to 2019 in China
Chen et al. Measurement of atmospheric aspect sensitivity using coherent radar imaging after mitigation of radar beam weighting effect

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant