CN110844876A - A process method for graphene-assisted preparation of large-area metal nanoparticle arrays - Google Patents
A process method for graphene-assisted preparation of large-area metal nanoparticle arrays Download PDFInfo
- Publication number
- CN110844876A CN110844876A CN201911136443.2A CN201911136443A CN110844876A CN 110844876 A CN110844876 A CN 110844876A CN 201911136443 A CN201911136443 A CN 201911136443A CN 110844876 A CN110844876 A CN 110844876A
- Authority
- CN
- China
- Prior art keywords
- substrate
- metal
- nano
- graphene
- metal atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 239000002082 metal nanoparticle Substances 0.000 title claims abstract description 52
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 29
- 230000008569 process Effects 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title abstract description 13
- 238000003491 array Methods 0.000 title abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 76
- 229910052751 metal Inorganic materials 0.000 claims abstract description 57
- 239000002184 metal Substances 0.000 claims abstract description 57
- 238000000137 annealing Methods 0.000 claims abstract description 35
- 230000000737 periodic effect Effects 0.000 claims abstract description 20
- 238000012546 transfer Methods 0.000 claims abstract description 16
- 238000012545 processing Methods 0.000 claims abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 73
- 239000002061 nanopillar Substances 0.000 claims description 32
- 239000000377 silicon dioxide Substances 0.000 claims description 31
- 239000002077 nanosphere Substances 0.000 claims description 28
- 238000005468 ion implantation Methods 0.000 claims description 15
- 229910021645 metal ion Inorganic materials 0.000 claims description 15
- 239000010410 layer Substances 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000002513 implantation Methods 0.000 claims description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000001312 dry etching Methods 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 claims description 2
- 229910000510 noble metal Inorganic materials 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- 239000002344 surface layer Substances 0.000 claims 1
- 238000001704 evaporation Methods 0.000 abstract description 7
- 230000004888 barrier function Effects 0.000 abstract description 6
- 238000004381 surface treatment Methods 0.000 abstract description 3
- 230000000903 blocking effect Effects 0.000 abstract description 2
- 230000007774 longterm Effects 0.000 abstract description 2
- 125000004429 atom Chemical group 0.000 description 33
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical group [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 20
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 230000008020 evaporation Effects 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 239000002086 nanomaterial Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000011807 nanoball Substances 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/04—Networks or arrays of similar microstructural devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00031—Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Silicon Compounds (AREA)
Abstract
一种石墨烯辅助制备大面积金属纳米颗粒阵列的工艺方法,属于微纳加工领域。本发明在传统工艺的基础上,首先采用表面周期性处理工艺,在衬底101表面制备出一个个纳米柱106,其目的是将金属原子102的注入区域分隔开,转移石墨烯105并退火,退火过程中金属原子102团聚成金属纳米颗粒103。石墨烯105起到了完美的阻挡层作用,阻止金属原子102的蒸发。因此,退火温度可以远高于传统工艺中的退火温度。此外,表面周期性处理使得金属纳米颗粒呈现规则排列,这样能够获得结构排列可调的金属纳米颗粒阵列。同时,制备出的石墨烯被金属纳米颗粒保护,阻隔其与空气的接触,有效保证了金属纳米颗粒的长期性质稳定。A process method for graphene-assisted preparation of large-area metal nanoparticle arrays belongs to the field of micro-nano processing. On the basis of the traditional process, the present invention firstly adopts the surface periodic treatment process to prepare nano-columns 106 on the surface of the substrate 101, the purpose of which is to separate the implanted regions of the metal atoms 102, transfer the graphene 105 and anneal , the metal atoms 102 agglomerate into metal nanoparticles 103 during the annealing process. The graphene 105 acts as a perfect barrier to prevent the metal atoms 102 from evaporating. Therefore, the annealing temperature can be much higher than that in the conventional process. In addition, the periodic surface treatment makes the metal nanoparticles exhibit regular arrangement, which can obtain metal nanoparticle arrays with tunable structural arrangement. At the same time, the prepared graphene is protected by metal nanoparticles, blocking its contact with the air, effectively ensuring the long-term stability of the metal nanoparticles.
Description
技术领域technical field
本发明涉及一种金属纳米颗粒阵列制备工艺,属于微纳加工领域。The invention relates to a preparation process of a metal nanoparticle array, which belongs to the field of micro-nano processing.
背景技术Background technique
金属纳米结构具有表面等离子体效应,其主要原因是金属内部与表面存在大量自由电子,形成自由电子气团,即等离子体(plasmon)。金属纳米结构的表面等离子体光学在光催化、光学传感、生物标记、医学成像、太阳能电池,以及表面增强拉曼光谱等领域有广泛的应用前景,这些功能也和金属纳米结构与光相互作用时产生的表面等离子体共振密切相关。Metal nanostructures have surface plasmon effect, which is mainly due to the existence of a large number of free electrons inside and on the surface of the metal, forming a free electron air mass, namely plasmon. Surface plasmon optics of metal nanostructures have broad application prospects in the fields of photocatalysis, optical sensing, biomarkers, medical imaging, solar cells, and surface-enhanced Raman spectroscopy. These functions also interact with metal nanostructures and light. are closely related to the surface plasmon resonance generated when
金属纳米颗粒是金属纳米结构中的一种,通过设计金属纳米颗粒的直径、间距和周期即可实现相应的一些光学功能。目前,金属纳米颗粒的制备方法有许多,如:纳米压印、电子束曝光、溅射退火、化学合成、金属离子注入并退火。其中,金属离子注入并退火是目前常用的一种金属纳米颗粒的制备方法之一。它的工艺流程大体如下:步骤1、如图1所示,准备金属离子注入所需的衬底101,该衬底可以是绝缘衬底或者半导体衬底;步骤2、如图2所示,进行金属离子注入,将金属原子102注入进入衬底101内部;步骤3、如图3所示,得到注入后的衬底101,其内部有金属原子102;步骤4、如图4所示,进行退火,退火过程中,金属原子102会发生团聚,聚合成为金属纳米颗粒103;步骤5、如图5所示,最终在衬底101内部及表层得到金属纳米颗粒103。该方法可以实现大面积的金属纳米颗粒的制备,同时,由于制备过程中引入了退火工艺,获得的金属纳米颗粒的晶格质量会比较好。但是,目前该方法仍存在以下一些问题:Metal nanoparticles are one of metal nanostructures, and some corresponding optical functions can be realized by designing the diameter, spacing and period of metal nanoparticles. At present, there are many preparation methods for metal nanoparticles, such as: nanoimprinting, electron beam exposure, sputtering annealing, chemical synthesis, metal ion implantation and annealing. Among them, metal ion implantation and annealing is one of the commonly used preparation methods of metal nanoparticles. Its process flow is generally as follows: Step 1, as shown in Figure 1, prepare a substrate 101 required for metal ion implantation, which can be an insulating substrate or a semiconductor substrate; Step 2, as shown in Figure 2, perform Metal ions are implanted, and metal atoms 102 are implanted into the interior of the substrate 101; Step 3, as shown in FIG. 3, obtain the implanted substrate 101, which has metal atoms 102 inside; Step 4, as shown in FIG. 4, perform annealing , during the annealing process, the metal atoms 102 will agglomerate to form metal nanoparticles 103 ;
1)退火温度不能太高,否则会导致金属原子析出衬底表面后蒸发,造成金属原子的流失。而退火温度低造成的结果就是获得金属纳米颗粒的直径偏小,难以得到大尺寸金属纳米颗粒。1) The annealing temperature should not be too high, otherwise it will cause metal atoms to evaporate on the surface of the substrate after precipitation, resulting in the loss of metal atoms. The result of the low annealing temperature is that the diameter of the obtained metal nanoparticles is too small, and it is difficult to obtain large-sized metal nanoparticles.
2)得到的金属纳米颗粒的排列是无序、随机的,导致难以实现可控制备金属纳米颗粒。2) The arrangement of the obtained metal nanoparticles is disordered and random, which makes it difficult to realize the controllable preparation of metal nanoparticles.
3)对于一些易氧化的金属,如铜、银等,制备出的金属纳米颗粒缺少有效保护,容易被氧化,导致金属纳米颗粒失效。3) For some easily oxidized metals, such as copper, silver, etc., the prepared metal nanoparticles lack effective protection and are easily oxidized, resulting in the failure of the metal nanoparticles.
目前,针对上述问题尚无行之有效的解决方法。At present, there is no effective solution for the above problem.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供了一种石墨烯辅助制备大面积金属纳米颗粒阵列的工艺方法。该方法在离子注入并退火制备金属纳米颗粒的方法基础上,首先,采用一种称之为“表面周期性处理”的方法对注入金属原子后的衬底表面进行干法刻蚀处理,在衬底表面制备出一个个周期性紧密排列的纳米柱,其目的是将金属原子的注入区域分隔开。之后,我们在衬底表面转移一层石墨烯(石墨烯是由碳原子以sp2杂化组成的单原子层二维薄膜材料),引入石墨烯作为金属原子阻挡层,阻止退火过程中金属原子的蒸发。最终,通过退火可以在衬底表面得到周期排列的规则的金属纳米颗粒阵列。所得到的金属纳米颗粒的直径和排列周期可调。该方法解决了目前金属离子注入并退火制备金属纳米颗粒所存在的所有问题,实现了金属纳米颗粒的可控大面积周期性制备。The purpose of the present invention is to provide a process method for graphene-assisted preparation of large-area metal nanoparticle arrays. This method is based on the method of preparing metal nanoparticles by ion implantation and annealing. First, a method called "surface periodic treatment" is used to dry-etch the surface of the substrate after implanting metal atoms. The bottom surface is prepared with periodic and densely arranged nanopillars, the purpose of which is to separate the implanted regions of metal atoms. After that, we transferred a layer of graphene on the surface of the substrate (graphene is a single-atom layer two-dimensional thin film material composed of carbon atoms with sp2 hybridization), and introduced graphene as a metal atom blocking layer to prevent the metal atoms from annealing during the annealing process. evaporation. Finally, periodic arrays of regular metal nanoparticles can be obtained on the substrate surface by annealing. The diameter and arrangement period of the obtained metal nanoparticles can be adjusted. The method solves all the problems existing in the current metal ion implantation and annealing to prepare metal nanoparticles, and realizes the controllable large-area periodic preparation of metal nanoparticles.
具体工艺步骤如下:The specific process steps are as follows:
S1,准备金属离子注入所需的衬底101;如图1所示。S1, prepare the substrate 101 required for metal ion implantation; as shown in FIG. 1 .
S2,采用金属离子注入的方式,将金属原子102注入到衬底101面内部浅表层,金属原子102的注入深度控制在衬底的浅表层距离表面的高度<100nm;如图2所示;S2, by means of metal ion implantation, metal atoms 102 are implanted into the superficial layer inside the surface of the substrate 101, and the implantation depth of the metal atoms 102 is controlled so that the height of the superficial layer of the substrate from the surface is less than 100 nm; as shown in FIG. 2 ;
S3—S5步骤统称为对衬底进行表面周期性处理。Steps S3-S5 are collectively referred to as performing periodic surface treatment on the substrate.
S3,采用一种二氧化硅纳米球的转移方法,将二氧化硅纳米球104转移至步骤S2中衬底101表面;如图6所示,采用溶液转移的方法,二氧化硅纳米球104在转移至衬底101表面后,由于其转移机理的原因,会在衬底101表面呈现紧密的周期性排列,如图12所示;S3, using a transfer method of silica nanospheres, the silica nanospheres 104 are transferred to the surface of the substrate 101 in step S2; as shown in FIG. After being transferred to the surface of the substrate 101, due to the transfer mechanism, a tight periodic arrangement will appear on the surface of the substrate 101, as shown in FIG. 12;
S4,以二氧化硅纳米球104为掩膜,对衬底表面进行垂直干法刻蚀,刻蚀深度大于金属原子102的注入深度,最终在衬底表面得到一个个紧密规则排列的纳米柱106;刻蚀的目的是将金属原子102的注入区域分隔开,每个纳米柱106的顶面为一个二氧化硅纳米球104,每个纳米柱106的直径约等于二氧化硅纳米球104的直径,每个纳米柱106中都含有金属原子102;如图7所示;S4, using the silicon dioxide nanospheres 104 as a mask, vertical dry etching is performed on the surface of the substrate, and the etching depth is greater than the implantation depth of the metal atoms 102, and finally nano-pillars 106 that are closely and regularly arranged on the surface of the substrate are obtained. The purpose of the etching is to separate the injection area of the metal atoms 102, the top surface of each nano-pillar 106 is a silicon dioxide nano-sphere 104, and the diameter of each nano-pillar 106 is approximately equal to the diameter of the silicon dioxide nano-ball 104. diameter, each nanopillar 106 contains metal atoms 102; as shown in FIG. 7;
S5,通过去离子水超声的方法将纳米柱106的顶面的二氧化硅纳米球104从衬底101表面去掉,如图8所示;S5, removing the silicon dioxide nanospheres 104 on the top surfaces of the nanopillars 106 from the surface of the substrate 101 by ultrasonic deionized water, as shown in FIG. 8 ;
S6,在衬底101表面通过湿法转移法转移一层石墨烯105;如图9所示。S6, a layer of graphene 105 is transferred on the surface of the substrate 101 by a wet transfer method; as shown in FIG. 9 .
S7,通过退火的方式,使金属原子102从衬底101表面的纳米柱106中析出到纳米柱106的顶表面并团聚,在退火的过程中每个纳米柱106内部的金属原子102都会受热团聚并在纳米柱106顶表面形成一个金属纳米颗粒103,如图10所示,得到的金属纳米颗粒103的排列方式与纳米柱106一致,同样也与二氧化硅纳米球104排列方式一致;S7, by annealing, the metal atoms 102 are precipitated from the nano-pillars 106 on the surface of the substrate 101 to the top surface of the nano-pillars 106 and agglomerated. During the annealing process, the metal atoms 102 inside each nano-pillar 106 will be heated and agglomerated And a metal nano-particle 103 is formed on the top surface of the nano-pillar 106. As shown in FIG. 10, the arrangement of the obtained metal nano-particle 103 is consistent with that of the nano-pillar 106, and is also consistent with the arrangement of the silica nano-spheres 104;
S8,最终,在衬底101表面得到周期性排列的金属纳米颗粒103;如图11所示。S8, finally, periodically arranged metal nanoparticles 103 are obtained on the surface of the substrate 101; as shown in FIG. 11 .
本发明中所使用的衬底可以是表层有二氧化硅层的硅衬底,也可以是石英衬底,还可以是其他绝缘衬底。The substrate used in the present invention may be a silicon substrate with a silicon dioxide layer on the surface, a quartz substrate, or other insulating substrates.
本发明中,金属离子注入所形成的金属可以是金、铂、银、铜等贵金属,也可以是铝、铁等其他金属。In the present invention, the metal formed by the implantation of metal ions may be noble metals such as gold, platinum, silver, and copper, or may be other metals such as aluminum and iron.
退火的温度为大于等于金属原子的对应金属的熔点温度。The annealing temperature is equal to or greater than the melting point temperature of the corresponding metal of the metal atom.
本发明中,与传统金属离子注入并退火制备金属纳米颗粒的方法相比,主要区别有以下两点:区别(1)在衬底表层注入金属原子后,引入表面周期性处理工艺。二氧化硅纳米球的转移方法是一种常用的湿法转移,其特点在于转移至衬底表面后,二氧化硅纳米球会呈现出规则的等边三角形排列,如图12示。之后,通过干法刻蚀衬底,在衬底表面得到一个个纳米柱,目的是将金属原子的注入区域分隔开,形成一个个小区域。每个纳米柱与二氧化硅纳米球呈现一致的等边三角形规则排列。表面周期性处理工艺是为了之后退火得到周期性排列的金属纳米颗粒做准备。退火后,析出得到的金属纳米颗粒会保持与纳米柱一致的排列方式。表面周期性十分重要,如图17所示,以金属银为例,图中白色原点即为银纳米颗粒,左侧图为经过表面周期性处理得到的银纳米颗粒,右侧图为未经表面周期性处理得到的银纳米颗粒。可以看到,左侧银金属纳米颗粒呈现规则有序排列,而右侧则没有。区别(2)在刻蚀好的衬底表面转移一层石墨烯105作为阻挡层。这样做的目的是为了阻止金属原子的蒸发。目前研究发现,对于完整晶格的石墨烯来说,金属原子无法穿过,同时,石墨烯具有超强的机械性能。以上两个特性使得石墨烯十分适合作为金属原子蒸发的阻挡层。将石墨烯转移至衬底表面后,在退火过程中,一旦金属原子析出至衬底表面,由于石墨烯的阻挡,金属原子不会蒸发,而是会被石墨烯束缚,留在衬底表面,这样就减少了金属原子由于蒸发造成的流失。因此,可以大幅提高退火温度而不用担心金属原子的蒸发。实验证明,没有石墨烯的情况下,退火时析出表面的金属原子会全部蒸发,在衬底表面不会得到金属纳米颗粒。In the present invention, compared with the traditional method of metal ion implantation and annealing to prepare metal nanoparticles, the main differences are as follows: Difference (1) After the metal atoms are implanted into the surface of the substrate, a surface periodic treatment process is introduced. The transfer method of silica nanospheres is a common wet transfer method, which is characterized in that after being transferred to the surface of the substrate, the silica nanospheres will show a regular equilateral triangle arrangement, as shown in Figure 12. After that, the substrate is dry-etched to obtain nano-pillars on the surface of the substrate, in order to separate the implanted regions of metal atoms to form small regions. Each nanopillar and the silica nanospheres present a regular arrangement of equilateral triangles. The surface periodic treatment process is to prepare for the subsequent annealing to obtain periodically arranged metal nanoparticles. After annealing, the metal nanoparticles obtained by precipitation will maintain the same arrangement as the nanopillars. Surface periodicity is very important, as shown in Figure 17, taking metallic silver as an example, the white origin in the figure is silver nanoparticles, the left picture is the silver nanoparticles obtained by surface periodic treatment, the right picture is without surface The resulting silver nanoparticles were processed periodically. It can be seen that the silver metal nanoparticles on the left show a regular and orderly arrangement, but not on the right. Difference (2) Transfer a layer of graphene 105 on the surface of the etched substrate as a barrier layer. The purpose of this is to stop the evaporation of metal atoms. Current research has found that for graphene with a complete lattice, metal atoms cannot pass through, and at the same time, graphene has super mechanical properties. The above two properties make graphene very suitable as a barrier for the evaporation of metal atoms. After the graphene is transferred to the surface of the substrate, during the annealing process, once the metal atoms are precipitated to the surface of the substrate, due to the barrier of the graphene, the metal atoms will not evaporate, but will be bound by the graphene and stay on the surface of the substrate, This reduces the loss of metal atoms due to evaporation. Therefore, the annealing temperature can be greatly increased without worrying about the evaporation of metal atoms. Experiments have shown that in the absence of graphene, all the metal atoms deposited on the surface will evaporate during annealing, and no metal nanoparticles will be obtained on the surface of the substrate.
本发明中,对衬底进行表面周期性处理的掩膜可以通过转移二氧化硅纳米球作为掩膜,也可以通过纳米压印或者转移其他材料纳米球来制作周期性掩膜。In the present invention, the mask for periodic surface treatment of the substrate can be made by transferring silicon dioxide nanospheres as a mask, or by nanoimprinting or transferring nanospheres of other materials to make a periodic mask.
本发明的优越性:Advantages of the present invention:
1.采用石墨烯作为金属原子蒸发的阻挡层,可以有效阻止金属原子的流失,因而可以将退火温度大幅提高,能够得到更大尺寸的金属纳米颗粒。1. The use of graphene as a barrier for the evaporation of metal atoms can effectively prevent the loss of metal atoms, so the annealing temperature can be greatly increased, and larger-sized metal nanoparticles can be obtained.
2.金属纳米颗粒在衬底表面形成后即被石墨烯包裹,石墨烯保护了金属纳米颗粒,阻止其与空气接触。因而本发明适用于制备易氧化金属的纳米颗粒,如银、铜等,能够实现其长期储存。2. After the metal nanoparticles are formed on the surface of the substrate, they are wrapped by graphene, and the graphene protects the metal nanoparticles and prevents them from contacting with the air. Therefore, the present invention is suitable for preparing nanoparticles of easily oxidizable metals, such as silver, copper, etc., and can realize long-term storage thereof.
3.通过对衬底的表面周期性处理,可以实现金属纳米颗粒的周期性的规则排列,使整个制备方法更加可控。3. Through the periodic treatment of the surface of the substrate, the periodic regular arrangement of the metal nanoparticles can be realized, so that the whole preparation method is more controllable.
4.由于实验发现每个刻蚀出的纳米柱表面固定形成一个金属纳米颗粒,因此,金属纳米颗粒的直径受每个纳米柱中的金属原子的数目影响。因此,可以通过改变离子注入的剂量或者纳米柱的直径,来实现对最终金属纳米颗粒的尺寸的调节。4. Since it is found in experiments that each etched nano-column surface is fixed to form a metal nano-particle, the diameter of the metal nano-particle is affected by the number of metal atoms in each nano-column. Therefore, the size of the final metal nanoparticles can be adjusted by changing the dose of ion implantation or the diameter of the nanopillars.
5.通过纳米压印等其他方法制备周期性的刻蚀掩膜,可以刻蚀得到不同排列方式的纳米柱,进而得到不同排列方式的金属纳米颗粒。5. By preparing periodic etching masks by other methods such as nano-imprinting, nano-pillars with different arrangements can be etched, and metal nanoparticles with different arrangements can be obtained.
附图说明Description of drawings
图1:金属离子注入所用衬底的示意图;Figure 1: Schematic diagram of the substrate used for metal ion implantation;
图2:金属离子注入工艺示意图;Figure 2: Schematic diagram of metal ion implantation process;
图3:金属离子注入后,金属原子在衬底内部的分布示意图;Figure 3: Schematic diagram of the distribution of metal atoms inside the substrate after metal ion implantation;
图4:退火过程中,金属原子团聚形成金属纳米颗粒的过程示意图;Figure 4: Schematic diagram of the process of agglomeration of metal atoms to form metal nanoparticles during annealing;
图5:退火过程中得到的金属纳米颗粒在衬底内部的分布及结构示意图;Figure 5: Schematic diagram of the distribution and structure of the metal nanoparticles obtained during the annealing process inside the substrate;
图6:金属离子注入后,在衬底表面转移上二氧化硅纳米球后的样品结构示意图;Figure 6: Schematic diagram of the sample structure after metal ion implantation and transfer of silica nanospheres on the surface of the substrate;
图7:进行干法刻蚀的工艺示意图;Figure 7: Process schematic diagram of dry etching;
图8:通过去离子水超声,去掉二氧化硅纳米球后的样品结构示意图;Figure 8: Schematic diagram of the sample structure after removing the silica nanospheres by ultrasonic deionized water;
图9:在样品表面转移一层石墨烯后的样品结构示意图;Figure 9: Schematic diagram of the sample structure after transferring a layer of graphene on the surface of the sample;
图10:退火,金属原子在衬底表面团聚形成金属纳米颗粒的过程示意图;Figure 10: Schematic diagram of the process of annealing, the agglomeration of metal atoms on the surface of the substrate to form metal nanoparticles;
图11:最终在衬底表面得到的规则排列的金属纳米颗粒样品的结构示意图;Figure 11: Schematic diagram of the structure of the regularly arranged metal nanoparticle sample finally obtained on the surface of the substrate;
图12:图6中所示结构样品的扫面电子显微镜(SEM)俯视图,即转移完二氧化硅纳米球后的样品表面的SEM的俯视图。图中黑色虚线所圈出的圆形即为二氧化硅纳米球,其直径约为600nm。FIG. 12 is a scanning electron microscope (SEM) top view of the structural sample shown in FIG. 6 , that is, a top view of the SEM of the surface of the sample after the silica nanospheres are transferred. The circle circled by the black dotted line in the figure is the silica nanosphere, and its diameter is about 600 nm.
图13:图8中所示结构样品的在70度倾斜角下的SEM俯视图,即刻蚀出纳米柱并去掉二氧化硅纳米球后的样品在在70度倾斜角下的SEM俯视图。Figure 13: The SEM top view of the structural sample shown in Figure 8 at a tilt angle of 70 degrees, that is, the SEM top view of the sample at a tilt angle of 70 degrees after the nanopillars are etched and the silica nanospheres are removed.
图14:制备出的银纳米颗粒的SEM俯视图,图中黑色箭头所指白色圆点即为银纳米颗粒。Figure 14: SEM top view of the prepared silver nanoparticles, the white dots indicated by the black arrows in the figure are silver nanoparticles.
图15:去除石墨烯后的样品的SEM俯视图,图中黑色虚线所圈出圆形即为纳米柱的俯视图,图中白色圆点为银纳米颗粒。Figure 15: SEM top view of the sample after removing graphene, the circle circled by the black dotted line in the figure is the top view of the nanopillar, and the white dots in the figure are silver nanoparticles.
图16:银纳米颗粒在圆形纳米柱表面的结构示意图。Figure 16: Schematic diagram of the structure of silver nanoparticles on the surface of circular nanopillars.
图17:银纳米颗粒实物的光学显微镜图,图中白色原点即为银纳米颗粒。左侧图为经过表面周期性处理得到的银纳米颗粒,右侧图为未经表面周期性处理得到的银纳米颗粒。Figure 17: Optical microscope image of the real silver nanoparticles, the white origin in the figure is the silver nanoparticles. The picture on the left is the silver nanoparticles obtained by the surface periodic treatment, and the picture on the right is the silver nanoparticles obtained without the surface periodic treatment.
具体实施方式Detailed ways
本发明的实施通过以下实施例给予说明,但本发明并不限于以下实施例。The practice of the present invention is illustrated by the following examples, but the present invention is not limited to the following examples.
实施例1:大面积制备银纳米颗粒Example 1: Large-area preparation of silver nanoparticles
以制备银纳米颗粒为例,采用本发明中的方法制备:Taking the preparation of silver nanoparticles as an example, the method of the present invention is used to prepare:
S1将带有300nm二氧化硅层的硅片洗净后,采用离子注入技术,向衬底浅表层注入银原子,注入剂量为5×1015/cm2,注入能量为30keV,该注入能量下,银原子的注入深度约为22nm。S1 After cleaning the silicon wafer with a 300nm silicon dioxide layer, the ion implantation technique is used to implant silver atoms into the superficial layer of the substrate, the implantation dose is 5×10 15 /cm 2 , and the implantation energy is 30keV. , the implantation depth of silver atoms is about 22 nm.
S2在注入好银原子的衬底表面转移二氧化硅纳米球,二氧化硅纳米球的直径约为600nm。二氧化硅纳米球的转移方法为常见的湿法转移法,即首先将二氧化硅纳米球均匀分散在溶液中,再将混有二氧化硅纳米球的溶液滴在去离子水表面。由于水的表面张力作用(可以增加其他的溶质增加表面张力),二氧化硅纳米球将漂浮在去离子水表面,并形成等边三角形的规则排列。最后,再用衬底从水中平行于水面直接向上平行移动将二氧化硅纳米球从去离子水中捞出,二氧化硅纳米球即会附着在衬底表面,并保持原有的等边三角形的规则排列。图12为二氧化硅纳米球在衬底表面的SEM俯视图。S2 transfers silica nanospheres on the surface of the substrate implanted with silver atoms, and the diameter of the silica nanospheres is about 600 nm. The transfer method of silica nanospheres is a common wet transfer method, that is, firstly disperse the silica nanospheres uniformly in the solution, and then drop the solution mixed with the silica nanospheres on the surface of deionized water. Due to the surface tension of water (which can increase the surface tension of other solutes), the silica nanospheres will float on the surface of deionized water and form a regular arrangement of equilateral triangles. Finally, the silica nanospheres are pulled out from the deionized water by moving the substrate parallel to the water surface, and the silica nanospheres will be attached to the surface of the substrate and keep the original equilateral triangle shape. Regular arrangement. FIG. 12 is an SEM top view of the silica nanospheres on the surface of the substrate.
S3采用反应离子刻蚀(RIE)系统以二氧化硅纳米球为掩膜对衬底进行干法刻蚀。刻蚀条件为:功率300W,三氟甲烷:100sccm,刻蚀时间:50s。该刻蚀条件下,刻蚀深度约为40nm(>22nm的银原子注入深度),可以将银原子注入区分隔开。刻蚀后,采用去离子水超声的方法将二氧化硅纳米球从衬底表面去除。图13为刻蚀后衬底表面在70度倾斜角下的SEM图,可以看到衬底表面形成了一个个的圆形的纳米柱。S3 uses a reactive ion etching (RIE) system to dry-etch the substrate with silicon dioxide nanospheres as a mask. The etching conditions are: power 300W, trifluoromethane: 100sccm, and etching time: 50s. Under this etching condition, the etching depth is about 40 nm (>22 nm for the implantation depth of silver atoms), which can separate the implanted regions of silver atoms. After etching, the silica nanospheres were removed from the surface of the substrate by ultrasonic deionized water. FIG. 13 is an SEM image of the substrate surface after etching at an inclination angle of 70 degrees. It can be seen that one by one circular nano-pillars are formed on the substrate surface.
S4采用湿法转移法,在衬底表面转移一层单层石墨烯。S4 uses a wet transfer method to transfer a single layer of graphene on the surface of the substrate.
S5对衬底进行退火。退火条件:1050摄氏度,15分钟,氩气/氢气(960sccm/40sccm)气氛。退火温度远大于纳米银的熔点。退火过程中,银原子会从衬底内析出,由于石墨烯的阻挡,银原子不会从衬底表面蒸发,而是会被束缚在石墨烯与衬底界面间。最后,银原子会团聚形成银纳米颗粒。银纳米颗粒的直径在144nm附近。图14为退火后得到的银纳米颗粒的SEM的俯视图,可以看到银纳米颗粒尺寸均匀,并且呈现等边三角形的规则排列,排列方式与二氧化硅纳米球一致。S5 anneals the substrate. Annealing conditions: 1050 degrees Celsius, 15 minutes, argon/hydrogen (960 sccm/40 sccm) atmosphere. The annealing temperature is much higher than the melting point of nano-silver. During the annealing process, silver atoms will be precipitated from the substrate. Due to the barrier of graphene, the silver atoms will not evaporate from the surface of the substrate, but will be bound between the interface between the graphene and the substrate. Finally, the silver atoms will agglomerate to form silver nanoparticles. The diameter of the silver nanoparticles is around 144 nm. 14 is a top view of the SEM of the silver nanoparticles obtained after annealing. It can be seen that the size of the silver nanoparticles is uniform, and the regular arrangement of the equilateral triangle is presented, and the arrangement is consistent with the silica nanospheres.
S6将石墨烯用氧等离子刻蚀掉后,可以直观观察到银纳米颗粒和圆形纳米柱的相对位置关系,从图15中可以看到,银纳米颗粒在圆形纳米柱中央,每一个纳米柱表面形成一个银纳米颗粒。图16为银纳米颗粒在圆形纳米柱表面的结构示意图。After etching the graphene with oxygen plasma at S6, the relative positional relationship between the silver nanoparticles and the circular nanopillars can be visually observed. As can be seen from Figure 15, the silver nanoparticles are in the center of the circular nanopillars, and each nanometer A silver nanoparticle is formed on the surface of the pillar. FIG. 16 is a schematic diagram of the structure of silver nanoparticles on the surface of circular nanopillars.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911136443.2A CN110844876B (en) | 2019-11-19 | 2019-11-19 | A process method for graphene-assisted preparation of large-area metal nanoparticle arrays |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911136443.2A CN110844876B (en) | 2019-11-19 | 2019-11-19 | A process method for graphene-assisted preparation of large-area metal nanoparticle arrays |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110844876A true CN110844876A (en) | 2020-02-28 |
CN110844876B CN110844876B (en) | 2022-06-24 |
Family
ID=69602687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911136443.2A Active CN110844876B (en) | 2019-11-19 | 2019-11-19 | A process method for graphene-assisted preparation of large-area metal nanoparticle arrays |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110844876B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112164759A (en) * | 2020-09-28 | 2021-01-01 | 京东方科技集团股份有限公司 | OLED light-emitting unit, OLED substrate and manufacturing method of OLED light-emitting unit |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102180438A (en) * | 2011-03-28 | 2011-09-14 | 中国科学院光电技术研究所 | Fabrication method of a tunable triangular metal nanoparticle array structure |
CN102259832A (en) * | 2010-05-27 | 2011-11-30 | 清华大学 | Preparation method of three-dimensional nano structure array |
CN102320557A (en) * | 2011-09-08 | 2012-01-18 | 中国科学院研究生院 | Method for preparing metal nanometer particles with hexagonal network in lattice distribution on substrate |
CN102747320A (en) * | 2012-07-31 | 2012-10-24 | 武汉大学 | Preparation method of noble metal nano-particle array |
KR101478604B1 (en) * | 2014-11-11 | 2015-01-02 | 연세대학교 산학협력단 | Method of patterning nano particle by tapping on patterned template using impact member and manufacturing method of nano electrode thereby |
-
2019
- 2019-11-19 CN CN201911136443.2A patent/CN110844876B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102259832A (en) * | 2010-05-27 | 2011-11-30 | 清华大学 | Preparation method of three-dimensional nano structure array |
CN102180438A (en) * | 2011-03-28 | 2011-09-14 | 中国科学院光电技术研究所 | Fabrication method of a tunable triangular metal nanoparticle array structure |
CN102320557A (en) * | 2011-09-08 | 2012-01-18 | 中国科学院研究生院 | Method for preparing metal nanometer particles with hexagonal network in lattice distribution on substrate |
CN102747320A (en) * | 2012-07-31 | 2012-10-24 | 武汉大学 | Preparation method of noble metal nano-particle array |
KR101478604B1 (en) * | 2014-11-11 | 2015-01-02 | 연세대학교 산학협력단 | Method of patterning nano particle by tapping on patterned template using impact member and manufacturing method of nano electrode thereby |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112164759A (en) * | 2020-09-28 | 2021-01-01 | 京东方科技集团股份有限公司 | OLED light-emitting unit, OLED substrate and manufacturing method of OLED light-emitting unit |
CN112164759B (en) * | 2020-09-28 | 2023-06-06 | 京东方科技集团股份有限公司 | OLED light-emitting unit, OLED substrate and manufacturing method of OLED light-emitting unit |
Also Published As
Publication number | Publication date |
---|---|
CN110844876B (en) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mark et al. | Hybrid nanocolloids with programmed three-dimensional shape and material composition | |
Hoogenboom et al. | Template-induced growth of close-packed and non-close-packed colloidal crystals during solvent evaporation | |
US20200385850A1 (en) | Nanoparticle fabrication | |
Yan et al. | Preparation of mesoscopic gold rings using particle imprinted templates | |
US8772181B2 (en) | Method for producing graphene, graphene produced on substrate, and graphene on substrate | |
US9203155B2 (en) | Metamaterial structure and manufacturing method of the same | |
US8048789B2 (en) | Mesoscale pyramids, arrays and methods of preparation | |
JP5890613B2 (en) | Silicon nanowires containing metal nanoclusters and method for producing the same | |
CN102148429B (en) | The manufacture method of nano-optical antenna array | |
KR20110094178A (en) | Controlled Growth Method of Graphene Films | |
Su et al. | The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays | |
CN106353296A (en) | Method for preparing surface-enhanced raman activity substrate with high uniformity | |
CN101983914B (en) | Method for preparing micro number density or size gradient metal nano-particle lattice | |
Park et al. | Fabrication of metallic nanowires and nanoribbons using laser interference lithography andshadow lithography | |
CN110844876B (en) | A process method for graphene-assisted preparation of large-area metal nanoparticle arrays | |
CN101011742A (en) | Controlled method of preparing metal nano particle | |
CN108330454A (en) | A kind of preparation method of netted gold and silver composite nano film | |
Huang et al. | Optical absorption characteristic of highly ordered and dense two-dimensional array ofsilicon nanodiscs | |
Ye et al. | Experimental realization of a well-controlled 3D silicon spiral photonic crystal | |
CN111349892B (en) | Silver-superposed triangular nanoparticle array and preparation method thereof | |
CN110106488A (en) | A kind of preparation method of flower-shaped hierarchical structure Au@Ag nanometer sheet oldered array | |
Niu et al. | Large-area, size-tunable Si nanopillar arrays with enhanced antireflective and plasmonic properties | |
Wei et al. | Fabrication of nickel nanostructure arrays via a modified nanosphere lithography | |
CN102050419A (en) | Magnetic double nano-structure array material and preparation method thereof | |
Saleem et al. | Cluster ion beam assisted fabrication of metallic nanostructures for plasmonic applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |