CN110837246A - Method for analyzing geometric error sensitivity of double rotating shafts of five-axis numerical control machine tool - Google Patents
Method for analyzing geometric error sensitivity of double rotating shafts of five-axis numerical control machine tool Download PDFInfo
- Publication number
- CN110837246A CN110837246A CN201911163064.2A CN201911163064A CN110837246A CN 110837246 A CN110837246 A CN 110837246A CN 201911163064 A CN201911163064 A CN 201911163064A CN 110837246 A CN110837246 A CN 110837246A
- Authority
- CN
- China
- Prior art keywords
- error
- axis
- sensitivity
- machine tool
- numerical control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000035945 sensitivity Effects 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000010206 sensitivity analysis Methods 0.000 claims abstract description 51
- 230000009977 dual effect Effects 0.000 claims abstract description 14
- 238000005070 sampling Methods 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims description 59
- 230000009466 transformation Effects 0.000 claims description 42
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000012614 Monte-Carlo sampling Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 238000000342 Monte Carlo simulation Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000013178 mathematical model Methods 0.000 claims 3
- 230000001419 dependent effect Effects 0.000 claims 2
- 238000001514 detection method Methods 0.000 abstract description 4
- 238000005259 measurement Methods 0.000 abstract 1
- 238000003754 machining Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000007429 general method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35408—Calculate new position data from actual data to compensate for contour error
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Abstract
本发明提出了一种五轴数控机床双旋转轴几何误差敏感度分析方法,包括以下步骤:首先基于多体系统理论和齐次变换矩阵构建双旋转轴几何误差的数学模型,然后利用蒙特卡罗方法进行误差参数采样,对数控机床双旋转轴的几何误差进行敏感度分析;最后基于双旋转轴特定转角的位置对误差参数进行敏感度分析,通过设置五组特定转角的位置,计算双旋转轴在此位置的各项几何误差的一阶敏感度和全局敏感度;通过Sobol敏感度分析方法可以识别双旋转轴20项几何误差中的关键几何误差,完成五轴数控机床双旋转轴几何误差的辨识。本发明的检测步骤简洁,测量方便,辨识精度高。
The present invention proposes a method for analyzing the sensitivity of the geometric error of the double rotating axes of a five-axis numerically controlled machine tool. The method conducts error parameter sampling to analyze the sensitivity of the geometric error of the dual rotary axes of the CNC machine tool; finally, based on the position of the specific rotation angle of the dual rotation axis, the sensitivity analysis of the error parameters is carried out. The first-order sensitivity and global sensitivity of the geometric errors at this position; the key geometric errors among the 20 geometric errors of the dual-rotation axis can be identified through the Sobol sensitivity analysis method, and the geometric errors of the dual-rotation axis of the five-axis CNC machine tool can be identified. Identify. The detection steps of the invention are simple, the measurement is convenient, and the identification precision is high.
Description
技术领域technical field
本发明属于数控机床误差检测技术领域,特别涉及一种基于敏感度分析的五轴数控机床双旋转轴几何误差辨识方法。The invention belongs to the technical field of error detection of numerically controlled machine tools, and particularly relates to a method for identifying geometric errors of five-axis numerically controlled machine tools with double rotation axes based on sensitivity analysis.
技术背景technical background
五轴数控机床相对于三轴数控机床具备加工复杂零件的能力,其原因是五轴数控机床较三轴数控机床增加了两个旋转轴。五轴数控机床进行加工时,生成的刀具路径比传统的三轴机床加工具有更大的灵活性。但是旋转轴在加工时引入了自身误差元素,其中几何误差对总误差的影响极大,在很大程度上影响了机床的加工精度。Compared with three-axis CNC machine tools, five-axis CNC machine tools have the ability to process complex parts. The reason is that five-axis CNC machine tools have two more rotating axes than three-axis CNC machine tools. When machining with a five-axis CNC machine, the resulting toolpaths provide greater flexibility than conventional three-axis machining. However, the rotary axis introduces its own error elements during machining, among which the geometric error has a great influence on the total error, which greatly affects the machining accuracy of the machine tool.
几何误差通常被认为是由于它们的特性而产生的准静态误差,占机床总误差的一半以上,所以研究旋转轴的几何误差对于提高五轴数控机床精度至关重要。旋转轴各项几何误差相互耦合,一般方法对双旋转轴几何误差快速辨识较难,因此提出一种可以快速、简易地辨识五轴数控机床双旋转轴几何误差的方法对提升机床加工精度非常重要。Geometric errors are generally considered to be quasi-static errors due to their characteristics, accounting for more than half of the total error of machine tools, so studying the geometric errors of rotary axes is crucial to improving the accuracy of five-axis CNC machine tools. The geometric errors of the rotary axes are coupled with each other, and it is difficult to quickly identify the geometric errors of the dual rotary axes by the general method. Therefore, it is very important to propose a method that can quickly and easily identify the geometric errors of the dual rotary axes of the five-axis CNC machine tool to improve the machining accuracy of the machine tool. .
发明内容SUMMARY OF THE INVENTION
为解决上述问题,本发明提出一种基于敏感度分析的五轴数控机床双旋转轴几何误差辨识方法,利用多体系统理论和齐次变换矩阵对机床旋转轴A轴、C轴的各项几何误差进行Sobol敏感度分析。该发明可以简便并准确的对几何误差进行辨识,得出各误差元素对总误差的影响程度,进而通过控制关键几何误差提高加工质量。具体步骤如下:In order to solve the above problems, the present invention proposes a method for identifying the geometric errors of the double rotating axes of the five-axis CNC machine tool based on sensitivity analysis. Errors were subjected to Sobol sensitivity analysis. The invention can simply and accurately identify the geometric errors, obtain the influence degree of each error element on the total error, and then improve the processing quality by controlling the key geometric errors. Specific steps are as follows:
步骤1、利用多体系统理论和齐次变换矩阵进行几何误差建模,具体步骤如下:Step 1. Use multi-body system theory and homogeneous transformation matrix for geometric error modeling. The specific steps are as follows:
步骤1.1、基于数控机床部件的拓扑结构关系对数控机床设置参考坐标系和局部坐标系,将Y轴局部坐标系设置为与参考坐标系重合。Step 1.1. Set a reference coordinate system and a local coordinate system for the CNC machine tool based on the topological structure relationship of the CNC machine tool components, and set the Y-axis local coordinate system to coincide with the reference coordinate system.
步骤1.2、对数控机床双旋转轴的几何误差进行辨识,包括12项与位置有关的几何误差(Position-Dependent Geometric Errors,PDGEs)和8项与位置无关的几何误差(Position- Independent Geometric Errors,PIGEs)。Step 1.2. Identify the geometric errors of the dual rotary axes of the CNC machine tool, including 12 Position-Dependent Geometric Errors (PDGEs) and 8 Position-Independent Geometric Errors (PIGEs) ).
步骤1.3、利用齐次变换矩阵构建误差变换矩阵。Step 1.3, using the homogeneous transformation matrix to construct the error transformation matrix.
A轴实际回转中心线在Y轴方向的位置误差EYOA是A轴轴线在Y方向上的偏差量,DYOA是误差变换矩阵:The position error of the actual rotation center line of the A-axis in the Y-axis direction E YOA is the deviation of the A-axis axis in the Y direction, and D YOA is the error transformation matrix:
A轴实际回转中心线在Z轴方向的位置误差EZOA是A轴轴线在Z方向上的偏差量,DZOA是误差变换矩阵:The position error of the actual rotation center line of the A-axis in the Z-axis direction, E ZOA is the deviation of the A-axis axis in the Z direction, and D ZOA is the error transformation matrix:
A轴实际回转中心线在XOZ平面的投影与X轴的夹角EBOA是A轴轴线绕Y轴的平行度误差,TB0A是误差变换矩阵:The angle between the projection of the actual rotation center line of the A-axis on the XOZ plane and the X-axis E BOA is the parallelism error of the A-axis axis around the Y-axis, and T B0A is the error transformation matrix:
A轴实际回转中心线在XOY平面的投影与X轴的夹角ECOA是A轴轴线绕Z轴的平行度误差,TC0A是误差变换矩阵:The angle between the projection of the actual rotation center line of the A-axis on the XOY plane and the X-axis, E COA is the parallelism error of the A-axis axis around the Z-axis, and T C0A is the error transformation matrix:
其中,DYOA、DZOA、TB0A、TC0A是A轴的4项PIGEs误差变换矩阵。Among them, D YOA , D ZOA , T B0A , and T C0A are the 4-term PIGEs error transformation matrix of the A axis.
C轴实际回转中心线在X轴方向的位置误差EXOC是C轴轴线在X方向上的偏差量,DXOC是误差变换矩阵:The position error of the actual rotation center line of the C-axis in the X-axis direction E XOC is the deviation of the C-axis axis in the X direction, and D XOC is the error transformation matrix:
C轴实际回转中心线在Y轴方向的位置误差为EYOC是C轴轴线在Y方向上的偏差量,DYOC是误差变换矩阵:The position error of the actual rotation center line of the C-axis in the Y-axis direction is E YOC is the deviation of the C-axis axis in the Y direction, and D YOC is the error transformation matrix:
C轴实际回转中心线在YOZ平面的投影与Z轴的夹角EAOC是C轴轴线绕X轴的平行度误差,TAOC是误差变换矩阵:The angle between the projection of the actual rotation center line of the C-axis on the YOZ plane and the Z-axis, E AOC is the parallelism error of the C-axis axis around the X-axis, and T AOC is the error transformation matrix:
步骤C轴实际回转中心线在XOZ平面的投影与Z轴的夹角EBOC是C轴轴线绕Y轴的平行度误差,TBOC是误差变换矩阵:Step The angle between the projection of the actual rotation center line of the C-axis on the XOZ plane and the Z-axis E BOC is the parallelism error of the C-axis axis around the Y-axis, and T BOC is the error transformation matrix:
其中,DXOC、DYOC、TAOC、TBOC是C轴的4项PIGEs误差变换矩阵。Among them, D XOC , D YOC , T AOC , and T BOC are the 4-term PIGEs error transformation matrix of the C-axis.
对应的PDGE误差变换矩阵为: The corresponding PDGE error transformation matrix is:
对应的PDGE误差变换矩阵为: The corresponding PDGE error transformation matrix is:
其中,是基于小角度近似原理的双旋转轴PDGEs误差变换矩阵。in, is the error transformation matrix of dual-rotation axis PDGEs based on the principle of small-angle approximation.
综合上述各误差矩阵,工件相对于刀具的几何误差为:Combining the above error matrices, the geometric error of the workpiece relative to the tool is:
步骤2、五轴数控机床蒙特卡罗采样的Sobol敏感度分析,具体步骤如下:
步骤2.1、采用蒙特卡罗方法对误差参数进行采样,生成Sobol序列以确定各项误差对机床空间误差的影响。Step 2.1. Use the Monte Carlo method to sample the error parameters, and generate a Sobol sequence to determine the influence of various errors on the machine tool space error.
步骤2.2、基于方差的Sobol敏感度分析需要确定误差数k,两个旋转轴共有20个误差项,所以k设置为20。Step 2.2. The variance-based Sobol sensitivity analysis needs to determine the number of errors k. There are 20 error terms in the two rotation axes, so k is set to 20.
步骤2.3、生成Sobol序列A、B两个参数样本矩阵,记为:Step 2.3. Generate two parameter sample matrices of Sobol sequence A and B, denoted as:
其中xij表示第j个(i=1,2,3...k)误差元素的第i个(j=1,2,3...n)样本。where x ij represents the ith (j=1, 2, 3...n) sample of the jth (i=1, 2, 3...k) error element.
步骤2.4、将矩阵B的第i列换到矩阵A的第i列,矩阵A的其余列不变,得到矩阵记为ABi,如下所示:Step 2.4. Change the i-th column of matrix B to the i-th column of matrix A, and the remaining columns of matrix A remain unchanged, and the obtained matrix is denoted as AB i , as shown below:
通过上述方法构造出矩阵A、B、ABi,共有(k+2)*N组旋转轴误差参数,因此得到(k+2)*N组值。对于每组存在唯一的矩阵A、B、ABi相对应,记作f(A), f(B),f(ABi)。The matrices A, B, AB i are constructed by the above method, and there are (k+2)*N groups of rotation axis error parameters, so the (k+2)*N groups are obtained value. for each group There are unique matrices A, B, AB i corresponding to each other, denoted as f(A), f(B), f(AB i ).
步骤2.5、通过系统响应的方差计算公式可以计算各项误差元素的一阶敏感度和全局敏感度,计算公式如下:Step 2.5. The first-order sensitivity and global sensitivity of each error element can be calculated by the variance calculation formula of the system response. The calculation formula is as follows:
Var(Y)=Var(YA+YB) (3)Var(Y)=Var(Y A +Y B ) (3)
Y=(ya1 ya2 ... yan yb1 yb2 ... ybn)T (6)Y=(y a1 y a2 ... y an y b1 y b2 ... y bn ) T ( 6 )
其中yj1为输入矩阵对应的输出值,Var(Y)为Y的标准差。where y j1 is the output value corresponding to the input matrix, and Var(Y) is the standard deviation of Y.
步骤2.6、误差元素的一阶敏感度和全局敏感度计算公式:Step 2.6. The first-order sensitivity and global sensitivity calculation formula of the error element:
Si表示误差元素xi的一阶敏感度,STi表示误差元素xi的全局敏感度。误差元素xi的一阶敏感度表示该误差对机床空间误差的直接影响,全局敏感度表示该误差对机床空间误差的耦合影响。S i represents the first-order sensitivity of the error element xi , and S Ti represents the global sensitivity of the error element xi . The first-order sensitivity of the error element xi represents the direct influence of the error on the spatial error of the machine tool, and the global sensitivity represents the coupled effect of the error on the spatial error of the machine tool.
目标五轴数控机床的PDGEs和PIGEs的采样比是3∶7,其中位置误差和角度误差采样范围分别是(0,1)μm和(0,1)″。The sampling ratio of PDGEs and PIGEs of the target five-axis CNC machine tool is 3:7, and the sampling ranges of position error and angle error are (0, 1) μm and (0, 1)”, respectively.
步骤3、基于旋转轴特定转角位置对误差参数进行敏感度分析。由于旋转轴所转到的角度不同,旋转轴各项误差对机床精度的影响也随之改变。针对五轴数控机床旋转轴在不同转角位置的敏感度问题,设置五组特定转角位置和一组在其加工范围内转角位置随机变化对五轴数控机床双旋转轴进行敏感度分析。Step 3. Perform a sensitivity analysis on the error parameters based on the specific rotational angle position of the rotating shaft. Due to the different rotation angles of the rotary axis, the influence of various errors of the rotary axis on the accuracy of the machine tool also changes. Aiming at the sensitivity of the rotary axis of the five-axis CNC machine tool at different corner positions, five groups of specific corner positions and a group of random changes in the position of the rotation angle within the processing range are set to analyze the sensitivity of the dual rotation axis of the five-axis CNC machine tool.
步骤3.1、设置A轴转角为0°、C轴转角为0°,对五轴数控机床在此位置进行敏感度分析,计算其一阶敏感度和全局敏感度。Step 3.1. Set the rotation angle of the A-axis to 0° and the rotation angle of the C-axis to 0°. Perform a sensitivity analysis on the position of the five-axis CNC machine tool to calculate its first-order sensitivity and global sensitivity.
步骤3.2、设置A轴转角为45°、C轴转角为45°,对五轴数控机床在此位置进行敏感度分析,计算其一阶敏感度和全局敏感度。Step 3.2. Set the rotation angle of the A axis to 45° and the rotation angle of the C axis to 45°. Perform a sensitivity analysis on the position of the five-axis CNC machine tool to calculate its first-order sensitivity and global sensitivity.
步骤3.3、设置A轴转角为90°、C轴转角为90°,对五轴数控机床在此位置进行敏感度分析,计算其一阶敏感度和全局敏感度。Step 3.3. Set the rotation angle of A-axis to 90° and the rotation angle of C-axis to 90°. Perform sensitivity analysis on the position of the five-axis CNC machine tool to calculate its first-order sensitivity and global sensitivity.
步骤3.4、设置A轴转角为0°、C轴转角为90°,对五轴数控机床在此位置进行敏感度分析,计算其一阶敏感度和全局敏感度。Step 3.4. Set the rotation angle of the A axis to 0° and the rotation angle of the C axis to 90°. Perform a sensitivity analysis on the five-axis CNC machine tool at this position, and calculate its first-order sensitivity and global sensitivity.
步骤3.5、设置A轴转角为90°、C轴转角为0°,对五轴数控机床在此位置进行敏感度分析,计算其一阶敏感度和全局敏感度。Step 3.5. Set the rotation angle of the A axis to 90° and the rotation angle of the C axis to 0°. Perform a sensitivity analysis on the position of the five-axis CNC machine tool to calculate its first-order sensitivity and global sensitivity.
步骤3.6、设置A轴转角在0°-90°内随机变化,C轴转角在0°-360°内随机变化,对五轴数控机床进行敏感度分析,计算其一阶敏感度和全局敏感度。Step 3.6, set the A-axis rotation angle to vary randomly within 0°-90°, and the C-axis rotation angle to vary randomly within 0°-360°, perform sensitivity analysis on the five-axis CNC machine tool, and calculate its first-order sensitivity and global sensitivity .
步骤3的Sobol敏感度分析结果显示,影响加工精度的误差主要分布在PIGEs部分。PIGEs对五轴数控机床空间误差的影响程度较大,而PDGEs对五轴数控机床空间误差影响较小,通过Sobol敏感度分析方法可以识别20项几何误差中的关键几何误差。几何误差中影响机床精度的关键几何误差来自PIGEs中的EY0A、EY0C、EA0C,影响加工精度的一阶敏感度占 20项几何误差的67.42%,考虑相互作用情况下,影响加工精度的全局敏感度占20项几何误差的26.97%。The Sobol sensitivity analysis results in step 3 show that the errors affecting the machining accuracy are mainly distributed in the PIGEs part. PIGEs have a greater influence on the spatial error of five-axis CNC machine tools, while PDGEs have less impact on the spatial errors of five-axis CNC machine tools. The key geometric errors among the 20 geometric errors can be identified by the Sobol sensitivity analysis method. Among the geometric errors, the key geometric errors affecting machine tool accuracy come from E Y0A , E Y0C , and E A0C in PIGEs, and the first-order sensitivity affecting machining accuracy accounts for 67.42% of the 20 geometric errors. The global sensitivity accounts for 26.97% of the 20-item geometric errors.
通过上述Sobol敏感度分析结果,对五轴数控机床的几何误差进行辨识,控制关键误差可以提高数控机床的精度。Through the above Sobol sensitivity analysis results, the geometric errors of five-axis CNC machine tools are identified, and the control of key errors can improve the accuracy of CNC machine tools.
以上完成了五轴数控机床双旋转轴几何误差敏感度分析,包括8项与位置无关的几何误差和12项与位置有关的几何误差的敏感度分析。The above completes the sensitivity analysis of the geometric errors of the five-axis CNC machine tool and the dual rotating axes, including the sensitivity analysis of 8 geometric errors independent of position and 12 geometric errors related to position.
本发明有效的解决了五轴数控机床中双旋转轴几何误差的辨识与检测,提出了有效的五轴数控机床双旋转轴的几何误差敏感度分析。The invention effectively solves the identification and detection of the geometric error of the double rotating shafts in the five-axis numerical control machine tool, and proposes an effective sensitivity analysis of the geometric error of the double rotating shafts of the five-axis numerical control machine tool.
附图说明Description of drawings
图1为本发明方法实施例中五轴数控机床的参考坐标系图。FIG. 1 is a reference coordinate system diagram of a five-axis CNC machine tool in a method embodiment of the present invention.
图2为本发明方法实施例中A轴的PIGEs示意图。Figure 2 is a schematic diagram of the PIGEs of the A-axis in the method embodiment of the present invention.
图3为本发明方法实施例中C轴的PIGEs示意图。FIG. 3 is a schematic diagram of the PIGEs of the C-axis in the method embodiment of the present invention.
图4是本发明方法实施例中一阶敏感度结果示意图。其中,序号1表示A轴0°时, C轴0°时的一阶敏感度。2表示A轴45°时,C轴45°时的一阶敏感度。3表示A轴0°时,C轴90°时的一阶敏感度。4表示A轴90°时,C轴0°时的一阶敏感度。5表示A轴 90°时,C轴90°时的一阶敏感度。6表示A轴0°-90°时,C轴0°-360°时的一阶敏感度。误差项的表示:1-EYOA、2-EZOA、3-EXOC、4-EYOC、5-EBOA、6-ECOA、7-EAOC、8-EBOC、9- δx(a)、10-δy(a)、11-δz(a)、12-εx(a)、13-εy(a)、14-εz(a)、15-δx(c)、16-δy(c)、17-δz(c)、 18-δx(c)、19-εy(c)、20-εz(c)。FIG. 4 is a schematic diagram of a first-order sensitivity result in an embodiment of the method of the present invention. Among them, No. 1 indicates the first-order sensitivity when the A-axis is 0° and the C-axis is 0°. 2 represents the first-order sensitivity when the A-axis is 45° and the C-axis is 45°. 3 represents the first-order sensitivity when the A-axis is 0° and the C-axis is 90°. 4 represents the first-order sensitivity when the A-axis is 90° and the C-axis is 0°. 5 represents the first-order sensitivity when the A-axis is 90° and the C-axis is 90°. 6 represents the first-order sensitivity of the A-axis at 0°-90° and the C-axis at 0°-360°. Representation of error terms: 1-E YOA , 2-E ZOA , 3-E XOC , 4-E YOC , 5-E BOA , 6-E COA , 7-E AOC , 8-E BOC , 9- δ x ( a), 10-δ y (a), 11-δ z (a), 12-ε x (a), 13-ε y (a), 14-ε z (a), 15-δ x (c) , 16-δ y (c), 17-δ z (c), 18-δ x (c), 19-ε y (c), 20-ε z (c).
图5是本发明方法实施例中全局敏感度结果示意图。其中,序号1表示A轴0°时,C轴0°时的一阶敏感度。2表示A轴45°时,C轴45°时的一阶敏感度。3表示A轴0°时,C轴90°时的一阶敏感度。4表示A轴90°时,C轴0°时的一阶敏感度。5表示A轴 90°时,C轴90°时的一阶敏感度。6表示A轴0°-90°时,C轴0°-360°时的一阶敏感度。误差项的表示:1-EYOA、2-EZOA、3-EXOC、4-EYOC、5-EBOA、6-ECOA、7-EAOC、8-EBOC、9- δx(a)、10-δy(a)、11-δz(a)、12-εx(a)、13-εy(a)、14-εz(a)、15-δx(c)、16-δy(c)、17-δz(c)、 18-εx(c)、19-εy(c)、20-εz(c)。FIG. 5 is a schematic diagram of a global sensitivity result in an embodiment of the method of the present invention. Among them, No. 1 represents the first-order sensitivity when the A-axis is 0° and the C-axis is 0°. 2 represents the first-order sensitivity when the A-axis is 45° and the C-axis is 45°. 3 represents the first-order sensitivity when the A-axis is 0° and the C-axis is 90°. 4 represents the first-order sensitivity when the A-axis is 90° and the C-axis is 0°. 5 represents the first-order sensitivity when the A-axis is 90° and the C-axis is 90°. 6 represents the first-order sensitivity of the A-axis at 0°-90° and the C-axis at 0°-360°. Representation of error terms: 1-E YOA , 2-E ZOA , 3-E XOC , 4-E YOC , 5-E BOA , 6-E COA , 7-E AOC , 8-E BOC , 9- δ x ( a), 10-δ y (a), 11-δ z (a), 12-ε x (a), 13-ε y (a), 14-ε z (a), 15-δ x (c) , 16-δ y (c), 17-δ z (c), 18-ε x (c), 19-ε y (c), 20-ε z (c).
具体实施方式Detailed ways
为解决上述问题,本发明提出一种基于敏感度分析的五轴数控机床双旋转轴几何误差辨识方法,利用多体系统理论和齐次变换矩阵对机床旋转轴A轴、C轴的各项几何误差进行Sobol敏感度分析。该发明可以简便并准确的对几何误差进行辨识,得出各误差元素对总误差的影响程度,进而通过控制关键几何误差提高加工质量。具体步骤如下:In order to solve the above problems, the present invention proposes a method for identifying the geometric errors of the double rotating axes of the five-axis CNC machine tool based on sensitivity analysis. Errors were subjected to Sobol sensitivity analysis. The invention can simply and accurately identify the geometric errors, obtain the influence degree of each error element on the total error, and then improve the processing quality by controlling the key geometric errors. Specific steps are as follows:
步骤1、利用多体系统理论和齐次变换矩阵进行几何误差建模,具体步骤如下:Step 1. Use multi-body system theory and homogeneous transformation matrix for geometric error modeling. The specific steps are as follows:
步骤1.1、基于数控机床部件的拓扑结构关系对数控机床设置参考坐标系和局部坐标系,将Y轴局部坐标系设置为与参考坐标系重合,数控机床的参考坐标系如图1所示。Step 1.1. Set the reference coordinate system and local coordinate system for the CNC machine tool based on the topological structure relationship of the CNC machine tool components, and set the Y-axis local coordinate system to coincide with the reference coordinate system. The reference coordinate system of the CNC machine tool is shown in Figure 1.
步骤1.2、对数控机床双旋转轴的几何误差进行辨识,包括12项与位置有关的几何误差(Position-Dependent Geometric Errors,PDGEs)和8项与位置无关的几何误差(Position- Independent Geometric Errors,PIGEs),A轴的PIGEs如图2所示,C轴的PIGEs如图3所示。Step 1.2. Identify the geometric errors of the dual rotary axes of the CNC machine tool, including 12 Position-Dependent Geometric Errors (PDGEs) and 8 Position-Independent Geometric Errors (PIGEs) ), the PIGEs of the A-axis are shown in Fig. 2, and the PIGEs of the C-axis are shown in Fig. 3.
步骤1.3、利用齐次变换矩阵构建误差变换矩阵。Step 1.3, using the homogeneous transformation matrix to construct the error transformation matrix.
A轴实际回转中心线在Y轴方向的位置误差EYOA是A轴轴线在Y方向上的偏差量,DYOA是误差变换矩阵:The position error of the actual rotation center line of the A-axis in the Y-axis direction E YOA is the deviation of the A-axis axis in the Y direction, and D YOA is the error transformation matrix:
A轴实际回转中心线在Z轴方向的位置误差EZOA是A轴轴线在Z方向上的偏差量,DZOA是误差变换矩阵:The position error of the actual rotation center line of the A-axis in the Z-axis direction, E ZOA is the deviation of the A-axis axis in the Z direction, and D ZOA is the error transformation matrix:
A轴实际回转中心线在XOZ平面的投影与X轴的夹角EBOA是A轴轴线绕Y轴的平行度误差,TB0A是误差变换矩阵:The angle between the projection of the actual rotation center line of the A-axis on the XOZ plane and the X-axis E BOA is the parallelism error of the A-axis axis around the Y-axis, and T B0A is the error transformation matrix:
A轴实际回转中心线在XOY平面的投影与X轴的夹角ECOA是A轴轴线绕Z轴的平行度误差,TC0A是误差变换矩阵:The angle between the projection of the actual rotation center line of the A-axis on the XOY plane and the X-axis, E COA is the parallelism error of the A-axis axis around the Z-axis, and T C0A is the error transformation matrix:
其中,DYOA、DZOA、TB0A、TC0A是A轴的4项PIGEs误差变换矩阵。Among them, D YOA , D ZOA , T B0A , and T C0A are the 4-term PIGEs error transformation matrix of the A axis.
C轴实际回转中心线在X轴方向的位置误差EXOC是C轴轴线在X方向上的偏差量,DXOC是误差变换矩阵:The position error of the actual rotation center line of the C-axis in the X-axis direction E XOC is the deviation of the C-axis axis in the X direction, and D XOC is the error transformation matrix:
C轴实际回转中心线在Y轴方向的位置误差为EYOC是C轴轴线在Y方向上的偏差量,DYOC是误差变换矩阵:The position error of the actual rotation center line of the C-axis in the Y-axis direction is E YOC is the deviation of the C-axis axis in the Y direction, and D YOC is the error transformation matrix:
C轴实际回转中心线在YOZ平面的投影与Z轴的夹角EAOC是C轴轴线绕X轴的平行度误差,TAOC是误差变换矩阵:The angle between the projection of the actual rotation center line of the C-axis on the YOZ plane and the Z-axis, E AOC is the parallelism error of the C-axis axis around the X-axis, and T AOC is the error transformation matrix:
步骤C轴实际回转中心线在XOZ平面的投影与Z轴的夹角EBOC是C轴轴线绕Y轴的平行度误差,TBOC是误差变换矩阵:Step The angle between the projection of the actual rotation center line of the C-axis on the XOZ plane and the Z-axis E BOC is the parallelism error of the C-axis axis around the Y-axis, and T BOC is the error transformation matrix:
其中,DXOC、DYOC、TAOC、TBOC是C轴的4项PIGEs误差变换矩阵。Among them, D XOC , D YOC , T AOC , and T BOC are the 4-term PIGEs error transformation matrix of the C-axis.
对应的PDGE误差变换矩阵为: The corresponding PDGE error transformation matrix is:
对应的PDGE误差变换矩阵为: The corresponding PDGE error transformation matrix is:
其中,是基于小角度近似原理的双旋转轴PDGEs误差变换矩阵。in, is the error transformation matrix of dual-rotation axis PDGEs based on the principle of small-angle approximation.
综合上述各误差矩阵,工件相对于刀具的几何误差为:Combining the above error matrices, the geometric error of the workpiece relative to the tool is:
步骤2、五轴数控机床蒙特卡罗采样的Sobol敏感度分析,具体步骤如下:
步骤2.1、采用蒙特卡罗方法对误差参数进行采样,生成Sobol序列以确定各项误差对机床空间误差的影响。Step 2.1. Use the Monte Carlo method to sample the error parameters, and generate a Sobol sequence to determine the influence of various errors on the machine tool space error.
步骤2.2、基于方差的Sobol敏感度分析需要确定误差数k,两个旋转轴共有20个误差项,所以k设置为20。Step 2.2. The variance-based Sobol sensitivity analysis needs to determine the number of errors k. There are 20 error terms in the two rotation axes, so k is set to 20.
步骤2.3、生成Sobol序列A、B两个参数样本矩阵,记为:Step 2.3. Generate two parameter sample matrices of Sobol sequence A and B, denoted as:
其中xij表示第j个(i=1,2,3...k)误差元素的第i个(j=1,2,3...n)样本。where x ij represents the ith (j=1, 2, 3...n) sample of the jth (i=1, 2, 3...k) error element.
步骤2.4、将矩阵B的第i列换到矩阵A的第i列,矩阵A的其余列不变,得到矩阵记为ABi,如下所示:Step 2.4. Change the i-th column of matrix B to the i-th column of matrix A, and the remaining columns of matrix A remain unchanged, and the obtained matrix is denoted as AB i , as shown below:
通过上述方法构造出矩阵A、B、ABi,共有(k+2)*N组旋转轴误差参数,因此得到 (k+2)*N组值。对于每组存在唯一的矩阵A、B、ABi相对应,记作f(A), f(B),f(ABi)。The matrices A, B, AB i are constructed by the above method, and there are (k+2)*N groups of rotation axis error parameters, so the (k+2)*N groups are obtained value. for each group There are unique matrices A, B, AB i corresponding to each other, denoted as f(A), f(B), f(AB i ).
步骤2.5、通过系统响应的方差计算公式可以计算各项误差元素的一阶敏感度和全局敏感度,计算公式如下:Step 2.5. The first-order sensitivity and global sensitivity of each error element can be calculated by the variance calculation formula of the system response. The calculation formula is as follows:
Var(Y)=Var(YA+YB) (3)Var(Y)=Var(Y A +Y B ) (3)
Y=(ya1 ya2 ... yan yb1 yb2 ... ybn)T (6)Y=(y a1 y a2 ... y an y b1 y b2 ... y bn ) T (6)
其中yj1为输入矩阵对应的输出值,Var(Y)为Y的标准差。where y j1 is the output value corresponding to the input matrix, and Var(Y) is the standard deviation of Y.
步骤2.6、误差元素的一阶敏感度和全局敏感度计算公式:Step 2.6. The first-order sensitivity and global sensitivity calculation formula of the error element:
Si表示误差元素xi的一阶敏感度,STi表示误差元素xi的全局敏感度。误差元素xi的一阶敏感度表示该误差对机床空间误差的直接影响,全局敏感度表示该误差对机床空间误差的耦合影响。S i represents the first-order sensitivity of the error element xi , and S Ti represents the global sensitivity of the error element xi . The first-order sensitivity of the error element xi represents the direct influence of the error on the spatial error of the machine tool, and the global sensitivity represents the coupled effect of the error on the spatial error of the machine tool.
目标五轴数控机床的PDGEs和PIGEs的采样比是3∶7,其中位置误差和角度误差采样范围分别是(0,1)μm和(0,1)″。The sampling ratio of PDGEs and PIGEs of the target five-axis CNC machine tool is 3:7, and the sampling ranges of position error and angle error are (0, 1) μm and (0, 1)”, respectively.
步骤3、基于旋转轴特定转角位置对误差参数进行敏感度分析。由于旋转轴所转到的角度不同,旋转轴各项误差对机床精度的影响也随之改变。针对五轴数控机床旋转轴在不同转角位置的敏感度问题,设置五组特定转角位置和一组在其加工范围内转角位置随机变化对五轴数控机床双旋转轴进行敏感度分析。Step 3. Perform a sensitivity analysis on the error parameters based on the specific rotational angle position of the rotating shaft. Due to the different rotation angles of the rotary axis, the influence of various errors of the rotary axis on the accuracy of the machine tool also changes. Aiming at the sensitivity of the rotary axis of the five-axis CNC machine tool at different corner positions, five groups of specific corner positions and a group of random changes in the position of the rotation angle within the processing range are set to analyze the sensitivity of the dual rotation axis of the five-axis CNC machine tool.
步骤3.1、设置A轴转角为0°、C轴转角为0°,对五轴数控机床在此位置进行敏感度分析,计算其一阶敏感度和全局敏感度。Step 3.1. Set the rotation angle of the A-axis to 0° and the rotation angle of the C-axis to 0°. Perform a sensitivity analysis on the position of the five-axis CNC machine tool to calculate its first-order sensitivity and global sensitivity.
步骤3.2、设置A轴转角为45°、C轴转角为45°,对五轴数控机床在此位置进行敏感度分析,计算其一阶敏感度和全局敏感度。Step 3.2. Set the rotation angle of the A axis to 45° and the rotation angle of the C axis to 45°. Perform a sensitivity analysis on the position of the five-axis CNC machine tool to calculate its first-order sensitivity and global sensitivity.
步骤3.3、设置A轴转角为90°、C轴转角为90°,对五轴数控机床在此位置进行敏感度分析,计算其一阶敏感度和全局敏感度。Step 3.3. Set the rotation angle of A-axis to 90° and the rotation angle of C-axis to 90°. Perform sensitivity analysis on the position of the five-axis CNC machine tool to calculate its first-order sensitivity and global sensitivity.
步骤3.4、设置A轴转角为0°、C轴转角为90°,对五轴数控机床在此位置进行敏感度分析,计算其一阶敏感度和全局敏感度。Step 3.4. Set the rotation angle of the A axis to 0° and the rotation angle of the C axis to 90°. Perform a sensitivity analysis on the five-axis CNC machine tool at this position, and calculate its first-order sensitivity and global sensitivity.
步骤3.5、设置A轴转角为90°、C轴转角为0°,对五轴数控机床在此位置进行敏感度分析,计算其一阶敏感度和全局敏感度。Step 3.5. Set the rotation angle of the A axis to 90° and the rotation angle of the C axis to 0°. Perform a sensitivity analysis on the position of the five-axis CNC machine tool to calculate its first-order sensitivity and global sensitivity.
步骤3.6、设置A轴转角在0°-90°内随机变化,C轴转角在0°-360°内随机变化,计算五轴数控机床的一阶敏感度和全局敏感度。Step 3.6. Set the A-axis rotation angle to vary randomly within 0°-90°, and the C-axis rotation angle to vary randomly within 0°-360°, and calculate the first-order sensitivity and global sensitivity of the five-axis CNC machine tool.
步骤3的Sobol敏感度分析结果(如图4、图5)显示,影响加工精度的误差主要分布在PIGEs部分。PIGEs对五轴数控机床空间误差的影响程度较大,而PDGEs对五轴数控机床空间误差影响较小,通过Sobol敏感度分析方法可以识别20项几何误差中的关键几何误差。几何误差中影响机床精度的关键误差来自PIGEs中的EY0A、EY0C、EA0C,影响加工精度的一阶敏感度占20项几何误差的67.42%,考虑相互作用情况下,影响加工精度的全局敏感度占20项几何误差的26.97%。The Sobol sensitivity analysis results in step 3 (Fig. 4 and Fig. 5) show that the errors affecting the machining accuracy are mainly distributed in the PIGEs part. PIGEs have a greater influence on the spatial error of five-axis CNC machine tools, while PDGEs have less impact on the spatial errors of five-axis CNC machine tools. The key geometric errors among the 20 geometric errors can be identified by the Sobol sensitivity analysis method. The key errors affecting machine tool accuracy in geometric errors come from E Y0A , E Y0C , and E A0C in PIGEs, and the first-order sensitivity affecting machining accuracy accounts for 67.42% of the 20 geometric errors. Considering the interaction, the global impact of machining accuracy The sensitivity accounts for 26.97% of the 20-item geometric errors.
通过上述Sobol敏感度分析结果,对五轴数控机床的几何误差进行辨识,控制关键几何误差可以提高数控机床的精度。Through the above Sobol sensitivity analysis results, the geometric errors of five-axis CNC machine tools are identified, and the control of key geometric errors can improve the accuracy of CNC machine tools.
以上完成了五轴数控机床双旋转轴几何误差敏感度分析,包括8项与位置无关的几何误差和12项与位置有关的几何误差的敏感度分析。The above completes the sensitivity analysis of the geometric errors of the five-axis CNC machine tool and the dual rotating axes, including the sensitivity analysis of 8 geometric errors independent of position and 12 geometric errors related to position.
本发明有效的解决了五轴数控机床中双旋转轴几何误差的辨识与检测,提出了有效的五轴数控机床双旋转轴的几何误差敏感度分析。The invention effectively solves the identification and detection of the geometric error of the double rotating shafts in the five-axis numerical control machine tool, and proposes an effective sensitivity analysis of the geometric error of the double rotating shafts of the five-axis numerical control machine tool.
本发明对五轴数控机床双旋转轴几何误差进行敏感度分析,最后得到五轴数控机床双旋转轴的关键几何误差。附图只是一个优选实例,上述的实施例只是为了描述本发明,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应涵盖在本发明的保护范围之内。The invention conducts sensitivity analysis on the geometric errors of the double rotating axes of the five-axis numerical control machine tool, and finally obtains the key geometric errors of the double rotating axes of the five-axis numerical control machine tool. The accompanying drawing is only a preferred example, the above-mentioned embodiment is only for describing the present invention, not for limiting the present invention, any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall cover within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911163064.2A CN110837246A (en) | 2019-11-25 | 2019-11-25 | Method for analyzing geometric error sensitivity of double rotating shafts of five-axis numerical control machine tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911163064.2A CN110837246A (en) | 2019-11-25 | 2019-11-25 | Method for analyzing geometric error sensitivity of double rotating shafts of five-axis numerical control machine tool |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110837246A true CN110837246A (en) | 2020-02-25 |
Family
ID=69577219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911163064.2A Pending CN110837246A (en) | 2019-11-25 | 2019-11-25 | Method for analyzing geometric error sensitivity of double rotating shafts of five-axis numerical control machine tool |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110837246A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112017235B (en) * | 2020-10-22 | 2021-01-05 | 博迈科海洋工程股份有限公司 | Projection method based standard steel structure center line angle error detection method |
CN113156888A (en) * | 2021-05-07 | 2021-07-23 | 扬州大学 | Efficient calculation method for sensitive geometric errors of rotary pendulum head type five-axis reconfigurable machine tool |
CN113359609A (en) * | 2021-07-06 | 2021-09-07 | 宁波大学 | Key geometric error optimization proportioning compensation method for five-axis numerical control machine tool |
CN115795814A (en) * | 2022-11-10 | 2023-03-14 | 宝鸡文理学院 | Sensitivity parameter calibration method and system of dynamic vegetation model |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9002502B2 (en) * | 2011-04-04 | 2015-04-07 | Okuma Corporation | Method and program for calculating correction value for machine tool |
CN106502203A (en) * | 2016-10-08 | 2017-03-15 | 西南交通大学 | A kind of Geometric Error for Computerized Numerical Control Milling Machine modeling method |
CN107186548A (en) * | 2017-06-08 | 2017-09-22 | 大连理工大学 | A kind of five-axle number control machine tool gyroaxis geometric error detection method |
CN108445839A (en) * | 2018-05-06 | 2018-08-24 | 北京工业大学 | A kind of machine tool accuracy sensitivity analysis method based on error increment |
CN109732401A (en) * | 2019-01-02 | 2019-05-10 | 天津工业大学 | A method for detecting the position-independent error of double rotary axes of five-axis CNC machine tools |
CN109839920A (en) * | 2019-03-18 | 2019-06-04 | 西南交通大学 | A kind of five-axis machine tool kinematic axis Sensitivity Analysis Method |
CN110287553A (en) * | 2019-06-10 | 2019-09-27 | 北京工业大学 | A Global Sensitivity Analysis Method for Machining Error Models Based on Quasi-Monte Carlo Simulation |
-
2019
- 2019-11-25 CN CN201911163064.2A patent/CN110837246A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9002502B2 (en) * | 2011-04-04 | 2015-04-07 | Okuma Corporation | Method and program for calculating correction value for machine tool |
CN106502203A (en) * | 2016-10-08 | 2017-03-15 | 西南交通大学 | A kind of Geometric Error for Computerized Numerical Control Milling Machine modeling method |
CN107186548A (en) * | 2017-06-08 | 2017-09-22 | 大连理工大学 | A kind of five-axle number control machine tool gyroaxis geometric error detection method |
CN108445839A (en) * | 2018-05-06 | 2018-08-24 | 北京工业大学 | A kind of machine tool accuracy sensitivity analysis method based on error increment |
CN109732401A (en) * | 2019-01-02 | 2019-05-10 | 天津工业大学 | A method for detecting the position-independent error of double rotary axes of five-axis CNC machine tools |
CN109839920A (en) * | 2019-03-18 | 2019-06-04 | 西南交通大学 | A kind of five-axis machine tool kinematic axis Sensitivity Analysis Method |
CN110287553A (en) * | 2019-06-10 | 2019-09-27 | 北京工业大学 | A Global Sensitivity Analysis Method for Machining Error Models Based on Quasi-Monte Carlo Simulation |
Non-Patent Citations (1)
Title |
---|
范晋伟 等: ""机床误差敏感度分析方法"", 《北京工业大学学报》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112017235B (en) * | 2020-10-22 | 2021-01-05 | 博迈科海洋工程股份有限公司 | Projection method based standard steel structure center line angle error detection method |
CN113156888A (en) * | 2021-05-07 | 2021-07-23 | 扬州大学 | Efficient calculation method for sensitive geometric errors of rotary pendulum head type five-axis reconfigurable machine tool |
CN113156888B (en) * | 2021-05-07 | 2022-04-01 | 扬州大学 | Efficient calculation method for sensitive geometric errors of rotary pendulum head type five-axis reconfigurable machine tool |
CN113359609A (en) * | 2021-07-06 | 2021-09-07 | 宁波大学 | Key geometric error optimization proportioning compensation method for five-axis numerical control machine tool |
JP2023008950A (en) * | 2021-07-06 | 2023-01-19 | 寧波大学 | Correction method for optimizing ratio of correction of major geometric error in 5-axis numerical control machine tool |
JP7276788B2 (en) | 2021-07-06 | 2023-05-18 | 寧波大学 | Compensation method for optimizing the compensation ratio of major geometric errors of 5-axis numerically controlled machine tools |
CN115795814A (en) * | 2022-11-10 | 2023-03-14 | 宝鸡文理学院 | Sensitivity parameter calibration method and system of dynamic vegetation model |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110837246A (en) | Method for analyzing geometric error sensitivity of double rotating shafts of five-axis numerical control machine tool | |
CN112558547B (en) | Quick optimization method for geometric error compensation data of translational shaft of five-axis numerical control machine tool | |
CN107995885B (en) | Coordinate system calibration method, system and device | |
Chen et al. | A comprehensive error analysis method for the geometric error of multi-axis machine tool | |
US9873175B2 (en) | Interference determination method and interference determination device for machine tool | |
Zhu et al. | Integrated geometric error modeling, identification and compensation of CNC machine tools | |
CN106052556B (en) | A kind of three coordinate measuring machine spatial domain coordinates compensation method | |
Fu et al. | Product-of-exponential formulas for precision enhancement of five-axis machine tools via geometric error modeling and compensation | |
CN109454281B (en) | Method for calibrating propeller workpiece coordinate system in robot milling | |
CN110181335B (en) | Machine tool translation shaft position related error identification method based on ball arm instrument measurement | |
CN106363465B (en) | Multi-axis NC Machine Tools translation shaft and rotary shaft mutual alignment relation discrimination method | |
CN106774152A (en) | A kind of modeling method of Digit Control Machine Tool position correlation geometric error | |
CN110955979B (en) | Machine tool machining precision reliability sensitivity analysis method considering geometrical error bias correlation | |
JP2018142064A (en) | Error identification method for machine tool | |
Jiang et al. | Critical geometric errors identification of a five-axis machine tool based on global quantitative sensitivity analysis | |
CN106959664B (en) | Online nonlinear error compensation method based on five-axis double turntable | |
CN107066726B (en) | A Modeling Method for Verticality Error of Rotary Axis of NC Machine Tool | |
Chen et al. | Synchronous measurement and verification of position-independent geometric errors and position-dependent geometric errors in C-axis on mill-turn machine tools | |
CN109933920B (en) | An Error Vector Modeling Method for Position Deviation of Rotary Axis | |
CN112114557A (en) | Dynamic precision detection method and system for five-axis linkage numerical control machine tool and storage medium | |
TW201412452A (en) | A method for the measurement of static and dynamic errors of rotary axes in five-axis CNC machine tool | |
CN109933918B (en) | Error vector modeling method for perpendicularity error of rotating shaft | |
Gąska et al. | Challenges for uncertainty determination in dimensional metrology put by industry 4.0 revolution | |
Xiao et al. | Swing Angle Error Compensation of a Computer Numerical Control Machining Center for Special-Shaped Rocks. | |
Teleshevskii et al. | Automatic correction of three-dimensional geometric errors in computer controlled measurement and technological systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200225 |