CN110831805A - 用于在空载模式中运行燃料电池车辆的方法 - Google Patents
用于在空载模式中运行燃料电池车辆的方法 Download PDFInfo
- Publication number
- CN110831805A CN110831805A CN201880045373.7A CN201880045373A CN110831805A CN 110831805 A CN110831805 A CN 110831805A CN 201880045373 A CN201880045373 A CN 201880045373A CN 110831805 A CN110831805 A CN 110831805A
- Authority
- CN
- China
- Prior art keywords
- fuel cell
- maximum
- cell system
- requirement
- mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/043—Processes for controlling fuel cells or fuel cell systems applied during specific periods
- H01M8/04302—Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
- B60L58/31—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/40—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04225—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/043—Processes for controlling fuel cells or fuel cell systems applied during specific periods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04305—Modeling, demonstration models of fuel cells, e.g. for training purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/68—Traffic data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/18—Driver interactions by enquiring driving style
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/26—Transition between different drive modes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/54—Energy consumption estimation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
在这里公开的技术涉及一种用于运行机动车的方法。所述方法包括如下步骤:i)检测最大的动力学要求;并且ii)基于所述最大的动力学要求适配机动车的燃料电池系统的空载运行模式。与在最大的第二动力学要求时相比,在最大的第一动力学要求时需要更小的动力学性能。燃料电池系统在所述最大的第一动力学要求时在第一空载运行模式中运行。此外,燃料电池系统在所述最大的第二动力学要求时在第二空载运行模式中运行。燃料电池系统在第一空载运行模式中比在第二空载运行模式中更有效率地运行。
Description
在这里公开的技术涉及一种用于在空载模式中运行机动车的方法。此外,在这里公开的技术涉及一种燃料电池系统,所述燃料电池系统设置用于,实施在这里公开的方法。通过燃料电池运行的机动车作为这种机动车已知。已知的是,高的电压减少燃料电池的使用寿命。因此,即使在非功率需求(=“空载”)时也期望一定的最小取用的功率。此外,在先已知的机动车通常具有高压蓄电池。用于推进机动车的电功率通常由燃料电池系统并且由高压蓄电池提供。在此,存在关断燃料电池系统的情形,以便节省能量。然而这消极地作用于行驶动力学性能,因为在燃料电池系统可以再次提供满的功率之前经过了一定的启动时间。存在如下需求,即,使驾驶员能在消耗尽可能小的情况下实现尽可能高的行驶动力学性能。
在这里公开的技术的优选的目的在于,减少或消除在先已知的解决方案的至少一个缺点或提出一种替代的解决方案。在这里公开的技术的优选的目的尤其是在于,同时将消耗保持得少并且此外提供良好的(优选最大的)行驶动力学性能。其他优选的目的可以由在这里公开的技术的有利效果得出。所述目的通过权利要求1的主题实现。从属权利要求构成优选的设计方案。
在这里公开的技术涉及一种用于运行机动车的方法。所述方法包括如下步骤:
-直接或间接地检测最大的动力学要求或动力学极限;并且
-基于动力学要求适配机动车的燃料电池系统的空载运行模式。
最大的动力学要求或动力学极限在此是:
i)目前基于交通情形可实现的或将要可实现的最大的功率动力学性能;和/或
ii)由驾驶员期望的最大的功率动力学性能。
换言之,直接或间接检测:哪些最大的功率变化率可以在运行中基于交通情形和/或基于驾驶员期望而出现。下面简化地使用术语“最大的动力学要求”或“动力学要求”。
所述空载运行模式是如下模式,在所述模式中,燃料电池系统不为至少一个电驱动马达提供用于行驶运行的电能。可以规定,在这里公开的第二空载运行模式中,由燃料电池系统提供的电能通过适当地操控驱动马达而被转变成无功功率。这可以是有意义的,以便减小空载电压,尤其是当能量蓄存设备已高于充电状态上界限值时减小空载电压。同样可以在第二空载模式中规定,其他副消耗器不消耗可蓄存在能量蓄存设备中的能量,以便因此减小空载电压。
按照在这里公开的技术,与在最大的第二动力学要求时相比,在最大的第一动力学要求时需要更小的动力学性能。燃料电池系统在第一动力学要求时在第一空载运行模式中运行。此外,燃料电池系统在第二动力学要求时在第二空载运行模式中运行。按照在这里公开的技术,与在第二空载运行模式中相比,燃料电池系统在第一空载运行模式中更有效率地运行。
对最大的动力学要求的检测可以包括如下步骤,根据该步骤,检测交通情形。
此外,所述方法可以包括如下步骤,根据该步骤,要检测的动力学要求是将来的动力学要求。所述要检测的交通情形尤其可以是将来的交通情形。换言之,按照在这里公开的技术,不仅可以检测真实的实际值,而且替代地或附加地也可以预测将来的最大的动力学要求,例如其方式为,确定将来的交通情形并且借助所述将来的交通情形预测将来的最大的动力学要求。
特别优选地,所述交通情形可以通过机动车的环境识别系统来检测。在此,环境识别系统有利地包括如下部件之中的一个或多个部件:超声传感器、雷达传感器、激光雷达装置和/或摄像头装置。但同样也可以使用任何其他设置用于检测机动车环境的系统。但同样也可以使用任何其他设置用于检测机动车环境的系统。
按照在这里公开的技术,可以借助至少一个信息检测所述最大的动力学要求和/或所述交通情形,其中,所述信息由至少一个车辆外部的计算单元提供。无线传输的数据可以例如由相对于机动车处于外部的计算单元提供,所述计算单元分析评估机动车和其他物体的位置并且将其彼此置于关联中。这可以例如通过交通引导系统和/或通过车对车通讯实现。
在这里公开的方法可以包括如下步骤,根据该步骤,通过驾驶员输入来限界最大的动力学要求。驾驶员输入可以例如通过预选行驶模式或运行模式进行。由车辆驾驶员选择的运行模式或行驶模式可以从多个运行模式或行驶模式中选择。
所述多个运行模式可以例如包括第一模式(例如经济或舒适模式),所述第一模式针对车辆的舒适的和/或节能的行驶特性。在这种模式中,驾驶员接受或期望如下行驶动力学性能,该行驶动力学性能可以被限界于在空载运行模式中的最大的第二动力学要求。
在第一空载模式中可以规定,燃料电池系统的至少一个耗电器被关断或是关断的。所述至少一个耗电器例如可以是氧化剂输送器、冷却剂泵和/或燃料再循环输送器。
此外,所述多个运行模式可以包括第二模式(例如运动模式),所述第二模式针对车辆的动力学的行驶特性。在这种第二模式中,驾驶员期望如下行驶动力学性能,该行驶动力学性能可以被限界于在空载运行模式中的最大的第二动力学要求。亦即因此必须满足更高的动力学要求。
在第二空载运行模式中,燃料电池系统的运行可以专门地如此停止,使得该燃料电池系统可以特别快速地再次启动。氧化剂输送器例如可以在比第一运行模式中更高的空载转速下运行。优选地,则可以在燃料电池堆的阴极侧的旁路中将更多氧化剂从燃料电池堆旁引导经过。这具有如下优点:燃料电池系统可以特别快速地再次启动。
行驶模式或运行模式的预选可以例如通过车辆的(行驶经历)开关和/或通过车辆的菜单引导的用户界面的菜单由车辆的乘员来设定。
在第一空载运行模式中尤其可以更有效率地运行燃料电池系统,
i)其方式为,使燃料电池系统在更有效率的运行点中运行(例如能以较小的转速运行氧化剂输送器);和/或
ii)其方式为,燃料电池系统的至少一个副消耗器在第一空载运行模式中关断并且因此不消耗电能。
利用在这里公开的技术,提高了燃料电池系统的效率,而在此不会发生由驾驶员感觉到的行驶动力学性能变差,因为交通情形仅允许一种行驶动力学性能,该行驶动力学性能也可在第一空载运行模式中提供。第二空载运行模式在一定程度上能实现动力学的行驶方式。
此外,在这里公开的技术可以包括如下步骤,根据该步骤,检测所述至少一个能量蓄存设备的充电状态。如果充电状态(SoC)处于充电状态下界限值之下,则燃料电池系统可以给能量蓄存设备供应电能。
在这里公开的技术涉及包括至少一个燃料电池的燃料电池系统。燃料电池系统设置用于,实施在这里公开的方法。燃料电池系统例如被设想用于可移动的应用、如机动车(例如乘用汽车、摩托车、商用车)、尤其是用于为至少一个驱动机提供能量以用于使机动车向前运动。在其最简单的形式中,燃料电池是电化学的能量转换器,所述电化学的能量转换器将燃料和氧化剂转变成反应产物并且此时产生电和热。燃料电池包括阳极和阴极,所述阳极和阴极通过离子选择性的或离子可渗透的隔膜来分离。阳极被供应燃料。优选的燃料是:氢气、低分子的醇类、生物燃料、或液化天然气。阴极被供应氧化剂。优选的氧化剂例如是空气、氧气和过氧化物。离子选择性的隔膜可以例如构成为质子交换膜(PEM)。通常多个燃料电池组合成燃料电池堆或堆叠。
燃料电池系统包括阳极子系统,所述阳极子系统由燃料电池系统的引导燃料的结构元件构成。阳极子系统可以具有至少一个压力容器、至少一个箱体截止阀(=TAV)、至少一个减压器、至少一个引导至燃料电池堆的阳极入口的阳极流入路径、在燃料电池堆中的阳极室、至少一个引导离开燃料电池堆阳极出口的再循环流动路径、至少一个水离析器(=AWS)、至少一个阳极扫气阀(=APV)、至少一个有源或无源的燃料再循环输送器(=ARE或ARB)以及其他的元件。阳极子系统的主要目的是将燃料引向并且分配到阳极室的电化学活性面上并且引走阳极废气。燃料电池系统包括阴极子系统。阴极子系统由引导氧化剂的结构元件形成。阴极子系统可以具有至少一个氧化剂输送器、至少一个引导至阴极入口的阴极流入路径、至少一个引导离开阴极出口的阴极废气路径、在燃料电池堆中的阴极室以及其他的元件。阴极子系统的主要目的是将氧化剂引向并且分配到阴极室的电化学活性面上并且引走未被消耗的氧化剂。
在这里公开的燃料电池系统包括至少一个冷却回路,该冷却回路设置用于,对燃料电池系统的燃料电池堆进行调温。冷却回路适宜地包括至少一个热交换器、至少一个冷却剂输送器和至少一个燃料电池。
在这里公开的系统包括至少一个氧化剂输送器。所述氧化剂输送器设置用于,将参与电化学反应的氧化剂输送至所述至少一个燃料电池。氧化剂输送器(也称为流体输送设备)可以例如构成为压气机或压缩机、特别优选构成为空气轴承式的涡轮压气机、涡轮压缩机、或离心式压缩机。
阳极子系统通常包括至少一个用于将燃料输送到阳极流入路径中的燃料再循环输送器。再循环输送器适宜地设置在再循环流动路径中。再循环输送器尤其是不由喷射泵构成。
能量蓄存设备是用于蓄存电能的设备。能量蓄存设备例如可以是高压蓄存器。适宜地,能量蓄存设备可以构成为蓄电池、尤其是构成为高压蓄电池。替代或附加地,超级电容器(简称SC)也可以用作能量蓄存设备。
所述至少一个电驱动马达可以是如下电动马达,该电动马达有助于推进机动车。优选地,所述驱动马达是如下电动马达,该电动马达可以通过回收将电能回馈至能量蓄存设备。在这里公开的机动车同样可以包括多个电驱动马达。在这里公开的技术中,术语“至少一个驱动马达”一同包括具有“一个驱动马达”或具有“多个驱动马达”的实施方案。
此外,在这里公开的系统包括至少一个控制器。所述控制器尤其设置用于,实施在这里公开的方法步骤。为此,所述控制器可以基于所提供的信号至少部分地且优选完全地闭环控制或开环控制所述系统的促动器。
换言之,在这里公开的技术涉及一种方法,在该方法中,根据识别到的交通状况评估来设置不同的空载模式,其中,根据所需要的起动时间来优化空载模式的效率。在一种实施方式中,在两个空载模式之间区分:
a)控制装置生成第一信号,该第一信号指示“高的功率动力学性能不可实现或不期望”(=第一空载运行模式)。
该信号由如下的信息源或传感器之中的一个或组合来形成:
-经由摄像头进行的交通状况评估(堵塞、红色交通灯、关闭的铁路交叉道口、在轮渡上的车辆运行、铁路装运、地下车库等);
-间距传感器;
-间距雷达;
-通过GPS数据和/或结合交通干扰消息所得到的当前的车辆位置;
-经由按压按钮所产生的驾驶员期望;
-当前的行驶速度;和/或
-行车道状态(由于结冰所引起的低摩擦值等);
-在压力容器填充状态(储备)低时
-等等。
如果在a)情况下的第一信号在逻辑上为真(条件“高的功率动力学性能不可实现或不期望”被满足),则以起动时间/动力学性能为代价选择/允许“具有最大能效的空载模式”。如果在a)情况下的第一信号在逻辑上为假(条件“高的功率动力学性能不可实现或不期望”不被满足),则仅允许常规的空载。
如果触发“具有最大能效的空载模式”(=第一空载运行模式),则可以将辅助机组、例如压气机、还有冷却剂泵、再循环泵等完全停止。因此,在不能由驾驶员察觉到限制的情况下根据识别到的最大可能的动力学要求来优化空载的能效。可设想,视起动时间要求和可实现的能量节省而定,进一步细化成更多级。
利用在这里公开的技术能够降低在空载中的能量消耗。此外,能够通过高的堆叠电压减小堆叠退化。此外,在低速时的噪声发射能够有利地根据识别到的交通情形来减少。根据总驱动布局和行驶功率要求,可实现减小高压蓄电池容量,这可以引起低的产品成本。
现在借助示意性的图1解释在这里公开的技术。所述方法以步骤S100开始。在步骤S200中,检测最大的动力学要求。在步骤S300中,基于所述最大的动力学要求适配机动车的燃料电池系统的空载运行模式。
本发明的之前的描述仅用于解释性的目的并且不用于限制本发明。在本发明的范围中,不同的改变和修改是可行的,而不会离开本发明以及其等效方案的范围。
Claims (10)
1.用于运行机动车的方法,所述方法包括如下步骤:
-检测最大的动力学要求;并且
-基于所述最大的动力学要求适配机动车的燃料电池系统的空载运行模式;
其中,与在最大的第二动力学要求时相比,在最大的第一动力学要求时需要更小的动力学性能;
燃料电池系统在所述最大的第一动力学要求时在第一空载运行模式中运行;
燃料电池系统在所述最大的第二动力学要求时在第二空载运行模式中运行;并且
燃料电池系统在第一空载运行模式中比在第二空载运行模式中更有效率地运行。
2.根据权利要求1所述的方法,其中,对所述最大的动力学要求的检测包括如下步骤,根据该步骤,检测交通情形。
3.根据权利要求1或2所述的方法,其中,要检测的最大的动力学要求是将来的最大的动力学要求;和/或要检测的交通情形是将来的交通情形。
4.根据权利要求2或3所述的方法,其中,通过机动车的环境识别系统检测所述交通情形。
5.根据前述权利要求中任一项所述的方法,其中,借助至少一个信息来检测所述最大的动力学要求和/或所述交通情形,并且所述信息由至少一个车辆外部的计算单元提供。
6.根据前述权利要求中任一项所述的方法,其中,通过驾驶员输入来限界所述最大的动力学要求。
7.根据前述权利要求中任一项所述的方法,其中,在第一空载模式中关断燃料电池系统的至少一个耗电器。
8.根据权利要求7所述的方法,其中,所述耗电器是氧化剂输送器、冷却剂泵和/或燃料再循环输送器。
9.根据前述权利要求中任一项所述的方法,所述方法此外包括如下步骤:检测能量蓄存设备的充电状态;其中,如果充电状态处于充电状态下界限值之下,则燃料电池系统给能量蓄存设备供应电能。
10.燃料电池系统,其设置用于实施根据前述权利要求中任一项所述的方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017213437.2A DE102017213437A1 (de) | 2017-08-02 | 2017-08-02 | Verfahren zum Betrieb eines Brennstoffzellenfahrzeugs im Leerlaufmodus |
DE102017213437.2 | 2017-08-02 | ||
PCT/EP2018/070875 WO2019025490A1 (de) | 2017-08-02 | 2018-08-01 | Verfahren zum betrieb eines brennstoffzellenfahrzeugs im leerlaufmodus |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110831805A true CN110831805A (zh) | 2020-02-21 |
CN110831805B CN110831805B (zh) | 2023-04-21 |
Family
ID=63254671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880045373.7A Active CN110831805B (zh) | 2017-08-02 | 2018-08-01 | 用于运行机动车的方法和燃料电池系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11901594B2 (zh) |
CN (1) | CN110831805B (zh) |
DE (1) | DE102017213437A1 (zh) |
WO (1) | WO2019025490A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020162694A1 (en) * | 2000-10-31 | 2002-11-07 | Yasukazu Iwasaki | Operating load control for fuel cell power system fuel cell vehicle |
KR20130055889A (ko) * | 2011-11-21 | 2013-05-29 | 현대모비스 주식회사 | 연료전지차량의 무부하 출력증강 운영방법 |
US20130335000A1 (en) * | 2012-06-19 | 2013-12-19 | GM Global Technology Operations LLC | Efficiency based stand-by mode for fuel cell propulsion systems |
US20140277931A1 (en) * | 2013-03-12 | 2014-09-18 | Paccar Inc | Vehicle power systems and methods employing fuel cells |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10131320A1 (de) * | 2001-06-28 | 2003-01-09 | Volkswagen Ag | Brennstoffzellensystem in einem Fahrzeug und Verfahren zum Ansteuern einer Gaserzeugungseinheit eines Brennstoffzellensystems |
JP4178830B2 (ja) * | 2002-05-08 | 2008-11-12 | 日産自動車株式会社 | 燃料改質システム |
JP4525112B2 (ja) * | 2004-03-08 | 2010-08-18 | 日産自動車株式会社 | 燃料電池車両の制御装置 |
DE102013207244A1 (de) * | 2012-04-27 | 2013-10-31 | Ford Global Technologies, Llc | Verfahren und Vorrichtung zum Energiemanagement in einem Brennstoffzellenhybridfahrzeug |
US20140170514A1 (en) * | 2012-12-17 | 2014-06-19 | GM Global Technology Operations LLC | Variable pem fuel cell system start time to optimize system efficiency and performance |
DE102016203866A1 (de) * | 2016-03-09 | 2017-09-14 | Volkswagen Ag | Brennstoffzellensystem und Verfahren zum Betrieb eines Brennstoffzellensystems |
JP6711231B2 (ja) * | 2016-10-04 | 2020-06-17 | トヨタ自動車株式会社 | 燃料電池の出力性能回復装置及び燃料電池の出力性能回復方法 |
-
2017
- 2017-08-02 DE DE102017213437.2A patent/DE102017213437A1/de active Pending
-
2018
- 2018-08-01 CN CN201880045373.7A patent/CN110831805B/zh active Active
- 2018-08-01 WO PCT/EP2018/070875 patent/WO2019025490A1/de active Application Filing
-
2020
- 2020-01-28 US US16/774,987 patent/US11901594B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020162694A1 (en) * | 2000-10-31 | 2002-11-07 | Yasukazu Iwasaki | Operating load control for fuel cell power system fuel cell vehicle |
KR20130055889A (ko) * | 2011-11-21 | 2013-05-29 | 현대모비스 주식회사 | 연료전지차량의 무부하 출력증강 운영방법 |
US20130335000A1 (en) * | 2012-06-19 | 2013-12-19 | GM Global Technology Operations LLC | Efficiency based stand-by mode for fuel cell propulsion systems |
US20140277931A1 (en) * | 2013-03-12 | 2014-09-18 | Paccar Inc | Vehicle power systems and methods employing fuel cells |
Also Published As
Publication number | Publication date |
---|---|
CN110831805B (zh) | 2023-04-21 |
US11901594B2 (en) | 2024-02-13 |
US20200161680A1 (en) | 2020-05-21 |
DE102017213437A1 (de) | 2019-02-07 |
WO2019025490A1 (de) | 2019-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11444300B2 (en) | Method for the predictive operation of a fuel cell or a high-voltage accumulator | |
US7597976B2 (en) | Floating base load hybrid strategy for a hybrid fuel cell vehicle to increase the durability of the fuel cell system | |
CN100534828C (zh) | 燃料电池系统和装有该燃料电池系统的电动车辆 | |
US7420339B2 (en) | Regenerative braking system of fuel cell vehicle using super capacitor | |
CN101624020B (zh) | 燃料电池混合动力车的怠速停止-启动控制方法 | |
US8859158B2 (en) | System and method for controlling operation of fuel cell hybrid system by switching to battery power in response to idle stop condition | |
CN107180981B (zh) | 燃料电池系统和用于运行燃料电池系统的方法 | |
US11462758B2 (en) | Fuel cell system | |
CN101627498B (zh) | 燃料电池系统及其控制方法 | |
EP2712015B1 (en) | Fuel cell system | |
US20080133076A1 (en) | Efficiency optimized hybrid operation strategy | |
JP2002118981A (ja) | 燃料電池を有する直流電源 | |
CN102664278A (zh) | 燃料电池系统 | |
CN105609836A (zh) | 燃料电池系统及燃料电池系统的运转控制方法 | |
JP4380676B2 (ja) | 移動体 | |
CN103515637A (zh) | 用于燃料电池推进系统的基于效率的待机模式 | |
CN113734143B (zh) | 控制系统、移动体及控制方法 | |
US11670787B2 (en) | Power supply control system, power supply control method, and storage medium | |
US20240039022A1 (en) | Power supply control system, power supply control method, and storage medium | |
JP2004265683A (ja) | 燃料電池発電制御システム | |
US11158871B2 (en) | Fuel cell assembly and a vehicle that utilizes the fuel cell assembly | |
US11901594B2 (en) | Method for operating a fuel cell vehicle in the idling mode | |
JP2007244036A (ja) | 車両制御装置 | |
JP2007151346A (ja) | 移動体 | |
US20220024326A1 (en) | Power supply control system and power supply control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |