CN110830109A - 基于spad阵列非线性的sar检测方法 - Google Patents

基于spad阵列非线性的sar检测方法 Download PDF

Info

Publication number
CN110830109A
CN110830109A CN201911056748.2A CN201911056748A CN110830109A CN 110830109 A CN110830109 A CN 110830109A CN 201911056748 A CN201911056748 A CN 201911056748A CN 110830109 A CN110830109 A CN 110830109A
Authority
CN
China
Prior art keywords
detection method
symbol
threshold
spad array
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911056748.2A
Other languages
English (en)
Other versions
CN110830109B (zh
Inventor
王昭诚
武燕敏
金爽
权进国
董宇涵
陈飞
吴海全
安俊
张颢
白勃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen International Graduate School of Tsinghua University
Original Assignee
Shenzhen International Graduate School of Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen International Graduate School of Tsinghua University filed Critical Shenzhen International Graduate School of Tsinghua University
Priority to CN201911056748.2A priority Critical patent/CN110830109B/zh
Publication of CN110830109A publication Critical patent/CN110830109A/zh
Application granted granted Critical
Publication of CN110830109B publication Critical patent/CN110830109B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种基于SPAD阵列非线性的SAR检测方法,用于一光通信系统的接收端,包括门限计算步骤和符号判决步骤;所述门限计算步骤包括:根据平均光功率以及发送端星座点集合在接收端光子计数的期望集合,采用排序算法实时计算门限;所述符号判决步骤包括:根据所述门限,对接收的符号进行判决。本发明在SPAD阵列为弱光通信条件下的检测方法时,考虑由于死时间带来的非线性影响,采用排序的方法,使得提出的SAR检测方法的整体误码率性能好于一般的AR检测方法;同时,通过优化单调递减区内SLEA区域,使得检测方法的工作范围得以扩大。

Description

基于SPAD阵列非线性的SAR检测方法
技术领域
本发明涉及通信领域,具体涉及一种基于SPAD阵列非线性的SAR检测方法。
背景技术
可见光通信由于具有对人体安全、无电磁干扰以及宽的可自由使用的频谱等优势而成为一种可以补偿传统无线通信的通信技术。在可见光通信中,一般采用LED作为发射器,采用光电二极管(Photodiode,PD)作为检测器。由于光的特性,可见光通信一般使用光强度调制和直接检测(IM/DD)技术,因此,发送的信号是非负的实数。一般来说,PD检测器可以分为PIN PD和雪崩PD(APD)。但是,这些传统的PD检测器对于弱光来说没有足够的灵敏度,在弱光条件下不能很好地接收信号。
为了解决这样的问题,单光子雪崩二极管(Single-Photon AvalancheDiode,SPAD)检测器被应用于该领域。SPAD是工作在盖格模式下的APD,当光子到达时,它会输出一个很大的电流,因此可以被用作光子计数器。当一个光子被接收计数后,SPAD会转入非激活状态,开始充电以能够检测下一个光子。充电的时间被称为死时间(deadtime)。充电的电路分为主动淬火电路(Activequenching circuit,AQ)和被动淬火电路(Passive quenchingcircuit,PQ)两类。在PQ SPAD中,当一个光子在死时间内到达时,死时间将会被延长;而在AQSPAD中,死时间不会发生变化。死时间限制了一定时间内的光子计数,因而会引起非线性失真。
相较于单个SPAD来说,SPAD阵列可以提高光子计数的能力。SPAD阵列有一些基本的参数特点,激活区域与整个区域的比值CFF可以用来表示当一束光到达时,直射在激活区域的概率;当一个光子到达激活区域之后,有一定的概率不能激发雪崩,因而不能够被检测到,这个概率用CPDP表示。暗计数率NDCR表示了在单位时间内,当没有光子到达时,由于器件内部的热运动而引起的雪崩,可以看出它是一种噪声。PAP表示在接收到光子或热运动引起的雪崩之后,额外雪崩被触发的概率。基于以上的特点,SPAD的计数可以近似用泊松随机变量来表示。当不考虑死时间带来的影响时,对于从星座点集合
Figure BDA0002256740560000025
中任意选取的发射符号s,假设符号的持续时长为TS,则在该符号周期内持续时间长度为TST(TS≥TST)的光子计数的期望可以被表示为:
Figure BDA0002256740560000021
其中,x为平均光功率,NSPAD是阵列中SPAD的个数,
Figure BDA0002256740560000022
Figure BDA0002256740560000023
是单个光子的能量,h是普朗克常量,cL是光速,λL是光的波长。考虑了死时间的影响后,光子计数的期望为:
Figure BDA0002256740560000024
其中,τd是死时间。
根据上述内容可知,当平均光功率x较小时,不同星座点的期望随着星座点单调递增,该区域称为单调递增区;当平均光功率x增大到一定程度时,不同星座点的期望曲线将会出现相交情况,期望变得不再单调递增,该区域被称为交点区,近似使用第一个和最后一个符号期望的最大值之间的区域表示。在交点区后,又会出现不同星座点的期望随着星座点单调递减的情况,也即单调递减区。最后,由于光功率较大,SPAD会快速的达到饱和,因而最终会出现几乎重叠的情况。
另外,也可以分析在交点区的检测方法的误码性能。随着光功率逐渐接近达到交叉点时的光功率,由于期望曲线之间的间距在缩小,误码率会上升;当到达交叉点时,误码率会达到一个极大值;当光功率远离交叉点时,由于期望曲线之间的间距在变大,因而误码率会下降。因此,交点区的误码性能是波动的。而在单调递减区,由于并无交叉情况,可以通过设计检测方法达到较好地误码率。在最后的几乎重叠的区域,误码率则会随着间距的减小而上升。
结合上面式子,在发送符号为s的情况下,光子计数z的条件概率密度为:
Figure BDA0002256740560000031
其中,n是自然数,代表光子计数z的值。
AR(Anscombe Root)变换可以把服从泊松过程的变量转变为方差为1且服从高斯分布的变量,变换后的均值也可以近似为均值的AR变换,从而可以转变为在高斯信道下的检测问题,采用硬判决的方法使复杂度被极大的降低。但是传统的AR检测方法并没有考虑由死时间带来的非线性因素,因而不能适用SPAD阵列作为检测方法时所有的情况。
以上背景技术内容的公开仅用于辅助理解本发明的发明构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日前已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。
发明内容
本发明的主要目的在于克服现有技术的不足,提出一种基于SPAD阵列非线性的SAR检测方法,通过采用排序算法计算门限使期望值变得单调,从而能够适应由于非线性带来的期望不单调问题。
一种基于SPAD阵列非线性的SAR检测方法,用于一光通信系统的接收端,包括门限计算步骤和符号判决步骤;所述门限计算步骤包括:根据平均光功率以及发送端星座点集合在接收端光子计数的期望集合,采用排序算法实时计算门限;所述符号判决步骤包括:根据所述门限,对接收的符号进行判决。
更进一步地:
根据平均光功率以及发送端星座点集合在接收端光子计数的期望集合,采用排序算法实时计算门限的步骤包括:
S11、对期望集合
Figure BDA0002256740560000032
的各元素进行AR变换,得到AR变换集合
Figure BDA0002256740560000033
其中,
Figure BDA0002256740560000034
为星座点集合
Figure BDA0002256740560000035
在平均光功率下的期望集合;i=1,2,...,M,M表示星座点个数;λi是当发送的符号为星座点si时,SPAD阵列的光子计数zi的期望值;
Figure BDA0002256740560000036
表示λi的AR变换;
S12、对AR变换集合内的元素进行从小到大排序,得到排序后的集合
Figure BDA0002256740560000041
并收集各元素
Figure BDA0002256740560000042
对应的原始索引,得到索引集合
Figure BDA0002256740560000043
S13、在所述排序后的集合中,依次对相邻的两个元素求均值
Figure BDA0002256740560000044
得到门限的集合
Figure BDA0002256740560000045
其中j=1,2,...,M-1。
星座点集合
Figure BDA0002256740560000046
为PAM星座点集合,或者表达式为的星座点集合;其中,参数d根据不同的数据率和不同的调制阶数采用遍历法最大化SLEA区域后得到。在交点区,可以通过设计星座点扩大期望的单调递减区,进而达到了扩大工作区域的目的。
根据所述门限,对接收的符号进行判决的步骤包括:
S21、对接收到的符号s所对应的光子计数z进行AR变换,得到zAR
S22、将zAR与门限gj进行比较:
若zAR≤g1,则符号s的判决结果
Figure BDA0002256740560000049
e1即为索引集合中的第1个元素;
若gk<zAR≤gk+1,k=1,2,...,j-1,则符号s的判决结果
Figure BDA00022567405600000411
若zAR>gM-1,则符号s的判决结果
Figure BDA00022567405600000412
本发明在SPAD阵列为弱光通信条件下的检测方法时,考虑由于死时间带来的非线性影响,采用排序的方法,使得提出的SAR检测方法的整体误码率性能好于一般的AR检测方法;同时,通过优化单调递减区内SLEA区域,使得检测方法的工作范围得以扩大。
附图说明
图1为传统8PAM在TST=1μs时不同传送符号的期望曲线;
图2为传统PAM结合本发明的SAR检测方法的弱光通信系统框图;
图3为Geo-PAM结合本发明的SAR检测方法的弱光通信系统框图;
图4为采用传统的8PAM时,本发明的SAR检测方法和传统AR检测方法在TST=1μs时误码性能对比;
图5为当调制阶数为3时在TST=1μs时分别采用Geo-PAM和传统PAM时采用本发明SAR检测方法时的误码性能对比;
图6为当调制阶数为3时在TST=1ms时分别采用Geo-PAM和传统PAM时采用本发明SAR检测方法时的误码性能对比;
图7为在TST=1μs时,调制阶数分别为3,4时采用Geo-PAM和本发明SAR检测方法与采用传统PAM和AR检测方法系统的误码性能对比;
图8为在TST=1ms时,调制阶数分别为3,4时采用Geo-PAM和SAR检测方法与采用传统PAM和AR检测方法系统的误码性能对比。
具体实施方式
下面结合附图和具体的实施方式对本发明作进一步说明。
本发明的具体实施方式针对光通信系统,尤其是弱光通信系统,提出一种基于SPAD阵列非线性的SAR检测方法,在接收端进行符号检测。该方法基于传统的AR(AnscombeRoot)检测方法实现,由于在计算门限时采用了排序(Sorting)算法以及AR变换,因此称为SAR(SortingAnscombe Root)检测方法。本发明的SAR检测方法包括门限计算步骤和符号判决步骤,其中,门限计算步骤包括:根据平均光功率以及发送端星座点集合在接收端光子计数的期望集合,采用排序算法实时计算门限;符号判决步骤包括:根据所述门限,对接收的符号进行判决。
其中,根据平均光功率以及发送端星座点集合在接收端光子计数的期望集合,采用排序算法实时计算门限包括如下步骤S11~S13:
S11、对期望集合
Figure BDA0002256740560000051
的各元素进行AR变换,得到AR变换集合其中,
Figure BDA0002256740560000053
为星座点集合
Figure BDA0002256740560000054
在平均光功率下的期望集合;i=1,2,...,M,M表示星座点个数;λi是当发送的符号为星座点si时,SPAD阵列的光子计数zi的期望值;
Figure BDA0002256740560000055
表示λi的AR变换。
其中,星座点集合
Figure BDA0002256740560000056
可以为传统的PAM星座点集合(例如8PAM)。
也可以采用表达式为
Figure BDA0002256740560000061
的星座点集合,由于其形式与几何级数相似,可称之为几何脉冲幅度调制(可简称Geo-PAM)星座点。所述星座点主要针对的区域是SPAD阵列非线性特性引起的所述期望的非单调递增区。其中,参数d根据不同的数据率和不同的调制阶数采用遍历法最大化SLEA区域后得到。在利用Geo-PAM星座点进行工作区域优化时,以单调递减区内误码率小于10-3的范围作为优化对象,把该区域称为稳定的低误码率区(stable Low Error Area,SLEA),即尽量扩大SLEA区域,从而使得误码性能波动的区域减小,使相对稳定的区域增大,即可扩大工作范围。优化方式采用遍历法,且其上界可以采用传统的M-PAM来计算,为:
Figure BDA0002256740560000062
优化得到的最优d表示为:
Figure BDA0002256740560000063
S12、对AR变换集合内的元素进行从小到大排序,得到排序后的集合
Figure BDA0002256740560000064
ei∈[1,M]。可以理解的是,在集合
Figure BDA0002256740560000065
中, 另外,收集各元素
Figure BDA0002256740560000068
对应的原始索引,得到索引集合
Figure BDA0002256740560000069
S13、在所述排序后的集合中,依次对相邻的两个元素求均值
Figure BDA00022567405600000610
得到门限的集合
Figure BDA00022567405600000611
其中j=1,2,...,M-1。
根据前述计算出的门限对接收的符号进行判决具体包括如下步骤S21~S22:
S21、对接收到的符号s所对应的光子计数z进行AR变换,得到zAR
S22、将zAR与门限gj进行比较:
若zAR≤g1,则符号s的判决结果
Figure BDA0002256740560000071
e1即为索引集合
Figure BDA0002256740560000072
中的第1个元素;
若gk<zAR≤gk+1,k=1,2,...,j-1,则符号s的判决结果
Figure BDA0002256740560000073
若zAR>gM-1,则符号s的判决结果
Figure BDA0002256740560000074
本发明提出的SAR检测方法的一种示例性应用如图2所示,为传统PAM结合本发明的SAR检测方法的弱光通信系统框图。对于传统的PAM来说,当调制阶数为3的时候,星座点集合得到的期望曲线与光辐照度的关系如图1所示,可以看到每一个符号的曲线的趋势都是先上升后下降,存在一个最大值。由前所述达到最大值时对应的光辐照度为pi,则可以得到:
Figure BDA0002256740560000076
则所述的单调递增区为小于pM的区域,交点区为[pM,p1],长度为D=p1-pM;前述非单调递增区为大于p1的区域。
由图1也可看出,在图示的单调递增区,当光辐照度固定时,期望随着符号的值增大而增大,在非单调递增区则存在交点区和单调递减区。
如图2所示的系统在传输传统的8PAM时的表现性能如图4所示。从仿真结果可以看出,SAR检测方法的接收机在单调递增区与AR检测方法的表现性能是一样的,而在非单调递增区,SAR检测方法的整体的误码率都不大于AR检测方法的误码率,整体性能表现较好。但是也可以看出,SAR表现曲线中有一部分是波动的,这是由于前述交点区引起的。
图3为采用SPAD阵列的使用Geo-PAM的弱光通信系统框图,采用SAR检测方法。对于Geo-PAM来说,星座点为
Figure BDA0002256740560000077
以0.01的精确度,分别在TST=1μs和TST=1ms时,对调制阶数为3和4的优化参数结果如下表:
Figure BDA0002256740560000081
图5和图6是传统的PAM和Geo-PAM的对比。由于AR检测方法在非单调区域几乎不能正常工作,因此采用SAR检测方法。以调制阶数为3为例,从图中可以看出,在TST=1μs和TST=1ms时,Geo-PAM分别提供了约2.5dB和5.5dB的额外的工作区域。
图7和图8是传统的PAM结合AR检测方法与Geo-PAM结合SAR检测方法的两种系统的最终性能表现。从图7和图8中可以看出,Geo-PAM结合SAR检测方法的系统性能在非单调区域有着比较显著的优势。在TST=1μs时,对于调制阶数为3和4,分别提供了约6.4dB和5.2dB的额外的工作区域;在TST=1ms时,对于调制阶数为3和4,则分别提供了约11.5dB和10.5dB的额外的工作区域。
可见,本发明的具体实施方式所提出的前述SAR检测方法,能够为采用SPAD阵列的弱光通信系统接收机带来如下优势:1、针对由于SPAD死时间带来的非线性影响,采用排序的方法计算门限,使得方法的整体误码率性能好于一般的AR检测方法;2、通过针对非单调递增区的星座设计优化,使得检测方法的工作范围得以扩大。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (4)

1.一种基于SPAD阵列非线性的SAR检测方法,用于一光通信系统的接收端,其特征在于,包括门限计算步骤和符号判决步骤;
所述门限计算步骤包括:根据平均光功率以及发送端星座点集合在接收端光子计数的期望集合,采用排序算法实时计算门限;
所述符号判决步骤包括:根据所述门限,对接收的符号进行判决。
2.如权利要求1所述的基于SPAD阵列非线性的SAR检测方法,其特征在于,根据平均光功率以及发送端星座点集合在接收端光子计数的期望集合,采用排序算法实时计算门限的步骤包括:
S11、对期望集合的各元素进行AR变换,得到AR变换集合
Figure FDA0002256740550000012
其中,
Figure FDA0002256740550000013
为星座点集合
Figure FDA0002256740550000014
在平均光功率下的期望集合;i=1,2,...,M,M表示星座点个数;λi是当发送的符号为星座点si时,SPAD阵列的光子计数zi的期望值;
Figure FDA0002256740550000015
表示λi的AR变换;
S12、对AR变换集合内的元素进行从小到大排序,得到排序后的集合
Figure FDA0002256740550000016
并收集各元素
Figure FDA0002256740550000017
对应的原始索引,得到索引集合
Figure FDA00022567405500000112
S13、在所述排序后的集合中,依次对相邻的两个元素求均值
Figure FDA0002256740550000018
得到门限的集合其中j=1,2,...,M-1。
3.如权利要求2所述的基于SPAD阵列非线性的SAR检测方法,其特征在于,星座点集合
Figure FDA00022567405500000110
为PAM星座点集合,或者表达式为
Figure FDA00022567405500000111
的星座点集合;其中,参数d根据不同的数据率和不同的调制阶数采用遍历法最大化SLEA区域后得到。
4.如权利要求2所述的基于SPAD阵列非线性的SAR检测方法,其特征在于,根据所述门限,对接收的符号进行判决的步骤包括:
S21、对接收到的符号s所对应的光子计数z进行AR变换,得到zAR
S22、将zAR与门限gj进行比较:
若zAR≤g1,则符号s的判决结果e1即为索引集合
Figure FDA0002256740550000022
中的第1个元素;
若gk<zAR≤gk+1,k=1,2,...,j-1,则符号s的判决结果
Figure FDA0002256740550000023
若zAR>gM-1,则符号s的判决结果
Figure FDA0002256740550000024
CN201911056748.2A 2019-10-31 2019-10-31 基于spad阵列非线性的sar检测方法 Active CN110830109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911056748.2A CN110830109B (zh) 2019-10-31 2019-10-31 基于spad阵列非线性的sar检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911056748.2A CN110830109B (zh) 2019-10-31 2019-10-31 基于spad阵列非线性的sar检测方法

Publications (2)

Publication Number Publication Date
CN110830109A true CN110830109A (zh) 2020-02-21
CN110830109B CN110830109B (zh) 2020-09-29

Family

ID=69551978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911056748.2A Active CN110830109B (zh) 2019-10-31 2019-10-31 基于spad阵列非线性的sar检测方法

Country Status (1)

Country Link
CN (1) CN110830109B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285486A (zh) * 2021-11-24 2022-04-05 中国人民解放军战略支援部队信息工程大学 基于外部门控的spad阵列协同的高速接收方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968067A (zh) * 2005-11-16 2007-05-23 松下电器产业株式会社 简化最大似然检测方法及检测设备
FR2910689A1 (fr) * 2006-12-22 2008-06-27 Commissariat Energie Atomique Procede de filtrage d'un signal de flux neutronique temporel bruite et dispositif associe.
CN105471505A (zh) * 2016-01-25 2016-04-06 中国人民解放军信息工程大学 一种信号调制方法、装置及可见光通信系统
CN105680937A (zh) * 2016-01-25 2016-06-15 中国人民解放军信息工程大学 信号检测方法、装置及可见光通信系统
US20190239753A1 (en) * 2018-02-06 2019-08-08 Kendall Research Systems, LLC Interleaved photon detection array for optically measuring a physical sample

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968067A (zh) * 2005-11-16 2007-05-23 松下电器产业株式会社 简化最大似然检测方法及检测设备
FR2910689A1 (fr) * 2006-12-22 2008-06-27 Commissariat Energie Atomique Procede de filtrage d'un signal de flux neutronique temporel bruite et dispositif associe.
CN105471505A (zh) * 2016-01-25 2016-04-06 中国人民解放军信息工程大学 一种信号调制方法、装置及可见光通信系统
CN105680937A (zh) * 2016-01-25 2016-06-15 中国人民解放军信息工程大学 信号检测方法、装置及可见光通信系统
US20190239753A1 (en) * 2018-02-06 2019-08-08 Kendall Research Systems, LLC Interleaved photon detection array for optically measuring a physical sample

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YICHEN LI,ETAL.: "Nonlinear Distortion in SPAD-Based Optical OFDM Systems", 《2015 IEEE GLOBECOM WORKSHOPS (GC WKSHPS)》 *
司马凌寒: "水下单光子检测可见光通信高效传输技术研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285486A (zh) * 2021-11-24 2022-04-05 中国人民解放军战略支援部队信息工程大学 基于外部门控的spad阵列协同的高速接收方法
CN114285486B (zh) * 2021-11-24 2023-04-07 中国人民解放军战略支援部队信息工程大学 基于外部门控的spad阵列协同的高速接收方法

Also Published As

Publication number Publication date
CN110830109B (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
JP5940685B2 (ja) ポアソン・ベースの通信システムおよび方法
CN107359935A (zh) 一种基于脉冲计数的非视距紫外散射通信系统及其方法
CN106685523A (zh) 基于指数韦伯和apd的ppm无线光通信系统的误码率计算方法
CN110798227B (zh) 模型预测优化方法、装置、设备及可读存储介质
CN110830109B (zh) 基于spad阵列非线性的sar检测方法
Jiang et al. Achievable rates and signal detection for photon-level photomultiplier receiver based on statistical non-linear model
Gong et al. Analysis and design of amplitude modulation for optical wireless communication with shot noise
CN109361505B (zh) 用于自由空间量子信道性能的改进方法
Long et al. Improved double threshold detector for spatially distributed target
JP2007147472A (ja) 光子検出デバイスの特性測定のためのデータ処理方法および装置とそれを利用した光子受信器
Arya et al. Spectrum sensing for free space optical communications in strong atmospheric turbulence channel
Khan et al. Signal dependent Gaussian noise model for FSO communications
CN109617576B (zh) 联合效应影响下大气光mimo系统平均容量的近似计算方法
CN115865197B (zh) 散粒噪声下可见光通信scma实数码本优化方法及系统
CN116866950A (zh) 一种基于深度学习的无线网络资源优化系统及方法
CN115219044A (zh) 单光子探测器
CN112511234B (zh) 一种基于分类网络的水下单光子通信同步时钟提取方法
Wen et al. Improved response model of a superconducting nanowire array for high photon count rate communication
CN112737678A (zh) 一种自由空间光通信系统信道的性能优化方法及装置
Zhang et al. Wide dynamic range signal detection for underwater optical wireless communication using a pulse counting receiver
Leitinger et al. Capacity and capacity-achieving input distribution of the energy detector
CN101325431B (zh) 一种基于幅度统计的脉冲无线电信号的截获方法
Srinivasan et al. Avalanche photodiode arrays for optical communications receivers
Yu et al. Design and Optimization of Sandwich-Type Synchronization Sequence for Optical Wireless Communication With a Photon-Counting Receiver
CN113259001B (zh) 一种空间光通信系统的性能优化处理方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant