CN110852995A - 一种机器人分选系统的判别方法 - Google Patents

一种机器人分选系统的判别方法 Download PDF

Info

Publication number
CN110852995A
CN110852995A CN201911007602.9A CN201911007602A CN110852995A CN 110852995 A CN110852995 A CN 110852995A CN 201911007602 A CN201911007602 A CN 201911007602A CN 110852995 A CN110852995 A CN 110852995A
Authority
CN
China
Prior art keywords
sorted
camera
objects
center coordinates
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911007602.9A
Other languages
English (en)
Other versions
CN110852995B (zh
Inventor
莫卓亚
罗海城
彭创权
刘涛
刘元路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Gongye Technology Co Ltd
Original Assignee
Guangdong Gongye Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Gongye Technology Co Ltd filed Critical Guangdong Gongye Technology Co Ltd
Priority to CN201911007602.9A priority Critical patent/CN110852995B/zh
Publication of CN110852995A publication Critical patent/CN110852995A/zh
Application granted granted Critical
Publication of CN110852995B publication Critical patent/CN110852995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/168Segmentation; Edge detection involving transform domain methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20061Hough transform

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Quality & Reliability (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及自动化技术领域,尤其是指一种机器人分选系统的判别方法,通过2D相机和3D相机分别获取待分选的物体的信息,然后选择依次相邻的三个待分选的物体的平面中心坐标以及几何中心坐标进行矩阵变换而获得转换矩阵M2,由转换M2结合2D相机捕获的图像轮廓算出待分选的物体的3D图像信息并进行识别,然后根据3D图像信息判断出待分选的物体的坐标以及类别,并把判断结果发送至机器人。本发明步骤简单,可以一键式完成待分选的物体的标定和识别,从而在无需传感器以及无需经过复杂计算的前提下实现了分选,有利于提升分选效率。

Description

一种机器人分选系统的判别方法
技术领域
本发明涉及自动化技术领域,尤其是指一种机器人分选系统的判别方法。
背景技术
目前,为了提升分选物体的效率,大多的厂家或者单位都采用机器人来实现自动分选物体,利用机器人自动拾起物体并把物体放在对应的类别中。在自动分选的过程中,机器人需要获取待分选的物体的RGB-D信息来判断待分选的物体的类型,而目前现有的做法是:通过2D相机来获取待分选的物体的RGB信息,然后通过装在机器人末端的传感器来获取待分选的物体的D(Depth Map)信息,从而完成信息获取以及图像判定。
显然,上述做法具有如下不足:传感器获取的D信息需要经较为复杂的方式处理后,才能够结合RGB信息进行待分选的物体的类型判别,这就导致了判别效率低,从而影响了分选的效率。
发明内容
本发明针对现有技术的问题提供一种机器人分选系统的判别方法,无需传感器来完成待分选的物体的类型判别,从而提升了分选效率。
为了解决上述技术问题,本发明采用如下技术方案:
本发明提供的一种机器人分选系统的判别方法,包括以下步骤:
a.把至少四个待分选的物体放置于传输机构进行传输;
b.传输机构传输待分选的物体经过2D相机和3D相机,并分别由2D相机和3D相机对待分选的物体进行图像捕获;
c.于2D相机捕获的图像中获取各待分选的物体的平面中心坐标,于3D相机捕获的图像中获取各待分选的物体的几何中心坐标;
d.于待分选的物体中选择其中三个依次相邻的待分选的物体,并分别记录该三个依次相邻的待分选的物体的平面中心坐标和几何中心坐标,然后通过矩阵变换的方式求出齐次解,再通过齐次解得到转换矩阵M2;
e.把2D相机捕获的图像轮廓信息通过转换矩阵M2转换为3D图像信息,得出待分选的物体的位置信息和类别信息并传输至机器人。
进一步的,在步骤c中,2D相机通过霍夫变换获取各待分选的物体的平面中心坐标,3D相机通过点云分割获取各待分选的物体的几何中心坐标。
进一步的,2D相机为2D线阵相机,3D相机为3D线激光相机,在步骤a之前,还包括a’.2D相机和3D相机分别通过编码信号分配器实现对待分选的物体进行图像捕获。
更进一步的,在步骤a’与a之间,还包括a”.分别配置2D相机和3D相机的编码器倍频/分频系数。
进一步的,所述步骤d,具体为:设待分选的物体的平面中心坐标为(x,y),几何中心坐标为(X,Y),则转换矩阵M2与平面中心坐标、几何中心坐标的关系为:(x,y,1)-1*M2=(X,Y,1)-1
进一步的,在步骤d中,具体操作如下:
d1.选定三个依次相邻的待分选的物体,并分别标号为A,B,C;
d2.记A,B,C号待分选的物体的平面中心坐标分别为(x1,y1)(x2,y2)(x3,y3),几何中心坐标分别为(X1,Y1)(X2,Y2)(X3,Y3);
d3.根据矩阵
Figure BDA0002243226630000031
算出v0-v5,然后得出转换矩阵
Figure BDA0002243226630000032
进一步的,在步骤d和步骤e中,还包括:
d’.再次依次相邻的三个待分选的物体,该三个待分选的物体与步骤c中的三个待分选的物体不完全重复,并通过步骤d算出转换矩阵M2’;
d”.重复步骤d’;
d”’.对比所有转换矩阵,选出误差最小的转换矩阵M2min
在步骤e中,通过经步骤d-d”’选出的M2min来把2D相机捕获的图像轮廓信息转换为3D坐标。
更进一步的,在步骤d”’中,具体为:
d”’1.随机选取待分选的物体,该待分选的物体不属于上述的三个参与转换矩阵M2计算的待分选的物体之一;
d”’2.记录该待分选的物体的平面中心坐标(x’,y’)以及几何中心坐标(X’,Y’),并把该平面中心坐标(x’,y’)以及转换矩阵M2代入矩阵
Figure BDA0002243226630000041
中,解得(X”,Y”);
d”’3.对比(X’,Y’)与(X”,Y”),得出转换矩阵M2的误差值;
d”’4.对比所有的转换矩阵M2的误差值,选出误差值最小的转换矩阵M2min
本发明的有益效果:本发明通过2D相机和3D相机分别获捕获分选的物体的图像并获取待分选的物体的平面中心坐标和几何中心坐标,再通过矩阵变换的方式得到转换矩阵M2,通过转换矩阵M2把2D相机获得的轮廓信息3D图像信息并发送至机器人。本发明步骤简单,可以一键式完成待分选的物体的标定和识别,从而在无需传感器以及无需经过复杂计算的前提下实现了分选,有利于提升分选效率。
附图说明
图1为本发明的流程图。
图2为应用本发明的分选系统的部分示意图。
图3为待分选的物体的分布示意图。
附图标记:1—传输机构,2—2D相机,3—3D相机,4—编码信号分配器,5—光源。
具体实施方式
为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。以下结合附图对本发明进行详细的描述。
如图1,本发明提供的一种机器人分选系统的判别方法,应用于如图2和图3所示的场景,包括以下步骤:
a.把至少四个待分选的物体放置于传输机构1进行传输;如图3所示,本实施例采用四个待分选的物体进行说明,四个待分选的物体分别标号为A,B,C,D;
b.传输机构1传输待分选的物体经过2D相机2和3D相机3,并分别由2D相机2和3D相机3对待分选的物体进行图像捕获;具体的,2D相机2与3D相机3一般设置于传输机构1的某一段的正上方,即待分选的物体经过2D相机2和3D相机3的下方时,2D相机2和3D相机3即可捕获待分选的物体的图像;
c.数据处理器分别获取2D相机2和3D相机3所传输的图像,并于2D相机2捕获的图像中获取各待分选的物体的平面中心坐标,于3D相机3捕获的图像中获取各待分选的物体的几何中心坐标;
d.于待分选的物体中选择其中三个依次相邻的待分选的物体并分别记录该三个依次相邻的待分选物体的平面中心坐标和几何中心坐标,然后通过矩阵变换的方式求出齐次解,再通过齐次解得到转换矩阵M2;
e.把2D相机2捕获的图像轮廓信息通过转换矩阵M2转换为3D图像信息(即RGB-D信息),然后根据该3D图像信息进行待分选的物体的坐标识别以及类别判断,然后把识别结果和判断结果均传输至机器人。
f.由机器人根据转换矩阵M2进行待分选的物体的拾取以及分选。
本发明通过2D相机2和3D相机3配合,实现了标定物体的效果,即无需在机器人末端设置传感器,也能够完成对于待分选的物体的坐标判定以及类型判断,让机器人能够准确抓取待分选的物体并进行分选。相较于现有技术的利用传感器进行高度识别,本发明采用2D相机2和3D相机3配合即可实现高度识别,且比传感器识别后对数据的处理更加简单,从而能够提升对待分选的物体的坐标判定以及类型判断效率,即提升了分选效率。具体的,为了保证2D相机2和3D相机3所捕获的图像的清晰度,本实施例在传输机构1与2D相机2、3D相机3之间的空间处设置有光源5,用于提高本发明实施时的亮度。
为了保证待分选的物体的坐标的准确性,因此本实施例的2D相机2为2D线阵相机,3D相机3为3D线激光相机,即通过线阵相机所捕获的图像均为线状的图像,然后经由后台处理器进行拼合来获得完整的图像,以此保证了图像的精度,从而使得待分选的物体的坐标更为准确。
同时,由于2D相机2和3D相机3均为线性相机,其均需要通过编码器信号的实时触发的,因此在步骤a之前,还需要对2D相机2和3D相机3进行内参的初步设定,具体为:
a’.2D相机2和3D相机3分别通过编码信号分配器4实现对待分选的物体进行图像捕获,从而使得系统的编码器信号分成两路信号来分别输送至2D相机2和3D相机3来实现相机的图像捕获。
在本实施例的步骤a’与a之间,还包括a”.分别配置2D相机2和3D相机3的编码器倍频/分频系数,用以保证2D相机2出来的物体和3D相机3出来的物体尺寸和真实的物体成比例(既不产生压扁或者增大等形变),从而保证了对于坐标判定的准确性。
在本实施例的步骤c中,2D相机2是通过霍夫变换以获取各待分选的物体的平面中心坐标的,3D相机3则是通过点云分割以获取各待分选的物体的几何中心坐标的。上述两种图像的坐标确立方式均为常规技术,有利于准确而高效地确立待分选的物体的平面中心坐标和几何中心坐标,从而提升了计算的效率。
在本实施例的步骤d中,具体为:设待分选的物体的平面中心坐标为(x,y),几何中心坐标为(X,Y),则转换矩阵M2与平面中心坐标、几何中心坐标的关系为:(x,y,1)-1*M2=(X,Y,1)-1
更具体的,步骤d得操作方式如下:
d1.选定三个依次相邻的待分选的物体,并分别标号为A,B,C;
d2.记A,B,C号待分选的物体的平面中心坐标分别为(x1,y1)(x2,y2)(x3,y3),几何中心坐标分别为(X1,Y1)(X2,Y2)(X3,Y3);
d3.根据矩阵
Figure BDA0002243226630000071
算出v0-v5,然后得出转换矩阵
Figure BDA0002243226630000081
进一步的,如果只选用一组待分选的物体,其所算出来的转换矩阵M2或许会有较大的误差。而为了减少误差,在本实施例中,在步骤d和步骤e中,还包括:
d’.再次选择三个依次相邻的待分选的物体,该三个待分选的物体与步骤c中的三个待分选的物体不完全重复,不完全重复的意思是标号或者顺序不相同,例如本次选取A,B,C三个待分选的物体,并通过步骤d算出转换矩阵M2’;
d”.重复步骤d’(例如分别对B,A,D、D,A,B等均进行步骤d的操作),得出多个转换矩阵M2’n
d”’.对比所有转换矩阵M2’n,选出误差最小的转换矩阵M2min
在步骤e中,通过经步骤d-d”’选出的M2min来把2D相机2捕获的图像轮廓信息转换为3D坐标。
具体的,上述的误差最小的转换矩阵M2min,该判断误差最小的方式如下:
d”’1.随机选取待分选的物体,该待分选的物体不属于上述的三个参与转换矩阵M2计算的待分选的物体之一;
d”’2.记录该待分选的物体的平面中心坐标(x’,y’)以及几何中心坐标(X’,Y’),并把该平面中心坐标(x’,y’)以及转换矩阵M2代入矩阵
Figure BDA0002243226630000091
中,解得(X”,Y”);
d”’3.对比(X’,Y’)与(X”,Y”),得出转换矩阵M2的误差值;
d”’4.对比所有的转换矩阵M2的误差值,选出误差值最小的转换矩阵M2min
以上所述,仅是本发明较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明以较佳实施例公开如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当利用上述揭示的技术内容作出些许变更或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明技术是指对以上实施例所作的任何简单修改、等同变化与修饰,均属于本发明技术方案的范围内。

Claims (8)

1.一种机器人分选系统的判别方法,其特征在于:包括以下步骤:
a.把至少四个待分选的物体放置于传输机构进行传输;
b.传输机构传输待分选的物体经过2D相机和3D相机,并分别由2D相机和3D相机对待分选的物体进行图像捕获;
c.于2D相机捕获的图像中获取各待分选的物体的平面中心坐标,于3D相机捕获的图像中获取各待分选的物体的几何中心坐标;
d.于待分选的物体中选择其中三个依次相邻的待分选的物体,并分别记录该三个依次相邻的待分选的物体的平面中心坐标和几何中心坐标,然后通过矩阵变换的方式求出齐次解,再通过齐次解得到转换矩阵M2;
e.把2D相机捕获的图像轮廓信息通过转换矩阵M2转换为3D图像信息,得出待分选的物体的位置信息和类别信息并传输至机器人。
2.根据权利要求1所述的机器人分选系统的判别方法,其特征在于:在步骤c中,2D相机通过霍夫变换获取各待分选的物体的平面中心坐标,3D相机通过点云分割获取各待分选的物体的几何中心坐标。
3.根据权利要求1所述的机器人分选系统的判别方法,其特征在于:2D相机为2D线阵相机,3D相机为3D线激光相机,在步骤a之前,还包括a’.2D相机和3D相机分别通过编码信号分配器实现对待分选的物体进行图像捕获。
4.根据权利要求3所述的机器人分选系统的判别方法,其特征在于:在步骤a’与a之间,还包括a”.分别配置2D相机和3D相机的编码器倍频/分频系数。
5.根据权利要求1所述的机器人分选系统的判别方法,其特征在于:所述步骤d,具体为:设待分选的物体的平面中心坐标为(x,y),几何中心坐标为(X,Y),则转换矩阵M2与平面中心坐标、几何中心坐标的关系为:(x,y,1)-1*M2=(X,Y,1)-1
6.根据权利要求1所述的机器人分选系统的判别方法,其特征在于:在步骤d中,具体操作如下:
d1.选定三个依次相邻的待分选的物体,并分别标号为A,B,C;
d2.记A,B,C号待分选的物体的平面中心坐标分别为(x1,y1)(x2,y2)(x3,y3),几何中心坐标分别为(X1,Y1)(X2,Y2)(X3,Y3);
d3.根据矩阵
Figure FDA0002243226620000021
算出v0-v5,然后得出转换矩阵
7.根据权利要求1所述的机器人分选系统的判别方法,其特征在于:在步骤d和步骤e中,还包括:
d’.再次依次相邻的三个待分选的物体,该三个待分选的物体与步骤c中的三个待分选的物体不完全重复,并通过步骤d算出转换矩阵M2’;
d”.重复步骤d’;
d”’.对比所有转换矩阵,选出误差最小的转换矩阵M2min
在步骤e中,通过经步骤d-d”’选出的M2min来把2D相机捕获的图像轮廓信息转换为3D坐标。
8.根据权利要求7所述的机器人分选系统的判别方法,其特征在于:在步骤d”’中,具体为:
d”’1.随机选取待分选的物体,该待分选的物体不属于上述的三个参与转换矩阵M2计算的待分选的物体之一;
d”’2.记录该待分选的物体的平面中心坐标(x’,y’)以及几何中心坐标(X’,Y’),并把该平面中心坐标(x’,y’)以及转换矩阵M2代入矩阵
Figure FDA0002243226620000031
中,解得(X”,Y”);
d”’3.对比(X’,Y’)与(X”,Y”),得出转换矩阵M2的误差值;
d”’4.对比所有的转换矩阵M2的误差值,选出误差值最小的转换矩阵M2min
CN201911007602.9A 2019-10-22 2019-10-22 一种机器人分选系统的判别方法 Active CN110852995B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911007602.9A CN110852995B (zh) 2019-10-22 2019-10-22 一种机器人分选系统的判别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911007602.9A CN110852995B (zh) 2019-10-22 2019-10-22 一种机器人分选系统的判别方法

Publications (2)

Publication Number Publication Date
CN110852995A true CN110852995A (zh) 2020-02-28
CN110852995B CN110852995B (zh) 2022-05-13

Family

ID=69597780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911007602.9A Active CN110852995B (zh) 2019-10-22 2019-10-22 一种机器人分选系统的判别方法

Country Status (1)

Country Link
CN (1) CN110852995B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013109252A1 (en) * 2012-01-17 2013-07-25 Thomson Licensing Generating an image for another view
JP2014136214A (ja) * 2013-01-17 2014-07-28 Yokozaki Co Ltd 選別コンベア装置
EP3051495A1 (en) * 2015-01-29 2016-08-03 Wipro Limited Systems and methods for mapping object coordinates from a video frame view to real world coordinates
CN109345542A (zh) * 2018-09-18 2019-02-15 重庆大学 一种穿戴式视觉注视目标定位装置及方法
CN109848073A (zh) * 2019-02-22 2019-06-07 浙江大学滨海产业技术研究院 一种分拣煤与煤矸石的设备与方法
CN110102490A (zh) * 2019-05-23 2019-08-09 北京阿丘机器人科技有限公司 基于视觉技术的流水线包裹分拣装置和电子设备
CN110163064A (zh) * 2018-11-30 2019-08-23 腾讯科技(深圳)有限公司 一种道路标志物的识别方法、装置及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013109252A1 (en) * 2012-01-17 2013-07-25 Thomson Licensing Generating an image for another view
JP2014136214A (ja) * 2013-01-17 2014-07-28 Yokozaki Co Ltd 選別コンベア装置
EP3051495A1 (en) * 2015-01-29 2016-08-03 Wipro Limited Systems and methods for mapping object coordinates from a video frame view to real world coordinates
CN109345542A (zh) * 2018-09-18 2019-02-15 重庆大学 一种穿戴式视觉注视目标定位装置及方法
CN110163064A (zh) * 2018-11-30 2019-08-23 腾讯科技(深圳)有限公司 一种道路标志物的识别方法、装置及存储介质
CN109848073A (zh) * 2019-02-22 2019-06-07 浙江大学滨海产业技术研究院 一种分拣煤与煤矸石的设备与方法
CN110102490A (zh) * 2019-05-23 2019-08-09 北京阿丘机器人科技有限公司 基于视觉技术的流水线包裹分拣装置和电子设备

Also Published As

Publication number Publication date
CN110852995B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2021109575A1 (zh) 基于融入全局视觉和局部视觉的机器人视觉引导方法和装置
CN111721259B (zh) 基于双目视觉的水下机器人回收定位方法
KR100823549B1 (ko) 조선소 소조립 용접부재 위치 인식 방법
CN111784655B (zh) 一种水下机器人回收定位方法
KR102043898B1 (ko) 물류 센터의 피킹 자동화 시스템 및 이를 이용한 피킹 자동화 방법
CN114029946A (zh) 一种基于3d光栅引导机器人定位抓取的方法、装置及设备
CN111242057A (zh) 产品分拣系统、方法、计算机设备和存储介质
CN111626995B (zh) 一种针对工件的智能嵌件检测方法和装置
CN107895166B (zh) 基于特征描述子的几何哈希法实现目标鲁棒识别的方法
CN110992410B (zh) 基于rgb-d数据融合的机器人视觉引导方法和装置
CN112329587A (zh) 饮料瓶的分类方法、装置及电子设备
CN110263608B (zh) 基于图像特征空间变阈值度量的电子元器件自动识别方法
CN110084587B (zh) 一种基于边缘上下文的餐盘自动结算方法
CN109583306B (zh) 一种基于机器视觉的纱管残留纱线检测方法
CN108182700B (zh) 一种基于两次特征检测的图像配准方法
CN114359552A (zh) 一种基于巡检机器人的仪表图像识别方法
CN110852995B (zh) 一种机器人分选系统的判别方法
CN111160374B (zh) 一种基于机器学习的颜色识别方法及系统、装置
TW201601119A (zh) 物件辨識與定位方法
CN109544514B (zh) 一种融合表观特征的锯材身份辨识方法、装置及设备
CN113109762B (zh) 一种用于auv对接回收的光视觉引导方法
CN115034577A (zh) 一种基于虚实边缘匹配的机电产品漏装检测方法
CN113313725A (zh) 含能材料药桶的桶口识别方法及系统
CN115115631B (zh) 轮毂缺陷检测方法、装置、设备及计算机可读介质
JP2020087155A (ja) 情報処理装置、情報処理方法及びプログラム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant