CN110865053A - 测量激光增益晶体内能量传输上转换热负荷的装置及方法 - Google Patents
测量激光增益晶体内能量传输上转换热负荷的装置及方法 Download PDFInfo
- Publication number
- CN110865053A CN110865053A CN201911212703.XA CN201911212703A CN110865053A CN 110865053 A CN110865053 A CN 110865053A CN 201911212703 A CN201911212703 A CN 201911212703A CN 110865053 A CN110865053 A CN 110865053A
- Authority
- CN
- China
- Prior art keywords
- laser
- laser gain
- gain crystal
- light
- heat load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 166
- 238000012546 transfer Methods 0.000 title claims abstract description 45
- 230000005540 biological transmission Effects 0.000 title claims abstract description 41
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000011159 matrix material Substances 0.000 claims abstract description 48
- 238000005086 pumping Methods 0.000 claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims description 15
- 230000014509 gene expression Effects 0.000 claims description 8
- 230000010355 oscillation Effects 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 230000009286 beneficial effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 description 14
- 230000008859 change Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910009372 YVO4 Inorganic materials 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08072—Thermal lensing or thermally induced birefringence; Compensation thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/20—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/04—Arrangements for thermal management
- H01S3/0405—Conductive cooling, e.g. by heat sinks or thermo-electric elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08018—Mode suppression
- H01S3/08022—Longitudinal modes
- H01S3/08031—Single-mode emission
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K17/00—Measuring quantity of heat
- G01K17/003—Measuring quantity of heat for measuring the power of light beams, e.g. laser beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/0014—Monitoring arrangements not otherwise provided for
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/04—Arrangements for thermal management
- H01S3/042—Arrangements for thermal management for solid state lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
- H01S3/0606—Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
- H01S3/0612—Non-homogeneous structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08018—Mode suppression
- H01S3/08022—Longitudinal modes
- H01S3/08027—Longitudinal modes by a filter, e.g. a Fabry-Perot filter is used for wavelength setting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08054—Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/081—Construction or shape of optical resonators or components thereof comprising three or more reflectors
- H01S3/0813—Configuration of resonator
- H01S3/0816—Configuration of resonator having 4 reflectors, e.g. Z-shaped resonators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/102—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
- H01S3/1022—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/1066—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a magneto-optical device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
- H01S3/109—Frequency multiplication, e.g. harmonic generation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1611—Solid materials characterised by an active (lasing) ion rare earth neodymium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/163—Solid materials characterised by a crystal matrix
- H01S3/1671—Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
- H01S3/1673—YVO4 [YVO]
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Combustion & Propulsion (AREA)
Abstract
本发明公开一种测量激光增益晶体内能量传输上转换热负荷的装置及方法。该方法包括:通过多次重复增加泵浦功率,功率计获取多组单频激光器的出光阈值;根据各泵浦阈值,得到出光泵浦平均阈值;获取单频激光器的腔型参数;确定单频激光器内部的激光增益晶体子午面的热透镜焦距和弧矢面的热透镜焦距;根据子午面的热透镜焦距、弧矢面的热透镜焦距和腔型参数,得到激光增益晶体在子午面的输出矩阵和在弧矢面的输出矩阵;根据激光增益晶体在子午面的输出矩阵、在弧矢面的输出矩阵和出光泵浦平均阈值,得到出光阈值对应的出光前热负荷;根据出光前热负荷,得到出光前能量传输上转换热负荷。本发明的方法不仅操作简单,而且测量热负荷的结果精度高。
Description
技术领域
本发明涉及激光技术领域,特别是涉及一种测量激光增益晶体内能量传输上转换热负荷的装置及方法。
背景技术
单频1342nm激光作为一种重要的激光光源被广泛应用于光纤传感、光纤通信、激光医疗等领域。其倍频光671nm红光激光器被广泛应用于高精度激光光谱和超冷原子,激光医疗以及OPO和可调谐泵浦源等领域。随着科学技术的不断发展,例如对于量子纠缠及量子通信领域,性能优良且更高功率输出的1342/671nm激光可以产生更好的信噪比以及纠缠度。高功率高输出性能的1342/671nm激光器一直是研究者研究的目标。但是激光增益晶体的热效应较1064nm激光器非常的严重,严重限制了振荡光和倍频光的功率的进一步提升。热透镜中的热负荷是研究和衡量激光增益晶体热效应的一个重要指标,为了获得高功率输出的单频1342/671nm激光输出功率,进一步合理的优化设计激光谐振腔,需要研究激光增益介质的热负荷在激光输出前后的大小情况。
传统的研究ETU效应对激光增益晶体处的热负荷及激光输出功率的影响程度主要集中在理论研究和探针光探针技术。理论研究部分是基于速率方程的基础上,进一步加入ETU的部分,按照ETU热负荷定义进行研究。该方法需要较复杂的理论计算及推导。而探针光法是将整形的探针光通过具有热透镜效应的增益介质,通过测量光谱分布情况研究ETU的光谱分布情况及热透镜值大小。其中通过探针光技术观察光谱分布情况会受探测器精度影响较大而影响最终结果,通过探针光技术观察热透镜变化情况方法的优点是直观,但需要额外引入一束光,且测量精度非常低,不能准确反映晶体热效应的严重程度。
发明内容
本发明的目的是提供一种测量激光增益晶体内能量传输上转换热负荷的装置及方法,不仅操作简单,而且结果精度高。
为实现上述目的,本发明提供了如下方案:
一种测量激光增益晶体内能量传输上转换热负荷的装置,包括:单频激光器和功率计,所述单频激光器输出的振荡光注入到所述功率计中,通过所述功率计观察激光器的出光情况。
可选的,所述单频激光器包括激光增益晶体。
可选的,所述激光增益晶体采用Nd:YVO4晶体。
可选的,所述单频激光器的光学谐振腔为驻波腔或行波腔。
一种测量激光增益晶体内能量传输上转换热负荷的方法,所述方法采用测量激光增益晶体内能量传输上转换热负荷的装置,包括以下步骤:
多次重复增加泵浦功率,获取多组单频激光器的出光阈值;
根据各所述泵浦阈值,得到出光泵浦平均阈值;
获取所述单频激光器的腔型参数;
根据所述泵浦平均阈值和所述腔型参数,代入子午面和弧矢面的热透镜焦距公式得到单频激光器内部的激光增益晶体子午面和弧矢面的热透镜焦距;
根据所述子午面的热透镜焦距、所述弧矢面的热透镜焦距和所述腔型参数,得到所述激光增益晶体在子午面的输出矩阵和所述激光增益晶体在弧矢面的输出矩阵;
根据所述激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵和所述出光泵浦平均阈值及激光器处于稳区时所满足的矩阵条件,得到出光阈值对应的出光前热负荷;
根据所述出光前热负荷,得到出光前能量传输上转换热负荷。
可选的,所述根据所述泵浦平均阈值和所述腔型参数,代入子午面和弧矢面的热透镜焦距公式得到单频激光器内部的激光增益晶体子午面和弧矢面的热透镜焦距,具体包括:
其中,K‖c、K⊥c分别为平行、垂直于激光增益晶体的热导率,ωp为泵浦光在激光晶体处的腰斑大小,ξ为热负荷,PP为注入激光晶体内的出光泵浦阈值,为激光晶体的热光系数,α为激光晶体对泵浦光的吸收系数,l为激光增益晶体掺杂部分的有效长度,ft(thermal)为激光增益晶体子午面的热透镜焦距,fs(thermal)为激光增益晶体弧矢面的热透镜焦距。
可选的,所述根据所述子午面的热透镜焦距、所述弧矢面的热透镜焦距和所述腔型参数,得到所述激光增益晶体在子午面的输出矩阵和所述激光增益晶体在弧矢面的输出矩阵,具体包括:
其中,为所述激光增益晶体在子午面的输出矩阵,为所述激光增益晶体在弧矢面的输出矩阵,ft(thermal)为激光增益晶体子午面的热透镜焦距,fs(thermal)为激光增益晶体弧矢面的热透镜焦距,为其余光学传输矩阵在子午面的表达式;为其余光学传输矩阵在弧矢面的表达式。
可选的,所述根据所述激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵和所述出光泵浦平均阈值及激光器处于稳区时所满足的矩阵条件,得到出光阈值对应的出光前热负荷,具体包括:
当所述单频激光器在子午面和弧矢面同时处于稳区时,根据所述激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵和所述出光泵浦平均阈值,得到出光阈值对应的出光前热负荷。
可选的,所述根据所述出光前热负荷,得到出光前能量传输上转换热负荷,具体包括:
其中,λP为泵浦光的波长,λf为出光前的荧光波长,ξETU为出光前能量传输上转换热负荷,ξnola sin g为出光前的热负荷。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明在对激光增益晶体内能量传输上转换热负荷进行测量时,不必过多分析晶体本身发生的复杂的热过程,也无需引入其他光学系统,只需测量该单频激光器的出光泵浦阈值,即可得到该泵浦功率下激光增益晶体内能量传输上转换热负荷,该测量方法过程简单,结果精确。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明测量激光增益晶体内能量传输上转换热负荷的装置组成图;
图2为本发明测量激光增益晶体内能量传输上转换热负荷的方法流程图;
图3为本发明“8”字环形腔中实现激光增益晶体内的能量传输上转换热负荷测量的装置结构图;
图4为本发明驻波腔中实现激光增益晶体内的能量传输上转换热负荷测量的装置结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种测量激光增益晶体内能量传输上转换热负荷的装置及方法,不仅操作简单,而且结果精度高。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明测量激光增益晶体内能量传输上转换热负荷的装置组成图。如图1所示,一种测量激光增益晶体内能量传输上转换热负荷的装置包括:单频激光器1和功率计2,单频激光器1输出的振荡光注入到功率计2中,通过所述功率计观察激光器的出光情况。单频激光器1包括激光增益晶体。激光增益晶体采用Nd:YVO4晶体。单频激光器1的光学谐振腔为驻波腔或行波腔。
本发明提供的一种测量激光增益晶体内能量传输上转换热负荷的装置,包括单频激光器、功率计,只需使用一个功率计测量激光器的运转状态即可。
图2为本发明测量激光增益晶体内能量传输上转换热负荷的方法流程图。如图2所示,一种测量激光增益晶体内能量传输上转换热负荷的方法,该方法采用测量激光增益晶体内能量传输上转换热负荷的装置,该方法包括以下步骤:
步骤101:多次重复增加泵浦功率,获取多组单频激光器的出光阈值。
步骤102:根据各泵浦阈值,得到出光泵浦平均阈值。
步骤103:获取单频激光器的腔型参数。
步骤104:根据泵浦平均阈值和腔型参数,代入子午面和弧矢面的热透镜焦距公式得到单频激光器内部的激光增益晶体子午面和弧矢面的热透镜焦距,具体包括:
其中,K‖c、K⊥c分别为平行、垂直于激光增益晶体的热导率,ωp为泵浦光在激光晶体处的腰斑大小,ξ为热负荷,PP为注入激光晶体内的出光泵浦阈值,为激光晶体的热光系数,α为激光晶体对泵浦光的吸收系数,l为激光增益晶体掺杂部分的有效长度,ft(thermal)为激光增益晶体子午面的热透镜焦距,fs(thermal)为激光增益晶体弧矢面的热透镜焦距。
步骤105:根据子午面的热透镜焦距、弧矢面的热透镜焦距和腔型参数,得到激光增益晶体在子午面的输出矩阵和激光增益晶体在弧矢面的输出矩阵,具体包括:
其中,为激光增益晶体在子午面的输出矩阵,为激光增益晶体在弧矢面的输出矩阵,ft(thermal)为激光增益晶体子午面的热透镜焦距,fs(thermal)为激光增益晶体弧矢面的热透镜焦距,为其余光学传输矩阵在子午面的表达式;为其余光学传输矩阵在弧矢面的表达式。
步骤106:根据激光增益晶体在子午面的输出矩阵、激光增益晶体在弧矢面的输出矩阵和出光泵浦平均阈值及激光器处于稳区时所满足的矩阵条件,得到出光阈值对应的出光前热负荷,具体包括:
当单频激光器在子午面和弧矢面同时处于稳区时,即满足|At+Dt|≤2&|As+Ds|≤2时,根据激光增益晶体在子午面的输出矩阵、激光增益晶体在弧矢面的输出矩阵,得到出光阈值对应的出光前热负荷。
步骤107:根据出光前热负荷,得到出光前能量传输上转换热负荷,具体包括:
其中,λP为泵浦光的波长,λf为出光前的荧光波长,ξETU为出光前能量传输上转换热负荷,ξnolasing为出光前的热负荷。
本发明提供的一种测量激光增益晶体内能量传输上转换热负荷的方法,其原理为:对于Nd:YVO4激光晶体产生1342nm激光来说,由于存在严重的热效应,且有激光输出和无激光输出时的热效应存在明显的差异,该热效应的明显变化会反应到激光谐振腔的稳定性等腔型的变化。反过来,可以通过激光输出功率变化反应出来的激光腔型的变化推导出出光泵浦阈值处的激光增益晶体内能量传输上转换热负荷的大小。
当泵浦波长为880nm时,在没有激光辐射产生情况下,随着泵浦功率的增加,此时的上能级粒子由于没有相应的激发态吸收的能级存在,所以出光前激发态吸收效应不予考虑,激光增益晶体的热负荷来源主要为量子亏损和能量传输上转换。记录增加泵浦功率时有激光开始辐射的泵浦阈值功率,并根据激光腔型的ABCD传输矩阵情况。
及热透镜的表达公式
对于确定的激光腔型,透镜之间的距离以及透镜的曲率半径等都是已知的。当满足
|At+Dt|≤2&|As+Ds|≤2 (5)
即激光器在子午面和弧矢面同时进入稳区时,有振荡激光辐射出来,即可求出出光阈值对应的出光前热负荷。
再由出光前的热负荷表达式
得到的出光前能量传输上转换的热负荷表达式为
即可求出此时的能量传输上转换热负荷ξETU。
本发明根据记录的稳定的激光出光泵浦阈值,利用公式计算得到该激光增益晶体的能量传输上转换热负荷。
与现有技术相比,本发明具有以下优点:
1.本发明在对激光增益晶体内能量传输上转换热负荷进行测量时,不必过多分析晶体本身发生的复杂的热过程,也无需引入其他光学系统,只需测量该单频激光器的出光泵浦阈值,即可得到该泵浦功率下激光增益晶体内能量传输上转换热负荷,该测量方法过程简单,结果精确。
2.本发明适用于任意具有ETU热效应的增益晶体热效应测量。
3.本发明适用于不同腔型结构中激光增益晶体内能量传输上转换热负荷进行测量。
4.本发明在测量激光增益晶体内能量传输上转换热负荷的基础上,还可以进一步分析激光器输出耦合镜透过率对ETU热负荷的大小的影响,进而为进一步提升该类激光器的输出功率提供有力的参考。
总之,本发明能够准确测量双轴双折射晶体Nd:YVO4或者其他具有能量传输上转换热效应的激光增益晶体内的能量传输上转换热负荷,装置简单,操作简便,同时还可具体研究不同透射率情况下的热负荷大小变化。
实施例1:
图3为本发明“8”字环形腔中实现激光增益晶体内的能量传输上转换热负荷测量的装置结构图,该装置包括单频激光器1、功率计2。被测激光增益晶体由铟箔包覆通过真空铟焊置于紫铜控温炉中,并置于激光谐振腔中,控温炉采用热电制冷器进行温度控制,控温精度为0.1℃。单频激光器1为“8”字环形结构,通过在环形腔中加入单向器实现激光在谐振腔中的单向运转从而实现激光的单频输出,也就是最终形成单频激光器1,如图3所示,单频激光器1由第一凹凸镜3、Nd:YVO4激光晶体4、TGG磁光晶体5、半波片6、第一平凸面镜7、第一平凹镜8、第二平凹镜10和倍频晶体9组成,第一凹凸镜3、第一平凸面镜7、第一平凹镜8和第二平凹镜10是构成环形腔的四个光学镜片,TGG磁光晶体5和半波片6共同构成单向器,TGG磁光晶体5采用永磁铁包围的TGG磁光晶体。第一凹凸镜3镀有对泵浦光高透,振荡光高反膜,是单频激光器1的输入镜。第一平凸面镜7镀有振荡光高反膜,第一平凹镜8镀有对振荡光与倍频光均高反膜。第二平凹镜10镀有对振荡光部分高反膜和倍频光高透膜,是单频激光器1的输出镜。Nd:YVO4激光晶体4是单频激光器1的增益晶体。倍频晶体9的插入是为了得到更加稳定的单频激光输出。单频激光器1产生的激光注入到功率计2中即可。
实施例2:
图4为本发明驻波腔中实现激光增益晶体内的能量传输上转换热负荷测量的装置结构图,该装置包括单频激光器1、功率计2。被测激光增益晶体由铟箔包覆通过真空铟焊置于紫铜控温炉中,并置于激光谐振腔中,控温炉采用热电制冷器(TEC)进行温度控制,控温精度为0.1℃;单频激光器1为驻波腔结构,驻波腔结构中加入标准具,通过标准具的选模特性,实现最终的激光器单频输出。如图4所示,单频激光器1包括凹凸镜12、激光晶体13、标准具14和平凹镜15,凹凸镜12和平凹镜15是构成驻波腔的两个光学镜片,凹凸镜12镀有对泵浦光高透、振荡光高反的膜,平凹镜15镀有对振荡光部分高反的膜;单频激光器1产生的激光注入到功率计2中即可。
实施例3:
被测激光增益晶体Nd:YVO4晶体,尺寸为3*3*(5+15)mm3的复合晶体,其中5mm为未掺杂部分,15mm为掺杂浓度0.3%的部分,晶体两端面均镀有880/1064/1342nm减反膜,出光端面有1.5度楔角,用于激光稳定的输出;单频激光器1为“8”字环形结构,第一凹凸镜3镀有对泵浦光高透,振荡光高反膜,曲率半径为1500mm,第一平凸面镜7镀有振荡光高反膜,曲率半径为1500mm,第一平凹镜8镀有对振荡光与倍频光均高反膜,曲率半径为-100mm,第二平凹镜10镀有对振荡光部分高反膜,反射率为0.5%,曲率半径为-100mm。当增加注入泵浦功率到45.3W时有激光输出,利用公式
|At+Dt|≤2&|As+Ds|≤2
可得到出光阈值处对应的的出光前热负荷为20.5%,由公式
可得到出光阈值处的ETU热负荷为6.8%。其中λf=1032nm,λp=880nm。
上述计算中平行于激光增益晶体的热导率K‖c为5.23W/m/K,垂直于激光增益晶体的热导率K⊥c为5.1W/m/K,泵浦光在激光晶体处的腰斑大小ωp为510μm,热光系数为3*10-6/K,激光晶体对泵浦光的吸收系数α为1.5/cm,激光增益晶体掺杂部分的有效长度l为15mm。用同样的方法可测量出不同输出耦合镜情况下激光增益晶体内的能量传输上转换热负荷。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
Claims (9)
1.一种测量激光增益晶体内能量传输上转换热负荷的装置,包括:单频激光器和功率计,其特征在于,所述单频激光器输出的振荡光注入到所述功率计中,通过所述功率计观察激光器的出光情况。
2.根据权利要求1所述的测量激光增益晶体内能量传输上转换热负荷的装置,其特征在于,所述单频激光器包括激光增益晶体。
3.根据权利要求1所述的测量激光增益晶体内能量传输上转换热负荷的装置,其特征在于,所述激光增益晶体采用Nd:YVO4晶体。
4.根据权利要求1所述的测量激光增益晶体内能量传输上转换热负荷的装置,其特征在于,所述单频激光器的光学谐振腔为驻波腔或行波腔。
5.一种测量激光增益晶体内能量传输上转换热负荷的方法,其特征在于,所述方法采用权利要求1-4任意一项所述的测量激光增益晶体内能量传输上转换热负荷的装置,包括以下步骤:
多次重复增加泵浦功率,获取多组单频激光器的出光阈值;
根据各所述泵浦阈值,得到出光泵浦平均阈值;
获取所述单频激光器的腔型参数;
根据所述泵浦平均阈值和所述腔型参数,代入子午面和弧矢面的热透镜焦距公式得到单频激光器内部的激光增益晶体子午面和弧矢面的热透镜焦距;
根据所述子午面的热透镜焦距、所述弧矢面的热透镜焦距和所述腔型参数,得到所述激光增益晶体在子午面的输出矩阵和所述激光增益晶体在弧矢面的输出矩阵;
根据所述激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵和所述出光泵浦平均阈值及激光器处于稳区时所满足的矩阵条件,得到出光阈值对应的出光前热负荷;
根据所述出光前热负荷,得到出光前能量传输上转换热负荷。
6.根据权利要求5所述的测量激光增益晶体内能量传输上转换热负荷的方法,其特征在于,所述根据所述泵浦平均阈值和所述腔型参数,代入子午面和弧矢面的热透镜焦距公式得到单频激光器内部的激光增益晶体子午面和弧矢面的热透镜焦距,具体包括:
7.根据权利要求6所述的测量激光增益晶体内能量传输上转换热负荷的方法,其特征在于,所述根据所述子午面的热透镜焦距、所述弧矢面的热透镜焦距和所述腔型参数,得到所述激光增益晶体在子午面的输出矩阵和所述激光增益晶体在弧矢面的输出矩阵,具体包括:
8.根据权利要求7所述的测量激光增益晶体内能量传输上转换热负荷的方法,其特征在于,所述根据所述激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵和所述出光泵浦平均阈值及激光器处于稳区时所满足的矩阵条件,得到出光阈值对应的出光前热负荷,具体包括:
当所述单频激光器在子午面和弧矢面同时处于稳区时,根据所述激光增益晶体在子午面的输出矩阵、所述激光增益晶体在弧矢面的输出矩阵和所述出光泵浦平均阈值,得到出光阈值对应的出光前热负荷。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911212703.XA CN110865053B (zh) | 2019-12-02 | 2019-12-02 | 测量激光增益晶体内能量传输上转换热负荷的装置及方法 |
US17/038,432 US11916349B2 (en) | 2019-12-02 | 2020-09-30 | Device and method for measuring thermal load caused by energy transfer upconversion in laser gain crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911212703.XA CN110865053B (zh) | 2019-12-02 | 2019-12-02 | 测量激光增益晶体内能量传输上转换热负荷的装置及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110865053A true CN110865053A (zh) | 2020-03-06 |
CN110865053B CN110865053B (zh) | 2020-11-03 |
Family
ID=69657069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911212703.XA Active CN110865053B (zh) | 2019-12-02 | 2019-12-02 | 测量激光增益晶体内能量传输上转换热负荷的装置及方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11916349B2 (zh) |
CN (1) | CN110865053B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117213804A (zh) * | 2023-09-08 | 2023-12-12 | 中国科学技术大学 | 一种基于频率上转换的中红外微环谐振器性能测试装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114518218B (zh) * | 2022-02-18 | 2024-07-02 | 重庆邮电大学 | 一种测量固体激光器腔内损耗的方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102175429A (zh) * | 2011-01-11 | 2011-09-07 | 山西大学 | 一种激光器热焦距的测量方法 |
CN105954010A (zh) * | 2016-05-17 | 2016-09-21 | 山西大学 | 一种非线性晶体热透镜焦距的测量方法 |
CN105973573A (zh) * | 2016-05-25 | 2016-09-28 | 山西大学 | 全固态激光器腔内线性损耗的测量方法 |
CN106706272A (zh) * | 2017-01-20 | 2017-05-24 | 山西大学 | 一种测量非线性晶体热透镜焦距的装置和方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4942582A (en) * | 1989-04-24 | 1990-07-17 | Spectra-Physics | Single frequency solid state laser |
WO1994026674A1 (en) * | 1993-05-19 | 1994-11-24 | Telstra Corporation Limited | Co-doped optical material emitting visible/ir light |
US5530711A (en) * | 1994-09-01 | 1996-06-25 | The United States Of America As Represented By The Secretary Of The Navy | Low threshold diode-pumped tunable dye laser |
US8331017B2 (en) * | 2008-03-25 | 2012-12-11 | Yeda Research And Development Co. Ltd. | Crystal for optical conversion |
CA2736312C (en) * | 2008-09-05 | 2014-08-05 | Ams Research Corporation | Laser system having switchable power modes |
US20120312028A1 (en) * | 2011-05-11 | 2012-12-13 | Corporation De L'ecole Polytechnique De Montreal | Methods for laser cooling of fluorescent materials |
-
2019
- 2019-12-02 CN CN201911212703.XA patent/CN110865053B/zh active Active
-
2020
- 2020-09-30 US US17/038,432 patent/US11916349B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102175429A (zh) * | 2011-01-11 | 2011-09-07 | 山西大学 | 一种激光器热焦距的测量方法 |
CN105954010A (zh) * | 2016-05-17 | 2016-09-21 | 山西大学 | 一种非线性晶体热透镜焦距的测量方法 |
CN105973573A (zh) * | 2016-05-25 | 2016-09-28 | 山西大学 | 全固态激光器腔内线性损耗的测量方法 |
CN106706272A (zh) * | 2017-01-20 | 2017-05-24 | 山西大学 | 一种测量非线性晶体热透镜焦距的装置和方法 |
Non-Patent Citations (3)
Title |
---|
YAJUN WANG,ET AL: "Temperature dependence of the fractional thermal load of Nd:YVO4 at 1064 nm lasing and its influence on laser performance", 《OPTICS EXPRESS》 * |
郑耀辉等: "全固态高输出功率单频Nd∶YVO4 /KTP 激光器", 《中国激光》 * |
郑耀辉等: "输出功率为21.5W的单端抽运Nd:YVO4/LBO单频激光器", 《中国激光》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117213804A (zh) * | 2023-09-08 | 2023-12-12 | 中国科学技术大学 | 一种基于频率上转换的中红外微环谐振器性能测试装置 |
CN117213804B (zh) * | 2023-09-08 | 2024-08-20 | 中国科学技术大学 | 一种基于频率上转换的中红外微环谐振器性能测试装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110865053B (zh) | 2020-11-03 |
US20210164850A1 (en) | 2021-06-03 |
US11916349B2 (en) | 2024-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110895239B (zh) | 一种测量激光增益晶体内激发态吸收热负荷的装置和方法 | |
CN105973573B (zh) | 全固态激光器腔内线性损耗的测量方法 | |
CN101592845A (zh) | 双波长可调谐内腔太赫兹参量振荡器及其使用方法 | |
CN103036140B (zh) | 一种基于倍频碱金属蒸汽激光的蓝紫激光器 | |
CN110865053B (zh) | 测量激光增益晶体内能量传输上转换热负荷的装置及方法 | |
CN109586150B (zh) | 一种单谐振腔实现百瓦级连续单频全固态激光器 | |
Deana et al. | Diode-side-pumped Nd: YLF laser emitting at 1313 nm based on DBMC technology | |
CN108365514B (zh) | 连续波单频内腔倍频激光器倍频晶体最佳长度的选取方法 | |
Ye et al. | Enhanced high-slope-efficiency and high-power LD side-pumped Er: YSGG laser | |
Tarabrin et al. | High-efficiency continuous-wave single-mode room-temperature operation of Cr: CdSe single-crystal laser with output power of 2.3 W | |
CN111313216B (zh) | 一种抑制高功率连续波单频激光器强度噪声的方法 | |
CN103972776B (zh) | 激光二极管泵浦的克尔透镜锁模Yb:(YLa)2 O3 全固态飞秒激光器 | |
CN113258424B (zh) | 双波长脉冲同步Tm,Ho:LLF被动调Q固体激光器 | |
Kuznetsov et al. | Thermal effects in Yb: YAG single-crystal thin-rod amplifier | |
Lü et al. | Diode-pumped orthogonally polarized Nd: LuVO 4 lasers based on the 4 F 3/2–4 I 11/2 transition | |
Duan et al. | Efficient middle-infrared ZGP-OPO pumped by a Q-switched Ho: LuAG laser with the orthogonally polarized pump recycling scheme | |
CN114509242B (zh) | 一种测量激光晶体热透镜焦距方法及装置 | |
CN112397982B (zh) | 一种基于超低温粒子数调控机制的双波长中红外激光器 | |
CN216648856U (zh) | 一种全固态掺镨环形腔单频激光装置 | |
Zhang et al. | 28.02 W LD side-pumped CW laser operated at 2.8 µm in YSGG/Er: YSGG/YSGG crystal | |
CN205303940U (zh) | 一种558nm波长单频输出的全固体激光器 | |
Zhavoronkov et al. | Chromium-doped forsterite laser with 1.1 W of continuous-wave output power at room temperature | |
Zhao et al. | 3-W, 3.8 µm self-optical parametric oscillator by pulsed pumping based on Nd: MgO: PPLN crystal | |
CN105006734B (zh) | 一种基于体光栅构成半内腔式光学参量振荡器的2μm激光器 | |
CN112366506B (zh) | 一种小型化低噪声全固态单频连续波激光器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |