CN110903034A - Preparation method of quartz glass cladding material for optical fiber and continuous melting furnace device - Google Patents

Preparation method of quartz glass cladding material for optical fiber and continuous melting furnace device Download PDF

Info

Publication number
CN110903034A
CN110903034A CN201911234456.3A CN201911234456A CN110903034A CN 110903034 A CN110903034 A CN 110903034A CN 201911234456 A CN201911234456 A CN 201911234456A CN 110903034 A CN110903034 A CN 110903034A
Authority
CN
China
Prior art keywords
cladding material
doped
glass cladding
melting furnace
continuous melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911234456.3A
Other languages
Chinese (zh)
Inventor
张华�
徐传龙
唐明亮
郑海
胡增涵
徐煜清
程尚栩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DONGHAI ADVANCED SILICON BASED MATERIALS INSTITUTE NANJING UNIVERSITY OF TECHNOLOGY
Original Assignee
DONGHAI ADVANCED SILICON BASED MATERIALS INSTITUTE NANJING UNIVERSITY OF TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DONGHAI ADVANCED SILICON BASED MATERIALS INSTITUTE NANJING UNIVERSITY OF TECHNOLOGY filed Critical DONGHAI ADVANCED SILICON BASED MATERIALS INSTITUTE NANJING UNIVERSITY OF TECHNOLOGY
Priority to CN201911234456.3A priority Critical patent/CN110903034A/en
Publication of CN110903034A publication Critical patent/CN110903034A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor

Abstract

The invention relates to a preparation method of quartz glass cladding material for optical fiber and a continuous melting furnace device, which uses high-purity quartz Sand (SiO) with the grain diameter of 0.1-0.25mm2) Adding 0.03-1wt% of aluminum oxide (Al) into the mixture by liquid phase doping method2O3) And cerium oxide (Ce)2O3) Uniformly stirring precursor solution containing doped ions and high-purity quartz sand, calcining for 2-4 h at 1100 ℃ in an oxidizing atmosphere, and screening and mixing to obtain doped SiO2Powder; will be doped with SiO2And putting the powder into a continuous melting furnace, and melting and drawing the doped quartz glass cladding material by adopting a continuous melting process. The invention improves the structure of the continuous melting furnace, increases the size of the tungsten crucible of the hearth, increases the number of heating electrodes, optimizes the distribution, is beneficial to increasing the quartz melt, has longer residence time in the furnace, and is beneficial to uniform distribution of doped ions, discharge of air bubbles and air lines and the like. The method adoptsThe doped quartz glass cladding material prepared by the two-step process has the characteristics of uniform doping, high doping concentration, accurate and controllable inner and outer diameter sizes of the quartz glass cladding material, high apparent quality and the like.

Description

Preparation method of quartz glass cladding material for optical fiber and continuous melting furnace device
Technical Field
The invention relates to a preparation method of a quartz glass material for optical fibers, belonging to the technical field of quartz glass material production.
Background
In recent years, doped silica fibers have been developed in a crossing manner based on the urgent need of high-power fiber lasers in the fields of Inertial Confinement Fusion (ICF), heavy industrial laser processing, military, medical treatment, and the like. At present, the doped quartz fiber laser is widely applied to high-end processing industries such as automobile manufacturing, laser processing and the like.
Compared with the traditional cladding quartz fiber (the fiber core is less than or equal to 20 mu m), the fiber core size of the large mode field doped quartz fiber is increased (40-100 mu m), so that the light beam quality (laser brightness) is poor. Currently, increasing the quality of the light beam by increasing the refractive index of the cladding quartz material has become a mainstream approach. Therefore, the doped quartz cladding material becomes a key core material for realizing high power and high brightness of the large mode field optical fiber, and the unprecedented importance of foreign research institutions, such as the Germany Jena university, the Heraeus company, the American NKT company and the like is brought. In 2014, Jena university prepared Al-doped silica glass as a cladding material of ytterbium-doped large mode field optical fiber, and realized refractive index matching with NA as low as 0.03, but doping uniformity still needs to be further improved. Various fiber laser companies in China have huge demands on high-power, high-brightness and large-mode-field quartz fibers, but almost no supply channel exists.
The invention provides a preparation method and a device of a quartz glass cladding material for an optical fiber, which can prepare the quartz glass cladding material matched with a large-mode-field doped quartz optical fiber.
Disclosure of Invention
The invention aims to provide a preparation method of a silica glass cladding material for an optical fiber, which is used for preparing a doped silica glass cladding material for the optical fiber.
The invention also aims to provide a continuous melting furnace for realizing the method.
The invention prepares the doped quartz glass cladding material for the optical fiber, and the preparation method is realized by the following steps:
(1) the design formula is as follows: high-purity quartz Sand (SiO) with particle size of 0.1-0.25mm2) As raw material, 0.03-1wt% of Al2O3And Ce2O3
(2) Accurately weighing Al according to the molar ratio2O3、Ce2O3Dissolving the precursor solution in 10% hydrochloric acid to obtain a precursor solution containing doped ions, and uniformly stirring the precursor solution and high-purity quartz sand;
(3) calcining for 2-4 h at 1100 ℃ in an oxidizing atmosphere, and screening the mixed material to obtain doped SiO2Powder;
(4) sieving and selecting doped SiO with proper granularity2And putting the powder into a continuous melting furnace, melting for more than or equal to 10 hours at the temperature of more than or equal to 2200 ℃, and melting and drawing the doped quartz glass cladding material.
A continuous melting furnace for realizing the method mainly comprises a molybdenum mandrel, a feeding pipe, a small furnace cover, a large furnace cover, a copper electrode, a tungsten crucible, a heat preservation layer, a forming opening, a furnace mouth mask and the like. The copper electrodes are 8 groups and 16 electrodes, so that the temperature rise rate of the continuous melting furnace is high, and the transverse temperature field in the furnace is uniform. The diameter of the tungsten crucible is 560mm, and the volume of the hearth of the continuous melting furnace is increased. The heat preservation layer is composed of zirconia sand, quartz sand and a graphite blanket, and the heat preservation effect of the continuous melting furnace body is improved.
During the melting process, the melting of the quartz sand particles, the removal of bubbles, and the diffusion of the components are all viscosity dependent. The high-purity quartz sand has high melting point, reduces the melting point of the quartz sand along with the addition of dopants, promotes the melting of the quartz sand, further improves the temperature, reduces the viscosity of quartz melt, is favorable for discharging bubbles and reducing the apparent defects of quartz glass, is favorable for the diffusion of doping ions, and is more uniformly distributed.
The structure of the continuous melting furnace has important influence on the quality of the quartz product. The number of the heating copper electrodes is increased to 8 groups of 16, the arrangement is more reasonable, the temperature rise rate of the continuous melting furnace is high, and the transverse temperature field in the furnace is more uniform. The size of the continuous melting furnace is increased, the quartz melt in the crucible is increased, and the quartz melt has longer residence time in the furnace, so that the melt level is relatively stable, doped ions have sufficient time to diffuse and disperse uniformly, impurities, bubbles and the like are discharged favorably, the uniform doping of quartz glass is ensured, and apparent defects are reduced.
The method adopts a two-step process to prepare the doped quartz glass cladding material, and has the characteristics of uniform doping, high doping concentration, accurate and controllable inner and outer diameter sizes of the quartz glass cladding material, high apparent quality and the like.
Drawings
Fig. 1 is a continuous melting furnace of the present invention, in which: 1 molybdenum mandrel, 2 feed pipes, 3 small furnace covers, 4 large furnace covers, 5 copper electrodes, 6 tungsten crucibles, 7 heat preservation layers, 8 forming ports and 9 furnace mask.
Detailed Description
The present invention will be further described with reference to specific examples, but the embodiments of the present invention are not limited thereto.
A continuous melting furnace is shown in figure 1, and mainly comprises a molybdenum mandrel 1, a charging tube 2, a small furnace cover 3, a large furnace cover 4, a copper electrode 5, a tungsten crucible 6, a heat-insulating layer 7, a forming opening 8 and a furnace opening cover 9. And 5 copper electrodes have 8 groups of 16 electrodes, so that the temperature rise rate of the continuous melting furnace is high, and the transverse temperature field in the furnace is uniform. The diameter of the 6 tungsten crucible is 560mm, and the volume of the hearth of the continuous melting furnace is increased. 7 the heat preservation layer is composed of zirconia sand, quartz sand and graphite blankets, thus improving the heat preservation effect of the continuous melting furnace body.
The preparation method of the silica glass cladding material for the optical fiber comprises the following implementation steps:
(1) the design formula is as follows: high-purity quartz Sand (SiO) with particle size of 0.1-0.25mm2) As raw material, 0.8wt% of Al is doped2O3And Ce2O3
(2) Accurately weighing Al and Ce according to the molar ratio of 2, dissolving in 10% hydrochloric acid to obtain a precursor solution containing doped ions, and uniformly stirring with high-purity quartz sand;
(3) calcining for 2 h at 1100 ℃ in an oxidizing atmosphere, screening and mixing the materials to obtain doped SiO2Powder;
(4) sieving and selecting doped SiO with proper granularity2Powder is put into a continuous melting furnace, and the temperature in the furnace is controlledThe temperature is 2200 ℃, the smelting time is 11h, and the doped quartz glass cladding material is melted and drawn.

Claims (4)

1. A method for preparing quartz glass cladding material for optical fiber and a continuous melting furnace device sequentially comprise the following steps:
(1) the design formula is as follows: high-purity quartz Sand (SiO) with particle size of 0.1-0.25mm2) As raw material, 0.03-1wt% of Al2O3And Ce2O3
(2) Accurately weighing Al according to the molar ratio2O3、Ce2O3Dissolving the precursor solution in 10% hydrochloric acid to obtain a precursor solution containing doped ions, and uniformly stirring the precursor solution and high-purity quartz sand;
(3) calcining for 2-4 h at 1100 ℃ in an oxidizing atmosphere, and screening the mixed material to obtain doped SiO2Powder;
(4) sieving and selecting doped SiO with proper granularity2And putting the powder into a continuous melting furnace, melting for more than or equal to 10 hours at the temperature of more than or equal to 2200 ℃, and melting and drawing the doped quartz cladding material.
2. The method for producing a silica glass cladding material for optical fiber according to claim 1, wherein: the used basic raw material is high-purity quartz Sand (SiO) with the grain diameter of 0.1-0.25mm2) Al with a doping amount of 0.03-1wt%2O3And Ce2O3The molar ratio of Al to Ce is 1.5-3.5.
3. The method for producing a silica glass cladding material for optical fiber according to claim 1, wherein: calcining the uniformly stirred high-purity quartz sand for 2-4 h at 1100 ℃ in an oxidizing atmosphere.
4. The method for producing a silica glass cladding material for optical fiber according to claim 1, wherein: the temperature in the continuous melting furnace is more than or equal to 2200 ℃, and the melting time is more than or equal to 10 h.
CN201911234456.3A 2019-12-05 2019-12-05 Preparation method of quartz glass cladding material for optical fiber and continuous melting furnace device Pending CN110903034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911234456.3A CN110903034A (en) 2019-12-05 2019-12-05 Preparation method of quartz glass cladding material for optical fiber and continuous melting furnace device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911234456.3A CN110903034A (en) 2019-12-05 2019-12-05 Preparation method of quartz glass cladding material for optical fiber and continuous melting furnace device

Publications (1)

Publication Number Publication Date
CN110903034A true CN110903034A (en) 2020-03-24

Family

ID=69822791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911234456.3A Pending CN110903034A (en) 2019-12-05 2019-12-05 Preparation method of quartz glass cladding material for optical fiber and continuous melting furnace device

Country Status (1)

Country Link
CN (1) CN110903034A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000390A (en) * 2006-01-12 2007-07-18 上海大学 High-property anti-radiation quartz optical fibre and manufacturing process of combined method
CN200992517Y (en) * 2007-01-19 2007-12-19 王绪东 Continuous melting furnace for drawing colored quartz glass pipe
CN101234844A (en) * 2008-02-27 2008-08-06 徐胜利 Method for producing heavy caliber quartz glass pipe for IC industry by continuous melting process
CN101328014A (en) * 2008-07-28 2008-12-24 湖北菲利华石英玻璃股份有限公司 Manufacturing method of doping quartz glass fibre
CN102875007A (en) * 2012-09-19 2013-01-16 江苏太平洋石英股份有限公司 Continuous melting furnace for producing quartz glass bar and manufacture technology
CN103319071A (en) * 2012-03-20 2013-09-25 东海县圣达石英制品有限公司 Quart continuous melting furnace
US20130294737A1 (en) * 2011-01-19 2013-11-07 Fiber Optics Research Center Of The Russian Academy Of Sciences (Forc Ras) Multicore optical fiber (variants)
CN203360262U (en) * 2013-06-28 2013-12-25 江苏丰源光伏科技有限公司 Continuous melting furnace for producing elliptical quartz tubes
CN103880278A (en) * 2014-02-25 2014-06-25 连云港市弘扬石英制品有限公司 Preparation method of optical fiber covering quartz capillary perform and continuous melting furnace equipment
CN105439426A (en) * 2015-12-04 2016-03-30 太仓市建兴石英玻璃厂 Making method for doping type quartz glass tube
CN106746637A (en) * 2017-02-20 2017-05-31 单祥发 A kind of production method of low oxyhydroxide and rear-earth-doped quartz ampoule

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000390A (en) * 2006-01-12 2007-07-18 上海大学 High-property anti-radiation quartz optical fibre and manufacturing process of combined method
CN200992517Y (en) * 2007-01-19 2007-12-19 王绪东 Continuous melting furnace for drawing colored quartz glass pipe
CN101234844A (en) * 2008-02-27 2008-08-06 徐胜利 Method for producing heavy caliber quartz glass pipe for IC industry by continuous melting process
CN101328014A (en) * 2008-07-28 2008-12-24 湖北菲利华石英玻璃股份有限公司 Manufacturing method of doping quartz glass fibre
US20130294737A1 (en) * 2011-01-19 2013-11-07 Fiber Optics Research Center Of The Russian Academy Of Sciences (Forc Ras) Multicore optical fiber (variants)
CN103319071A (en) * 2012-03-20 2013-09-25 东海县圣达石英制品有限公司 Quart continuous melting furnace
CN102875007A (en) * 2012-09-19 2013-01-16 江苏太平洋石英股份有限公司 Continuous melting furnace for producing quartz glass bar and manufacture technology
CN203360262U (en) * 2013-06-28 2013-12-25 江苏丰源光伏科技有限公司 Continuous melting furnace for producing elliptical quartz tubes
CN103880278A (en) * 2014-02-25 2014-06-25 连云港市弘扬石英制品有限公司 Preparation method of optical fiber covering quartz capillary perform and continuous melting furnace equipment
CN105439426A (en) * 2015-12-04 2016-03-30 太仓市建兴石英玻璃厂 Making method for doping type quartz glass tube
CN106746637A (en) * 2017-02-20 2017-05-31 单祥发 A kind of production method of low oxyhydroxide and rear-earth-doped quartz ampoule

Similar Documents

Publication Publication Date Title
TWI303240B (en) Producing glass using outgassed frit
CN101808951B (en) Method for production of non-alkali glass
KR20050101224A (en) Method for the production of glass from a mixture of various metals
KR20080014952A (en) Method and system for production of glasses, where chemical reduction of components is avoided
KR20140000208A (en) Glass melter, modification method for glass blank, production method for molten glass, production method for glassware, and production apparatus for glassware
CN101244842B (en) Electric melting production process for steady zirconium dioxide raw material and technique for producing steady zirconium dioxide product
JP2007070156A (en) Method of manufacturing optical glass
JP2016501815A (en) Glass manufacturing apparatus and method
JP2018537396A (en) Effective manufacturing method of doped optical fiber preform and doped optical fiber preform
CN107056016A (en) Chalcogenide glass and preparation method thereof and device
CN108409107B (en) Method and device for manufacturing high-uniformity and high-consistency optical glass
JP2006076871A (en) Production apparatus for borosilicate sheet glass article, production process therefor and borosilicate sheet glass article
CN208362171U (en) A kind of energy saving kiln
CN110040971A (en) A kind of method and basalt fibre using tank furnace method production basalt fibre
CN106977095B (en) A kind of anhydrous oxyhalide tellurite glass and preparation method thereof
CN110903034A (en) Preparation method of quartz glass cladding material for optical fiber and continuous melting furnace device
CN111848188A (en) Fused cast zirconia corundum refractory brick free of glass phase exudation and preparation method thereof
CN107304104A (en) A kind of preparation method of alkali-resistant glass marble and glass fibre
JP2020100538A (en) Mixed raw material for glass production and glass production method using the same
CN105174689B (en) A kind of preparation facilities of crucible and especial dispersion glass and preparation method thereof
KR20060117316A (en) Production apparatus for borosilicate sheet glass article, production process therefor and borosilicate sheet glass article
CN105916821B (en) Method for producing silicate glass, and silica raw material for silicate glass
CN108726874B (en) Glass, preparation method and application thereof
JP5232332B2 (en) Manufacturing method of glass plate
CN106380060B (en) Continuous melting equipment for chalcogenide infrared glass

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination