CN110889634A - 基于两层多个追随者鲁棒优化的水资源全局优化配置方法 - Google Patents

基于两层多个追随者鲁棒优化的水资源全局优化配置方法 Download PDF

Info

Publication number
CN110889634A
CN110889634A CN201911199158.5A CN201911199158A CN110889634A CN 110889634 A CN110889634 A CN 110889634A CN 201911199158 A CN201911199158 A CN 201911199158A CN 110889634 A CN110889634 A CN 110889634A
Authority
CN
China
Prior art keywords
water
layer
function
variable
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911199158.5A
Other languages
English (en)
Other versions
CN110889634B (zh
Inventor
姚黎明
徐忠雯
卢浩钧
陈子立
陈旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201911199158.5A priority Critical patent/CN110889634B/zh
Publication of CN110889634A publication Critical patent/CN110889634A/zh
Application granted granted Critical
Publication of CN110889634B publication Critical patent/CN110889634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Mathematical Analysis (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Educational Administration (AREA)
  • Software Systems (AREA)
  • Development Economics (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Algebra (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Computing Systems (AREA)
  • Primary Health Care (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了一种基于两层多个追随者鲁棒优化的水资源全局优化配置方法包含三个阶段,第一阶段是通过应用鲁棒优化模型获得等价两层模型,第二阶段是通过Karush‑Kuhn‑Tucker方法获得等价的单层模型,最后一个阶段是通过凸化和分段线性技术将非线性目标函数转化为可以直接求解全局最优解的等价的混合整数凸优化模型;在不确定环境下,模型能够权衡多层决策者的利益关系,并求得全局最优解,使得这个解在不确定参数在一定区间变动时都是可行解,使得水资源分配方案最优。

Description

基于两层多个追随者鲁棒优化的水资源全局优化配置方法
技术领域
本发明涉及水利工程技术领域,具体涉及一种基于两层多个追随者鲁棒优化的水资源全局优化配置方法。
背景技术
现在生活中,水利部和地方水务管理局对水资源分配问题采取分级管理模式。水利部拥有水资源所有权,控制地方水务管理局的取水量,而地方水务管理局拥有水的使用权。然而,在(半)干旱地区,多个用水地区和部门之间的用水冲突仍然是水利部和水务管理局在制定水资源分配方案时需要关注且面临的挑战。其中,气候变化及水文参数的不确定性给水利部和地方水务管理局带来了很多不便。参数的不确定性,这是不容忽视的,对结果的稳健性具有较大的影响。在水资源分配过程中,水供给和水需求以及水传输过程的水损失容易受到气候变化的影响,其值会产生一定的波动。考虑到以上三种类型变量的不确定性,本项目采用区间随机数刻画,并使用鲁棒优化对参数的不确定性进行处理,得到模型的鲁棒解。由此可以建立两层多个追随者鲁棒优化方法。
显然,所建的两层多个追随者鲁棒优化方法模型很难直接求得一个全局最优解。有如下一些因素阻碍了全局最优解的获得。即,1)一些变量的不确定集表征,2)两层优化框架,3)目标函数的非线性。现有研究中应用了启发式方法来解决类似的决策问题,但结果多数只能获得局部最优解。
发明内容
针对现有技术中的上述不足,本发明提供的一种基于两层多个追随者鲁棒优化的水资源全局优化配置方法解决了现有研究中应用了启发式方法来解决类似的决策问题,但结果多数只能获得局部最优解,进而造成水资源分配不均的问题。
为了达到上述发明目的,本发明采用的技术方案为:一种基于两层多个追随者鲁棒优化的水资源全局优化配置方法,包括以下步骤:
S1、根据含有不确定集的两层优化模型,通过应用鲁棒优化模型得到等价两层模型;
S2、通过Karush-Kuhn-Tucker方法对等价两层模型进行转换,得到等价的单层模型;
S3、采用大M法对单层模型进行转化,得到单层优化模型;
S4、对单层优化模型进行凸化和分段线性处理,得到等价的混合整数凸优化模型;
S5、通过等价的混合整数凸优化模型求解不确定环境下水资源优化配置的全局最优解,实现对不确定环境下水资源的优化配置。
进一步地:步骤S1中含有不确定集的两层优化模型包括:上层用水效率的目标函数和下层收益的目标函数:
所述上层用水效率的目标函数F(x,y)的表达式为:
Figure BDA0002295429210000021
并满足式(2)和式(3)约束:
Figure BDA0002295429210000022
Figure BDA0002295429210000023
其中,i∈I={1,...,n},n为地区数量,I为地区数量集合,j∈Ji={1,...,m},m为用水部门数量,Ji为i地区的用水部门的集合,xi为i地区的取水量,
Figure BDA0002295429210000024
为i地区的最低的水需求量,
Figure BDA0002295429210000025
为i地区的最大存储量,
Figure BDA0002295429210000026
为i地区的取水单位收益,pi,j为i地区中j部门的用水单位收益,
Figure BDA0002295429210000027
di,j为i地区中j部门的需水量,ξi,j为需水量随机变量,其值处于区间级[-1,1],
Figure BDA0002295429210000031
θi,j为i地区中j部门用水的损失参数,
Figure BDA0002295429210000032
为损失随机变量,其值处于区间级[-1,1],yi,j为i地区中j部门的用水量,
Figure BDA0002295429210000033
A为水利部门能够分配的总水量,ξA为总水量随机变量,其值处于区间级[-1,1],向量x=(x1,…,xi,…,xn),向量y=(y1,1,…,yi,j,…,yn,m);
所述下层收益的目标函数Ri(y)的表达式为:
Figure BDA0002295429210000034
满足如下约束:
Figure BDA0002295429210000035
Figure BDA0002295429210000036
Figure BDA0002295429210000037
其中,
Figure BDA0002295429210000038
为i地区中j部门的最低需水量;
Figure BDA0002295429210000039
为i地区中j部门的实际用水量;
Figure BDA00022954292100000310
为i地区中j部门的用水单位收益。
进一步地:步骤S1中等价两层模型包括:上层用水效率的等价目标函数和下层收益的等价目标函数;
所述上层用水效率的等价目标函数
Figure BDA00022954292100000311
的表达式为:
Figure BDA00022954292100000312
Figure BDA00022954292100000313
Figure BDA00022954292100000314
Figure BDA00022954292100000315
Figure BDA00022954292100000316
Figure BDA0002295429210000041
其中,ci
Figure BDA0002295429210000042
qi,j
Figure BDA0002295429210000043
为对偶变量,Γi
Figure BDA0002295429210000044
为地区i的鲁棒参数,
Figure BDA0002295429210000045
为地区i中需水量d的个数,
Figure BDA0002295429210000046
地区i中需损失参数的个数;采用鲁棒优化保守形式,处理
Figure BDA0002295429210000047
只有一个不确定参数
Figure BDA0002295429210000048
得到:
Figure BDA0002295429210000049
向量c=(c1,…,ci,…,cn),向量q=(q1,1,…,qi,j,…,qn,m);向量
Figure BDA00022954292100000410
向量
Figure BDA00022954292100000411
所述下层收益的等价目标函数Ri的表达式为:
Figure BDA00022954292100000412
Figure BDA00022954292100000413
Figure BDA00022954292100000414
Figure BDA00022954292100000415
Figure BDA00022954292100000416
Figure BDA00022954292100000417
Figure BDA00022954292100000418
Figure BDA00022954292100000419
Figure BDA00022954292100000420
Figure BDA00022954292100000421
Figure BDA00022954292100000422
Figure BDA0002295429210000051
其中,c′i、q′i,j
Figure BDA0002295429210000052
Figure BDA0002295429210000053
为对偶变量,Γi′为地区i的鲁棒参数,
Figure BDA0002295429210000054
G1,i~G9,i,j是辅助变量,用来表示约束条件。
进一步地:步骤S2中单层模型的表达式为:
Figure BDA0002295429210000055
满足约束:(8)、(3)、(13)至(15)、(29)至(39)以及(40)至(65);
Figure BDA0002295429210000056
Figure BDA0002295429210000057
Figure BDA0002295429210000058
Figure BDA0002295429210000059
Figure BDA00022954292100000510
Figure BDA00022954292100000511
Figure BDA00022954292100000512
Figure BDA00022954292100000513
Figure BDA00022954292100000514
Figure BDA00022954292100000515
Figure BDA00022954292100000516
Figure BDA0002295429210000061
Figure BDA0002295429210000062
Figure BDA0002295429210000063
Figure BDA0002295429210000064
Figure BDA0002295429210000065
Figure BDA0002295429210000066
Figure BDA0002295429210000067
Figure BDA0002295429210000068
λ11,i(-ci)=0,i∈I (59)
Figure BDA0002295429210000069
Figure BDA00022954292100000610
Figure BDA00022954292100000611
λ15,i(-c′i)=0,i∈I (63)
Figure BDA00022954292100000612
Figure BDA00022954292100000613
其中,λ1,i2,i,j3,i,j4,i5,i,j6,i7,i,j8,i,j9,i,j10,i,j11,i12,i,j13,i14,i,j15,i16,i,j17,i,
Figure BDA00022954292100000614
为拉格朗日乘子。
进一步地:步骤S3中单层优化模型的表达式为:
Figure BDA00022954292100000615
Figure BDA0002295429210000071
满足约束(8)、(3)、(29)至(48)以及(66)至(82)
Figure BDA0002295429210000072
Figure BDA0002295429210000073
Figure BDA0002295429210000074
Figure BDA0002295429210000075
Figure BDA0002295429210000076
Figure BDA0002295429210000077
Figure BDA0002295429210000078
Figure BDA0002295429210000079
Figure BDA0002295429210000081
Figure BDA0002295429210000082
Figure BDA0002295429210000083
Figure BDA0002295429210000084
Figure BDA0002295429210000085
Figure BDA0002295429210000086
Figure BDA0002295429210000087
Figure BDA0002295429210000088
Figure BDA0002295429210000089
其中,t1,i,t2,i,j,t3,i,j,t4,i,t5,i,j,t6,i,t7,i,j,t8,i,j,t9,i,j,t10,i,j,t11,i,t12,i,j,t13,i,t14,i,j,t15,i,t16,i,j,t17,i,
Figure BDA00022954292100000810
为使用大M方法时增加的辅助变量,M为常数。
进一步地:步骤S4中等价的混合整数凸优化模型的表达式为:
Figure BDA00022954292100000811
满足约束(8)、(3)、(29)至(48)、(66)至(82)以及(84)至(117)
Figure BDA0002295429210000091
Figure BDA0002295429210000092
Figure BDA0002295429210000093
h1,i,j,k∈{0,1},k∈Sy,i∈I,j∈J (87)
Figure BDA0002295429210000094
Figure BDA0002295429210000095
Figure BDA0002295429210000096
Figure BDA0002295429210000097
h2,i,k∈{0,1},k∈Sx,i∈I (92)
Figure BDA0002295429210000098
Figure BDA0002295429210000099
Figure BDA00022954292100000910
Figure BDA00022954292100000911
Figure BDA00022954292100000912
Figure BDA00022954292100000913
Figure BDA00022954292100000914
Figure BDA00022954292100000915
h3,i,k∈{0,1},k∈Sc,i∈I (101)
Figure BDA00022954292100000916
Figure BDA00022954292100000917
Figure BDA00022954292100000918
Figure BDA00022954292100000919
Figure BDA00022954292100000920
Figure BDA00022954292100000921
Figure BDA00022954292100000922
Figure BDA0002295429210000101
Figure BDA0002295429210000102
h5,i,k∈{0,1},k∈Scloss,i∈I (111)
Figure BDA0002295429210000103
Figure BDA0002295429210000104
Figure BDA0002295429210000105
Figure BDA0002295429210000106
Figure BDA0002295429210000107
Figure BDA0002295429210000108
其中,
Figure BDA0002295429210000109
Figure BDA00022954292100001010
w3=(∑i∈Ixi)-1,z1,i,j、z2,i、z3,i、z4,i,j、z5,i、z6,i,j、w1、w2和w3为辅助变量;
利用对数函数L()将非线性非凸函数转变成分段线性函数;
Figure BDA00022954292100001011
Figure BDA00022954292100001012
分段处理后的线性函数,
Figure BDA00022954292100001013
Figure BDA00022954292100001014
分段处理后的线性函数,
Figure BDA00022954292100001015
Figure BDA00022954292100001016
分段处理后的线性函数,
Figure BDA00022954292100001017
Figure BDA00022954292100001018
分段处理后的线性函数,
Figure BDA00022954292100001019
Figure BDA00022954292100001020
分段处理后的线性函数,
Figure BDA00022954292100001021
Figure BDA00022954292100001022
分段处理后的线性函数,L((∑i∈Ixi)-2)是(∑i∈Ixi)-2分段处理后的线性函数,L((∑i∈Ixi)-1)是(∑i∈Ixi)-1分段处理后的线性函数;
e=(e1,…,ei…,en),ei为第i个断点的值,de表示权重,
Figure BDA00022954292100001023
为e1,e2,e3之间的权重;
约束(84)-(88),权重d1,i,j,e、断点值b1,i,j,e、0-1变量h1,i,j,k为线性分段函数
Figure BDA00022954292100001024
增加的变量;Ry为向量y断点b1,i,j,e中e的定义域,Sy为定义域Ry的二进制形式;
约束(89)-(97),断点值b2,i,e、权重d2,i,e、0-1变量h2,i,k为线性分段函数
Figure BDA0002295429210000111
增加的变量;Rx为向量x断点b2,i,e中e的定义域,Sx为定义域Rx的二进制形式;
约束(98)-(102),断点值b3,i,e、权重d3,i,e、0-1变量h3,i,k为线性分段函数
Figure BDA0002295429210000112
增加的变量;Rc为向量x断点b3,i,e中e的定义域,Sc为定义域Rc的二进制形式;
约束(103)-(107),断点值b4,i,j,e、权重d4,i,j,e、0-1变量h4,i,j,k为线性分段函数
Figure BDA0002295429210000113
增加的变量;Rq为向量x断点b4,i,e中e的定义域,Sq为定义域Rq的二进制形式;
约束(108)-(112),断点值b5,i,e、权重d5,i,e、0-1变量h5,i,k为线性分段函数
Figure BDA0002295429210000114
增加的变量;Rcloss为向量x断点b5,i,e中e的定义域,Scloss为定义域Rq的二进制形式;
约束(113)-(116),断点值b6,i,j,e、权重d6,i,j,e、0-1变量h6,i,j,k为线性分段函数
Figure BDA0002295429210000115
增加的0-1变量;Rqloss为向量x断点b6,i,j,e中e的定义域,Sqloss为定义域Rq的二进制形式;
Figure BDA0002295429210000116
为向量e的正集合,
Figure BDA0002295429210000117
为向量e的负集合,
Figure BDA0002295429210000118
k为e的取值的集合。
本发明的有益效果为:考虑到水利部和地方水务管理局对水资源分配问题采取分级管理模式;以及多个用水地区和部门之间的用水冲突,同时考虑到不确定环境对水资源规划结果的影响,本发明提出一种基于两层多个追随者鲁棒优化的水资源全局优化配置方法,包含三个阶段,第一阶段是通过应用鲁棒优化模型获得等价两层模型,第二阶段是通过Karush-Kuhn-Tucker(KKT)方法获得等价的单层模型,最后一个阶段是通过凸化和分段线性技术将非线性目标函数转化为可以直接求解全局最优解的等价的混合整数凸优化模型;在不确定环境下,模型能够权衡多层决策者的利益关系,并求得全局最优解,使得这个解在不确定参数在一定区间变动时都是可行解,使得水资源分配方案最优。
附图说明
图1为一种基于两层多个追随者鲁棒优化的水资源全局优化配置方法流程图。
具体实施方式
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
如图1所示,一种基于两层多个追随者鲁棒优化的水资源全局优化配置方法,包括以下步骤:
S1、根据含有不确定集的两层优化模型,通过应用鲁棒优化模型得到等价两层模型;
步骤S1中含有不确定集的两层优化模型包括:上层用水效率的目标函数和下层收益的目标函数:
所述上层用水效率的目标函数F(x,y)的表达式为:
Figure BDA0002295429210000121
并满足式(2)和式(3)约束:
Figure BDA0002295429210000122
Figure BDA0002295429210000123
其中,i∈I={1,...,n},n为地区数量,I为地区数量集合,j∈Ji={1,...,m},m为用水部门数量,Ji为i地区的用水部门的集合,xi为i地区的取水量,
Figure BDA0002295429210000131
为i地区的最低的水需求量,
Figure BDA0002295429210000132
为i地区的最大存储量,
Figure BDA0002295429210000133
为i地区的取水单位收益,pi,j为i地区中j部门的用水单位收益,
Figure BDA0002295429210000134
di,j为i地区中j部门的需水量,ξi,j为需水量随机变量,其值处于区间级[-1,1],
Figure BDA0002295429210000135
θi,j为i地区中j部门用水的损失参数,
Figure BDA0002295429210000136
为损失随机变量,其值处于区间级[-1,1],yi,j为i地区中j部门的用水量,
Figure BDA0002295429210000137
A为水利部门能够分配的总水量,ξA为总水量随机变量,其值处于区间级[-1,1],向量x=(x1,…,xi,…,xn),向量y=(y1,1,…,yi,j,…,yn,m);
所述下层收益的目标函数Ri(y)的表达式为:
Figure BDA0002295429210000138
满足如下约束:
Figure BDA0002295429210000139
Figure BDA00022954292100001310
Figure BDA00022954292100001311
其中,
Figure BDA00022954292100001312
为i地区中j部门的最低需水量;
Figure BDA00022954292100001313
为i地区中j部门的实际用水量;
Figure BDA00022954292100001314
为i地区中j部门的用水单位收益。
步骤S1中等价两层模型包括:上层用水效率的等价目标函数和下层收益的等价目标函数;
A、约束中只有一个鲁棒参数的情况;
约束(2)
Figure BDA00022954292100001315
中只有一个不确定集参数
Figure BDA00022954292100001316
采用鲁棒优化保守形式
Figure BDA00022954292100001317
给予约束(2)最大的保护值
Figure BDA00022954292100001318
得到约束(8)
Figure BDA00022954292100001319
B、不确定参数在目标函数中的情况;
对于不确定数
Figure BDA00022954292100001320
Figure BDA00022954292100001321
所有决策变量yi,j都是非负的,将下层收益的目标函数写成目标函数式(9)和约束条件(10):
Figure BDA0002295429210000141
Figure BDA0002295429210000142
zi为模型转化时使用的转化下层目标函数的变量;
将约束(10)转换为约束(11):
Figure BDA0002295429210000143
其中,Ui
Figure BDA0002295429210000144
为多边形不确定集:
Figure BDA0002295429210000145
Figure BDA0002295429210000146
根据对偶变换将约束(11)转化为鲁棒对等式(12):
Figure BDA0002295429210000147
Figure BDA0002295429210000148
Figure BDA0002295429210000149
Figure BDA00022954292100001410
将不等式(12)中转化成约束(16):
Figure BDA00022954292100001411
Figure BDA0002295429210000151
此时,下层收益的目标函数转换成等价转化为目标函数(9)和约束(13)至(16),将目标函数(9)通过增加对偶变量ci,qi,j,
Figure BDA0002295429210000152
得到目标函数(17):
Figure BDA0002295429210000153
同理,对上层用水效率的目标函数进行鲁棒对等式转化,得到目标函数(18):
Figure BDA0002295429210000154
并满足约束(13)至(15)。
C、多个相关联的约束式中都只有一个不确定参数的情况;
将约束(6)
Figure BDA0002295429210000155
对j求和,得到
Figure BDA0002295429210000156
Figure BDA0002295429210000157
将约束(19)展开成带有多面体不确定集的不等式:
Figure BDA0002295429210000158
进而得到不等式(20):
Figure BDA0002295429210000159
通过对偶变换,将不等式(20)转化为不等式(21)至(26):
Figure BDA00022954292100001510
Figure BDA00022954292100001511
Figure BDA0002295429210000161
Figure BDA0002295429210000162
Figure BDA0002295429210000163
Figure BDA0002295429210000164
对约束(7)
Figure BDA0002295429210000165
对j求和,再展开成带有多面体不确定集的不等式,可以得到鲁棒对等约束(27)至(28),(23),(25)和(26);
Figure BDA0002295429210000166
Figure BDA0002295429210000167
综上,得到上层用水效率的等价目标函数的表达式为:
Figure BDA0002295429210000168
满足约束(8)、(3)、(13)、(14)和(15);
其中,ci
Figure BDA0002295429210000169
qi,j
Figure BDA00022954292100001610
为对偶变量,Γi
Figure BDA00022954292100001611
为地区i的鲁棒参数,
Figure BDA00022954292100001612
为地区i中需水量d的个数,
Figure BDA00022954292100001613
地区i中需损失参数的个数;采用鲁棒优化保守形式,处理
Figure BDA00022954292100001614
只有一个不确定参数
Figure BDA00022954292100001615
得到:
Figure BDA00022954292100001616
向量c=(c1,…,ci,…,cn),向量q=(q1,1,…,qi,j,…,qn,m);向量
Figure BDA00022954292100001617
向量
Figure BDA00022954292100001618
所述下层收益的等价目标函数Ri的表达式为:
Figure BDA00022954292100001619
Figure BDA00022954292100001620
Figure BDA0002295429210000171
Figure BDA0002295429210000172
Figure BDA0002295429210000173
Figure BDA0002295429210000174
Figure BDA0002295429210000175
Figure BDA0002295429210000176
Figure BDA0002295429210000177
Figure BDA0002295429210000178
Figure BDA0002295429210000179
Figure BDA00022954292100001710
其中,c′i、q′i,j
Figure BDA00022954292100001711
Figure BDA00022954292100001712
为对偶变量,Γi 为地区i的鲁棒参数,
Figure BDA00022954292100001713
G1,i~G9,i,j是辅助变量,用来表示约束条件。
S2、通过Karush-Kuhn-Tucker方法对等价两层模型进行转换,得到等价的单层模型;
步骤S2中单层模型的表达式为:
Figure BDA00022954292100001714
满足约束(8)、(3)、(13)至(15)、(29)至(39)以及(40)至(65);
Figure BDA0002295429210000181
Figure BDA0002295429210000182
Figure BDA0002295429210000183
Figure BDA0002295429210000184
Figure BDA0002295429210000185
Figure BDA0002295429210000186
Figure BDA0002295429210000187
Figure BDA0002295429210000188
Figure BDA0002295429210000189
Figure BDA00022954292100001810
Figure BDA00022954292100001811
Figure BDA00022954292100001812
Figure BDA00022954292100001813
Figure BDA00022954292100001814
Figure BDA00022954292100001815
Figure BDA00022954292100001816
Figure BDA00022954292100001817
Figure BDA0002295429210000191
Figure BDA0002295429210000192
λ11,i(-ci)=0,i∈I (59)
Figure BDA0002295429210000193
Figure BDA0002295429210000194
Figure BDA0002295429210000195
λ15,i(-c′i)=0,i∈I (63)
Figure BDA0002295429210000196
Figure BDA0002295429210000197
其中,
λ1,i2,i,j3,i,j4,i5,i,j6,i7,i,j8,i,j9,i,j10,i,j11,i12,i,j13,i14,i,j15,i16,i,j17,i,
Figure BDA0002295429210000198
为拉格朗日乘子。
定义:
Figure BDA0002295429210000199
Figure BDA00022954292100001910
λ={λ1,i2,i,j3,i,j4,i5,i,j6,i7,i,j8,i,j9,i,j10,i,j11,i12,i,j13,i14,i,j15,i16,i,j17,i}。
采用大M法对单层模型进行转化,得到单层优化模型;
步骤S3中单层优化模型的表达式为:
Figure BDA00022954292100001911
Figure BDA0002295429210000201
满足约束(8)、(3)、(29)至(48)以及(66)至(82);
Figure BDA0002295429210000202
Figure BDA0002295429210000203
Figure BDA0002295429210000204
Figure BDA0002295429210000205
Figure BDA0002295429210000206
Figure BDA0002295429210000207
Figure BDA0002295429210000208
Figure BDA0002295429210000209
Figure BDA0002295429210000211
Figure BDA0002295429210000212
Figure BDA0002295429210000213
Figure BDA0002295429210000214
Figure BDA0002295429210000215
Figure BDA0002295429210000216
Figure BDA0002295429210000217
Figure BDA0002295429210000218
Figure BDA0002295429210000219
其中,t1,i,t2,i,j,t3,i,j,t4,i,t5,i,j,t6,i,t7,i,j,t8,i,j,t9,i,j,t10,i,j,t11,i,t12,i,j,t13,i,t14,i,j,t15,i,t16,i,j,t17,i,
Figure BDA00022954292100002110
为使用大M方法时增加的辅助变量,M为常数;
S4、对单层优化模型进行凸化和分段线性处理,得到等价的混合整数凸优化模型;
步骤S4中等价的混合整数凸优化模型的表达式为:
Figure BDA00022954292100002111
Figure BDA0002295429210000221
满足约束(8)、(3)、(29)至(48)、(66)至(82)以及(84)至(117)
Figure BDA0002295429210000222
Figure BDA0002295429210000223
Figure BDA0002295429210000224
h1,i,j,k∈{0,1},k∈Sy,i∈I,j∈J (87)
Figure BDA0002295429210000225
Figure BDA0002295429210000226
Figure BDA0002295429210000227
Figure BDA0002295429210000228
h2,i,k∈{0,1},k∈Sx,i∈I (92)
Figure BDA0002295429210000229
Figure BDA00022954292100002210
Figure BDA00022954292100002211
Figure BDA00022954292100002212
Figure BDA00022954292100002213
Figure BDA00022954292100002214
Figure BDA00022954292100002215
Figure BDA00022954292100002216
h3,i,k∈{0,1},k∈Sc,i∈I (101)
Figure BDA00022954292100002217
Figure BDA00022954292100002218
Figure BDA00022954292100002219
Figure BDA00022954292100002220
Figure BDA00022954292100002221
Figure BDA0002295429210000231
Figure BDA0002295429210000232
Figure BDA0002295429210000233
Figure BDA0002295429210000234
h5,i,k∈{0,1},k∈Scloss,i∈I (111)
Figure BDA0002295429210000235
Figure BDA0002295429210000236
Figure BDA0002295429210000237
Figure BDA0002295429210000238
Figure BDA0002295429210000239
Figure BDA00022954292100002310
其中,
Figure BDA00022954292100002311
Figure BDA00022954292100002312
w3=(∑i∈Ixi)-1,z1,i,j、z2,i、z3,i、z4,i,j、z5,i、z6,i,j、w1、w2和w3为辅助变量;
利用对数函数L()将非线性非凸函数转变成分段线性函数;
Figure BDA00022954292100002313
Figure BDA00022954292100002314
分段处理后的线性函数,
Figure BDA00022954292100002315
Figure BDA00022954292100002316
分段处理后的线性函数,
Figure BDA00022954292100002317
Figure BDA00022954292100002318
分段处理后的线性函数,
Figure BDA00022954292100002319
Figure BDA00022954292100002320
分段处理后的线性函数,
Figure BDA00022954292100002321
Figure BDA00022954292100002322
分段处理后的线性函数,
Figure BDA00022954292100002323
Figure BDA00022954292100002324
分段处理后的线性函数,L((∑i∈Ixi)-2)是(∑i∈Ixi)-2分段处理后的线性函数,L((∑i∈Ixi)-1)是(∑i∈Ixi)-1分段处理后的线性函数;
e=(e1,…,ei…,en),ei为第i个断点的值,de表示权重,
Figure BDA00022954292100002326
为e1,e2,e3之间的权重;
约束(84)-(88),权重d1,i,j,e、断点值b1,i,j,e、0-1变量h1,i,j,k为线性分段函数
Figure BDA00022954292100002325
增加的变量;Ry为向量y断点b1,i,j,e中e的定义域,Sy为定义域Ry的二进制形式;
约束(89)-(97),断点值b2,i,e、权重d2,i,e、0-1变量h2,i,k为线性分段函数
Figure BDA0002295429210000241
增加的变量;Rx为向量x断点b2,i,e中e的定义域,Sx为定义域Rx的二进制形式;
约束(98)-(102),断点值b3,i,e、权重d3,i,e、0-1变量h3,i,k为线性分段函数
Figure BDA0002295429210000242
增加的变量;Rc为向量x断点b3,i,e中e的定义域,Sc为定义域Rc的二进制形式;
约束(103)-(107),断点值b4,i,j,e、权重d4,i,j,e、0-1变量h4,i,j,k为线性分段函数
Figure BDA0002295429210000243
增加的变量;Rq为向量x断点b4,i,e中e的定义域,Sq为定义域Rq的二进制形式;
约束(108)-(112),断点值b5,i,e、权重d5,i,e、0-1变量h5,i,k为线性分段函数
Figure BDA0002295429210000244
增加的变量;Rcloss为向量x断点b5,i,e中e的定义域,Scloss为定义域Rq的二进制形式;
约束(113)-(116),断点值b6,i,j,e、权重d6,i,j,e、0-1变量h6,i,j,k为线性分段函数
Figure BDA0002295429210000245
增加的0-1变量;Rqloss为向量x断点b6,i,j,e中e的定义域,Sqloss为定义域Rq的二进制形式;
Figure BDA0002295429210000246
为向量e的正集合,
Figure BDA0002295429210000247
为向量e的负集合,
Figure BDA0002295429210000248
k为e的取值的集合。
S5、通过等价的混合整数凸优化模型求解不确定环境下水资源优化配置的全局最优解,实现对不确定环境下水资源的优化配置。
本发明的有益效果为:考虑到水利部和地方水务管理局对水资源分配问题采取分级管理模式;以及多个用水地区和部门之间的用水冲突,同时考虑到不确定环境对水资源规划结果的影响,本发明提出一种基于两层多个追随者鲁棒优化的水资源全局优化配置方法,包含三个阶段,第一阶段是通过应用鲁棒优化模型获得等价两层模型,第二阶段是通过Karush-Kuhn-Tucker(KKT)方法获得等价的单层模型,最后一个阶段是通过凸化和分段线性技术将非线性目标函数转化为可以直接求解全局最优解的等价的混合整数凸优化模型;在不确定环境下,模型能够权衡多层决策者的利益关系,并求得全局最优解,使得这个解在不确定参数在一定区间变动时都是可行解,使得水资源分配方案最优。

Claims (6)

1.一种基于两层多个追随者鲁棒优化的水资源全局优化配置方法,其特征在于,包括以下步骤:
S1、根据含有不确定集的两层优化模型,通过应用鲁棒优化模型得到等价两层模型;
S2、通过Karush-Kuhn-Tucker方法对等价两层模型进行转换,得到等价的单层模型;
S3、采用大M法对单层模型进行转化,得到单层优化模型;
S4、对单层优化模型进行凸化和分段线性处理,得到等价的混合整数凸优化模型;
S5、通过等价的混合整数凸优化模型求解不确定环境下水资源优化配置的全局最优解,实现对不确定环境下水资源的优化配置。
2.根据权利要求1所述的基于两层多个追随者鲁棒优化的水资源全局优化配置方法,其特征在于,所述步骤S1中含有不确定集的两层优化模型包括:上层用水效率的目标函数和下层收益的目标函数:
所述上层用水效率的目标函数F(x,y)的表达式为:
Figure FDA0002295429200000011
并满足式(2)和式(3)约束:
Figure FDA0002295429200000012
Figure FDA0002295429200000013
其中,i∈I={1,...,n},n为地区数量,I为地区数量集合,j∈Ji={1,...,m},m为用水部门数量,Ji为i地区的用水部门的集合,xi为i地区的取水量,
Figure FDA0002295429200000014
为i地区的最低的水需求量,
Figure FDA0002295429200000015
为i地区的最大存储量,
Figure FDA0002295429200000016
为i地区的取水单位收益,pi,j为i地区中j部门的用水单位收益,
Figure FDA0002295429200000021
di,j为i地区中j部门的需水量,ξi,j为需水量随机变量,其值处于区间级[-1,1],
Figure FDA0002295429200000022
θi,j为i地区中j部门用水的损失参数,
Figure FDA0002295429200000023
为损失随机变量,其值处于区间级[-1,1],yi,j为i地区中j部门的用水量,
Figure FDA0002295429200000024
A为水利部门能够分配的总水量,ξA为总水量随机变量,其值处于区间级[-1,1],向量x=(x1,…,xi,…,xn),向量y=(y1,,…,yi,j,…,yn,m);
所述下层收益的目标函数Ri(y)的表达式为:
Figure FDA0002295429200000025
满足如下约束:
Figure FDA0002295429200000026
Figure FDA0002295429200000027
Figure FDA0002295429200000028
其中,
Figure FDA0002295429200000029
为i地区中j部门的最低需水量;
Figure FDA00022954292000000210
为i地区中j部门的实际用水量;
Figure FDA00022954292000000211
为i地区中j部门的用水单位收益。
3.根据权利要求2所述的基于两层多个追随者鲁棒优化的水资源全局优化配置方法,其特征在于,所述步骤S1中等价两层模型包括:上层用水效率的等价目标函数和下层收益的等价目标函数;
所述上层用水效率的等价目标函数
Figure FDA00022954292000000212
的表达式为:
Figure FDA00022954292000000213
Figure FDA00022954292000000214
Figure FDA00022954292000000215
Figure FDA0002295429200000031
Figure FDA0002295429200000032
Figure FDA0002295429200000033
其中,ci
Figure FDA0002295429200000034
qi,j
Figure FDA0002295429200000035
为对偶变量,Γi和Γi loss为地区i的鲁棒参数,
Figure FDA0002295429200000036
Figure FDA0002295429200000037
为地区i中需水量d的个数,
Figure FDA0002295429200000038
地区i中需损失参数的个数;采用鲁棒优化保守形式,处理
Figure FDA0002295429200000039
只有一个不确定参数
Figure FDA00022954292000000310
得到:
Figure FDA00022954292000000311
向量c=(c1,…,ci,…,cn),向量q=(q1,,…,qi,j,…,qn,m);向量
Figure FDA00022954292000000312
向量
Figure FDA00022954292000000313
所述下层收益的等价目标函数Ri的表达式为:
Figure FDA00022954292000000314
Figure FDA00022954292000000315
Figure FDA00022954292000000316
Figure FDA00022954292000000317
Figure FDA00022954292000000318
Figure FDA00022954292000000319
Figure FDA00022954292000000320
Figure FDA00022954292000000321
Figure FDA00022954292000000322
Figure FDA0002295429200000041
Figure FDA0002295429200000042
Figure FDA0002295429200000043
其中,c′i、q′i,j
Figure FDA0002295429200000044
Figure FDA0002295429200000045
为对偶变量,Γi′为地区i的鲁棒参数,
Figure FDA0002295429200000046
G1,i~G9,i,j是辅助变量,用来表示约束条件。
4.根据权利要求3所述的基于两层多个追随者鲁棒优化的水资源全局优化配置方法,其特征在于,所述步骤S2中单层模型的表达式为:
Figure FDA0002295429200000047
满足约束:(8)、(3)、(13)至(15)、(29)至(39)以及(40)至(65);
Figure FDA0002295429200000048
Figure FDA0002295429200000049
Figure FDA00022954292000000410
Figure FDA00022954292000000411
Figure FDA00022954292000000412
Figure FDA00022954292000000413
Figure FDA00022954292000000414
Figure FDA00022954292000000415
Figure FDA00022954292000000416
Figure FDA0002295429200000051
Figure FDA0002295429200000052
Figure FDA0002295429200000053
Figure FDA0002295429200000054
Figure FDA0002295429200000055
Figure FDA0002295429200000056
Figure FDA0002295429200000057
Figure FDA0002295429200000058
Figure FDA0002295429200000059
Figure FDA00022954292000000510
Figure FDA00022954292000000511
λ11,i(-ci)=0,i∈I (59)
Figure FDA00022954292000000512
Figure FDA00022954292000000513
Figure FDA00022954292000000514
λ15,i(-c′i)=0,i∈I (63)
Figure FDA00022954292000000515
Figure FDA00022954292000000516
其中,λ1,i2,i,j3,i,j4,i5,i,j6,i7,i,j8,i,j9,i,j10,i,j11,i12,i,j13,i14,i,j15,i16,i,j17,i,
Figure FDA00022954292000000517
为拉格朗日乘子。
5.根据权利要求4所述的基于两层多个追随者鲁棒优化的水资源全局优化配置方法,其特征在于,所述步骤S3中单层优化模型的表达式为:
Figure FDA0002295429200000061
满足约束(8)、(3)、(29)至(48)以及(66)至(82)
Figure FDA0002295429200000062
Figure FDA0002295429200000063
Figure FDA0002295429200000064
Figure FDA0002295429200000065
Figure FDA0002295429200000066
Figure FDA0002295429200000067
Figure FDA0002295429200000068
Figure FDA0002295429200000071
Figure FDA0002295429200000072
Figure FDA0002295429200000073
Figure FDA0002295429200000074
Figure FDA0002295429200000075
Figure FDA0002295429200000076
Figure FDA0002295429200000077
Figure FDA0002295429200000078
Figure FDA0002295429200000079
Figure FDA00022954292000000710
其中,t1,i,t2,i,j,t3,i,j,t4,i,t5,i,j,t6,i,t7,i,j,t8,i,j,t9,i,j,t10,i,j,t11,i,t12,i,j,t13,i,t14,i,j,t15,i,t16,i,j,t17,i,
Figure FDA00022954292000000711
为使用大M方法时增加的辅助变量,M为常数。
6.根据权利要求5所述的基于两层多个追随者鲁棒优化的水资源全局优化配置方法,其特征在于,所述步骤S4中等价的混合整数凸优化模型的表达式为:
Figure FDA00022954292000000712
Figure FDA0002295429200000081
满足约束(8)、(3)、(29)至(48)、(66)至(82)以及(84)至(117)
Figure FDA0002295429200000082
Figure FDA0002295429200000083
Figure FDA0002295429200000084
h1,i,j,k∈{0,1},k∈Sy,i∈I,j∈J (87)
Figure FDA0002295429200000085
Figure FDA0002295429200000086
Figure FDA0002295429200000087
Figure FDA0002295429200000088
h2,i,k∈{0,1},k∈Sx,i∈I (92)
Figure FDA0002295429200000089
Figure FDA00022954292000000810
Figure FDA00022954292000000811
Figure FDA00022954292000000812
Figure FDA00022954292000000813
Figure FDA00022954292000000814
Figure FDA00022954292000000815
Figure FDA00022954292000000816
h3,i,k∈{0,1},k∈Sc,i∈I (101)
Figure FDA00022954292000000817
Figure FDA00022954292000000818
Figure FDA00022954292000000819
Figure FDA00022954292000000820
Figure FDA0002295429200000091
Figure FDA0002295429200000092
Figure FDA0002295429200000093
Figure FDA0002295429200000094
Figure FDA0002295429200000095
h5,i,k∈{0,1},k∈Scloss,i∈I (111)
Figure FDA0002295429200000096
Figure FDA0002295429200000097
Figure FDA0002295429200000098
Figure FDA0002295429200000099
Figure FDA00022954292000000910
Figure FDA00022954292000000911
其中,
Figure FDA00022954292000000912
Figure FDA00022954292000000913
w3=(∑i∈Ixi)-1,z1,i,j、z2,i、z3,i、z4,i,j、z5,i、z6,i,j、w1、w2和w3为辅助变量;
利用对数函数L()将非线性非凸函数转变成分段线性函数;
Figure FDA00022954292000000914
Figure FDA00022954292000000915
分段处理后的线性函数,
Figure FDA00022954292000000916
Figure FDA00022954292000000917
分段处理后的线性函数,
Figure FDA00022954292000000918
Figure FDA00022954292000000919
分段处理后的线性函数,
Figure FDA00022954292000000920
Figure FDA00022954292000000921
分段处理后的线性函数,
Figure FDA00022954292000000922
Figure FDA00022954292000000923
分段处理后的线性函数,
Figure FDA00022954292000000924
Figure FDA00022954292000000925
分段处理后的线性函数,L((∑i∈Ixi)-2)是(∑i∈Ixi)-2分段处理后的线性函数,L((∑i∈Ixi)-1)是(∑i∈Ixi)-1分段处理后的线性函数;
e=(e1,…,ei…,en),ei为第i个断点的值,de表示权重,
Figure FDA00022954292000000926
为e1,e2,e3之间的权重;
约束(84)-(88),权重d1,i,j,e、断点值b1,i,j,e、0-1变量h1,i,j,k为线性分段函数
Figure FDA0002295429200000101
增加的变量;Ry为向量y断点b1,i,j,e中e的定义域,Sy为定义域Ry的二进制形式;
约束(89)-(97),断点值b2,i,e、权重d2,i,e、0-1变量h2,i,k为线性分段函数
Figure FDA0002295429200000102
增加的变量;Rx为向量x断点b2,i,e中e的定义域,Sx为定义域Rx的二进制形式;
约束(98)-(102),断点值b3,i,e、权重d3,i,e、0-1变量h3,i,k为线性分段函数
Figure FDA0002295429200000103
增加的变量;Rc为向量x断点b3,i,e中e的定义域,Sc为定义域Rc的二进制形式;
约束(103)-(107),断点值b4,i,j,e、权重d4,i,j,e、0-1变量h4,i,j,k为线性分段函数
Figure FDA0002295429200000104
增加的变量;Rq为向量x断点b4,i,e中e的定义域,Sq为定义域Rq的二进制形式;
约束(108)-(112),断点值b5,i,e、权重d5,i,e、0-1变量h5,i,k为线性分段函数
Figure FDA0002295429200000105
增加的变量;Rcloss为向量x断点b5,i,e中e的定义域,Scloss为定义域Rq的二进制形式;
约束(113)-(116),断点值b6,i,j,e、权重d6,i,j,e、0-1变量h6,i,j,k为线性分段函数
Figure FDA0002295429200000106
增加的0-1变量;Rqloss为向量x断点b6,i,j,e中e的定义域,Sqloss为定义域Rq的二进制形式;
Figure FDA0002295429200000107
为向量e的正集合,
Figure FDA0002295429200000108
为向量e的负集合,
Figure FDA0002295429200000109
k为e的取值的集合。
CN201911199158.5A 2019-11-29 2019-11-29 基于两层多个追随者鲁棒优化的水资源全局优化配置方法 Active CN110889634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911199158.5A CN110889634B (zh) 2019-11-29 2019-11-29 基于两层多个追随者鲁棒优化的水资源全局优化配置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911199158.5A CN110889634B (zh) 2019-11-29 2019-11-29 基于两层多个追随者鲁棒优化的水资源全局优化配置方法

Publications (2)

Publication Number Publication Date
CN110889634A true CN110889634A (zh) 2020-03-17
CN110889634B CN110889634B (zh) 2022-06-14

Family

ID=69749416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911199158.5A Active CN110889634B (zh) 2019-11-29 2019-11-29 基于两层多个追随者鲁棒优化的水资源全局优化配置方法

Country Status (1)

Country Link
CN (1) CN110889634B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140052409A1 (en) * 2012-08-17 2014-02-20 International Business Machines Corporation Data-driven distributionally robust optimization
CN106909718A (zh) * 2017-01-23 2017-06-30 沈阳航空航天大学 一种在不确定性环境下的工程结构优化设计方法
CN109272148A (zh) * 2018-08-24 2019-01-25 四川大学 煤化工园区集成水资源和排污权分配的二层决策优化方法
CN109472505A (zh) * 2018-11-19 2019-03-15 四川大学 基于条件风险价值约束的多目标水资源均衡配置方法
CN110137955A (zh) * 2019-05-21 2019-08-16 国网能源研究院有限公司 一种计及CVaR的鲁棒机组组合调度的决策方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140052409A1 (en) * 2012-08-17 2014-02-20 International Business Machines Corporation Data-driven distributionally robust optimization
CN106909718A (zh) * 2017-01-23 2017-06-30 沈阳航空航天大学 一种在不确定性环境下的工程结构优化设计方法
CN109272148A (zh) * 2018-08-24 2019-01-25 四川大学 煤化工园区集成水资源和排污权分配的二层决策优化方法
CN109472505A (zh) * 2018-11-19 2019-03-15 四川大学 基于条件风险价值约束的多目标水资源均衡配置方法
CN110137955A (zh) * 2019-05-21 2019-08-16 国网能源研究院有限公司 一种计及CVaR的鲁棒机组组合调度的决策方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
舒安康 等: "基于价格引导的气电联合系统双层优化模型", 《电网技术》 *

Also Published As

Publication number Publication date
CN110889634B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
Gil et al. Generation capacity expansion planning under hydro uncertainty using stochastic mixed integer programming and scenario reduction
Yurchenko Information support for decision making on dispatching control of water distribution in irrigation
Afshar et al. Optimizing multi-reservoir operation rules: an improved HBMO approach
Afshar Extension of the constrained particle swarm optimization algorithm to optimal operation of multi-reservoirs system
Khatami et al. Flexibility reserve in power systems: Definition and stochastic multi-fidelity optimization
Ngoc et al. Optimizing the rule curves of multi-use reservoir operation using a genetic algorithm with a penalty strategy
DE112011105049T5 (de) Betriebsplanvorbereitungsverfahren, Betriebsplanvorbereitungsvorrichtung und Betriebsplanvorbereitungsprogramm
Zhou et al. Four‐level robust model for a virtual power plant in energy and reserve markets
Hatata et al. Ant lion optimizer versus particle swarm and artificial immune system for economical and eco‐friendly power system operation
Kangrang et al. Optimal Reservoir Rule Curves Considering Conditional Ant Colony Optimization with
CN109272148A (zh) 煤化工园区集成水资源和排污权分配的二层决策优化方法
CN112329230A (zh) 一种多微网主体非合作博弈交易方法
CN115907218A (zh) 一种考虑碳减排情况的电力系统生产分配方法及系统
Ashofteh et al. Logical genetic programming (LGP) development for irrigation water supply hedging under climate change conditions
CN110889634B (zh) 基于两层多个追随者鲁棒优化的水资源全局优化配置方法
CN114611845A (zh) 碳排放量的预测方法、装置、电子设备及介质
Sriworamas et al. Optimal reservoir of small reservoirs by optimization techniques on reservoir simulation model
Samuel et al. Application of metaheuristic algorithms for solving real-world electricity demand forecasting and generation expansion planning problems
CN110598946A (zh) 一种基于非支配人工蜂群的防汛物资救援分配方法
Huang et al. Applications of machine learning to resource management in cloud computing
CN115983733B (zh) 基于水位控制的电力市场出清数据处理方法和装置
CN112651177A (zh) 考虑灵活性服务费用的配电网灵活型资源配置方法及系统
CN104933110B (zh) 一种基于MapReduce的数据预取方法
Pourmoosavi et al. Low‐carbon generation expansion planning considering flexibility requirements for hosting wind energy
Gejdoš et al. Optimization of transport logistics for forest biomass

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant