CN110866352A - Processing method for rod unit contact calculation - Google Patents
Processing method for rod unit contact calculation Download PDFInfo
- Publication number
- CN110866352A CN110866352A CN201911023239.XA CN201911023239A CN110866352A CN 110866352 A CN110866352 A CN 110866352A CN 201911023239 A CN201911023239 A CN 201911023239A CN 110866352 A CN110866352 A CN 110866352A
- Authority
- CN
- China
- Prior art keywords
- rod
- unit
- finite element
- shell
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
A processing method for rod unit contact calculation is characterized in that rod units, solid units and finite element models of corresponding boundary conditions are known, regions where the rod units and the solid units are in contact are determined in the known finite element models, shell units are built in the determined processing regions along the axial direction of each rod unit, the shell units are loaded into the known finite element models to form finite element models, the finite element models are submitted to calculation, and calculation results of the finite element models are output.
Description
Technical Field
The invention belongs to the technical field of intensity calculation, and relates to a contact processing method for a rod unit and other types of entity units.
Background
The finite element method is a numerical analysis method which disperses a continuous solution domain into a finite number of units and approximates a real physical system by using an approximate solution of the finite units under a given constraint condition. The finite element is a minimum solution domain which has geometrical and physical properties after the solution domain is dispersed. The rod unit is a unit in the form of a line segment and only has a limited unit with tension and compression rigidity; the shell unit is a unit in the form of a dough sheet and has limited units of in-plane tension and compression, shear stiffness and out-of-plane bending stiffness; the solid elements are transformed into solid block-shaped elements with limited unit of tension-compression shear stiffness. Most of the current finite element software cannot deal with the problem of rod element contact with other elements. However, there are increasing engineering concerns such as net blocking, belt loading, etc. which must be considered in the design.
The main methods for solving the problem are mainly two types: one is experimental research, the method has huge workload and very high cost; another method is contact numerical calculation, but it is difficult to simulate soft structures such as ropes, and usually shells or membrane units are used. The calculation result is often too large locally and inaccurate. The rod unit can avoid the disadvantages of the shell or membrane unit, but the contact condition cannot be set in most numerical calculation software.
Disclosure of Invention
The purpose of the invention is: a processing method for rod unit contact calculation is provided, and contact setting of a rod unit and other units is realized.
A processing method for rod element contact calculation is disclosed, wherein a finite element model of a known rod element and a known solid element is characterized by comprising the following contents: 1) determining a contact area of the rod unit and the solid unit in the finite element model, wherein the contact area is a processing area; 2) establishing a shell unit along the axial direction of each rod unit in the determined processing area, wherein the shell unit and the corresponding rod unit share a node; 3) setting the thickness of the shell unit and endowing the shell unit with the material properties of the corresponding rod unit; 4) and establishing contact attributes of the shell unit and the entity unit and submitting calculation.
The invention has the advantages that: 1) the principle is simple, the implementation is convenient, and the method can be realized on all commercial software. 2) The rod unit and other types of units can be calculated in a contact mode, and the universal calculation method has the characteristics of universal applicability.
The present application is described in further detail below with reference to the accompanying drawings of embodiments.
Drawings
FIG. 1 is a diagram of a known finite element model.
FIG. 2 is a diagram of a first round finite element model.
FIG. 3 is a cloud of calculated stresses for a final calculated finite element model.
The numbering in the figures illustrates: 1 boundary condition, 2 rod elements, 3 solid elements, 4 shell elements.
Detailed Description
In order to make the real-time objects, technical solutions and advantages of the present invention clearer, the following gives examples to describe in detail the technical details of the implementation of the present invention. In the drawings, the line unit is a rod unit with an area of 80 mm; the solid block hexahedron unit is a solid unit. The described example is an example in which the rod unit is in contact with the body unit in the present invention, and not an example in which all the unit types are in contact, and contact calculation of the rod unit with the rod unit, the rod unit with the case unit, and the like with other unit types is easily achieved according to the present example. The examples described below with reference to the drawings are intended to illustrate the invention and are not to be construed as limiting the invention.
The following describes an example of the contact of the rod unit and the body unit according to the present invention with reference to the drawings.
Step 1: in the known finite element model, including boundary conditions 1 calculated by the finite element model, see fig. 1, it is determined that all rod elements 2 are likely to come into contact with the solid element 3, and all rod elements 2 are determined as the treatment area;
step 2: shell units 4 with the width of 1mm are respectively built on two sides of each rod unit 2 along the axial direction of the rod unit, and the shell units 4 and the corresponding rod units 2 share a node;
and step 3: loading the shell element 4 established in step 2) into a known finite element model to form a first round of finite element model, see fig. 2;
and 4, step 4: setting the thickness of the shell unit 4 to be 0.01mm for the first round of finite element model, endowing the shell unit 4 with the material properties corresponding to the rod unit 2, and forming a second round of finite element model, wherein the elastic modulus is 5000MPa and the Poisson ratio is 0.3;
and 5: establishing a contact condition between the shell unit 4 and the entity unit 3 for the second round of finite element model, wherein the shell unit 4 is a driven surface, and the entity unit 3 is an active surface, so as to form a final calculated finite element model;
step 6: submitting the final finite element model to calculation, and outputting the calculation result of the finite element model, including the stress value of each rod element 2, as shown in fig. 3;
and 7: the maximum stress value calculated by checking all the rod units is 2.49 and the minimum stress value is 2.42, the difference between the maximum value and the minimum value of all the rod units is 0.07MPa, is 0.3 percent of the minimum value of the rod units and is less than 5 percent of the minimum value of the rod units, and the calculation is finished.
Claims (6)
1. A processing method for rod element contact calculation, wherein a finite element model of a rod element, a solid element and corresponding boundary conditions is known, and the method is characterized by comprising the following steps: 1) determining the contact area of the rod unit and the solid unit in the known finite element model, wherein the contact area is a processing area; 2) establishing a shell unit along the axial direction of each rod unit in the determined processing area, wherein the shell unit and the corresponding rod unit share a node; 3) loading the shell unit obtained in the step 2) into a known finite element model to form a first round of finite element model; 4) setting the thickness of the shell unit on the basis of the first round of finite element models, and giving the shell unit the material properties of the corresponding rod unit to form a second round of finite element models; 5) establishing a contact condition between the shell unit and the entity unit on the basis of the second round of finite element model to form a third round of finite element model; 6) submitting the third round of finite element model to calculation, and outputting the calculation result of the finite element model, wherein the calculation result comprises the stress value of each rod unit; 7) comparing whether the difference of the stress values among all the rod units is within a preset threshold range, and if so, finishing the calculation; otherwise, reducing the thickness of the shell unit in the step 4), and reforming a second round finite element model; and repeating the step 5) and the step 6) until the difference of the stress values among all the rod units is within the preset threshold value range.
2. The method for processing rod unit contact calculation according to claim 1, wherein a shell unit is symmetrically built on each of two axial sides of the rod unit.
3. A rod element contact calculation processing method according to claim 1 or 2, wherein the shell element is parallel to the contact surface of the rod element and the solid element as much as possible.
4. A method of processing rod element contact calculations according to claim 3, wherein the width of the shell element is no more than one tenth of the length of the rod element.
5. The method of processing rod element contact calculations according to claim 1, wherein the shell element initial thickness is no more than 0.01 mm.
6. The method of claim 1, wherein the threshold range of the difference between the maximum stress value and the minimum stress value of the rod unit is no greater than 5% of the minimum stress value of the rod unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911023239.XA CN110866352B (en) | 2019-10-25 | 2019-10-25 | Processing method for rod unit contact calculation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911023239.XA CN110866352B (en) | 2019-10-25 | 2019-10-25 | Processing method for rod unit contact calculation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110866352A true CN110866352A (en) | 2020-03-06 |
CN110866352B CN110866352B (en) | 2023-05-23 |
Family
ID=69653278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911023239.XA Active CN110866352B (en) | 2019-10-25 | 2019-10-25 | Processing method for rod unit contact calculation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110866352B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005060557A1 (en) * | 2005-10-17 | 2007-04-19 | Daimlerchrysler Ag | Automatic simulation of mechanical joints between two components uses a computer finite element analysis process |
JP2008052329A (en) * | 2006-08-22 | 2008-03-06 | Toray Ind Inc | Finite element analysis model creation method and creation apparatus, and program |
CN102819632A (en) * | 2012-07-26 | 2012-12-12 | 苏州工业园区设计研究院股份有限公司 | Method for modeling multi-scale finite element model of node of steel framework structure |
CN103745038A (en) * | 2013-12-24 | 2014-04-23 | 广西科技大学 | Modeling method of ferris wheel structure finite element model |
CN105302994A (en) * | 2015-11-22 | 2016-02-03 | 沈阳黎明航空发动机(集团)有限责任公司 | Finite element simulation method of beam_plate shell structure |
-
2019
- 2019-10-25 CN CN201911023239.XA patent/CN110866352B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005060557A1 (en) * | 2005-10-17 | 2007-04-19 | Daimlerchrysler Ag | Automatic simulation of mechanical joints between two components uses a computer finite element analysis process |
JP2008052329A (en) * | 2006-08-22 | 2008-03-06 | Toray Ind Inc | Finite element analysis model creation method and creation apparatus, and program |
CN102819632A (en) * | 2012-07-26 | 2012-12-12 | 苏州工业园区设计研究院股份有限公司 | Method for modeling multi-scale finite element model of node of steel framework structure |
CN103745038A (en) * | 2013-12-24 | 2014-04-23 | 广西科技大学 | Modeling method of ferris wheel structure finite element model |
CN105302994A (en) * | 2015-11-22 | 2016-02-03 | 沈阳黎明航空发动机(集团)有限责任公司 | Finite element simulation method of beam_plate shell structure |
Non-Patent Citations (2)
Title |
---|
郭峰,李瑰贤,赵伟民: "焊接贴板结构的有限元分析方法" * |
陈誉;: "焊缝模型对圆钢管节点极限承载力影响有限元分析" * |
Also Published As
Publication number | Publication date |
---|---|
CN110866352B (en) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Heidemann et al. | Elasticity of 3D networks with rigid filaments and compliant crosslinks | |
Liang et al. | On-line identification of holes/cracks in composite structures | |
WO2018233361A1 (en) | Numerical method for obtaining coupling loss factor | |
Chouly et al. | A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments | |
Lal et al. | Stochastic fracture analysis of laminated composite plate with arbitrary cracks using X-FEM | |
CN101788425A (en) | Method for determining separation and distribution of structural-member composite crack front stress intensity factors | |
JP6737630B2 (en) | Method and system for time-progressive numerical simulation of structures in which metal waist failure is expected to occur | |
CN110866352A (en) | Processing method for rod unit contact calculation | |
Hattori et al. | An isogeometric boundary element formulation for stress concentration problems in couple stress elasticity | |
Dumont et al. | Machine-precise evaluation of stress intensity factors with the consistent boundary element method | |
US11120180B2 (en) | Methods and systems for conducting a time-marching numerical simulation of a deep drawing metal forming process for manufacturing a product or part | |
Vu et al. | On fractional random differential equations with delay | |
US20160328504A1 (en) | Systems And Methods Of Deriving Peak Fracture Strain Values Of Metal Experiencing Fracture Failure | |
JP2013200718A (en) | Finite element model creation method of twisted cord, finite element model creation program, and finite element model creation apparatus | |
CN108388736A (en) | Soft Meta Materials notch pointed shape design method | |
Penkov et al. | Using the method of boundary states with perturbations to solve physically nonlinear problems of the theory of elasticity | |
Adekunle et al. | Effect of variable axial force on the deflection of thick beam under distributed moving load | |
Gupta et al. | Bending analysis of laminated and sandwich composite reissner-mindlin plates using nurbs-based isogeometric approach | |
Quyen et al. | Hybrid finite element formulation for geometrically nonlinear buckling analysis of truss with initial length imperfection | |
Putar et al. | Damage modeling using strain gradient based finite element formulation | |
Chandrasekaran et al. | Geometric and finite element modeling of biopolymer aerogels to characterize their microstructural and mechanical properties | |
CN117976113A (en) | Composite material damage tolerance analysis method and device, electronic equipment and medium | |
Vigdergauz et al. | Stress-smoothing holes in a regularly perforated elastic plate with a given effective bulk modulus | |
Li et al. | Design optimization of sheet metal stamped parts by CAE simulation and back-propagation neural network | |
CN115169156A (en) | Method and terminal for analyzing structure gap local deformation concentration effect based on strain energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |