CN110819697A - A kind of detection method of uranyl ion - Google Patents
A kind of detection method of uranyl ion Download PDFInfo
- Publication number
- CN110819697A CN110819697A CN201911180266.8A CN201911180266A CN110819697A CN 110819697 A CN110819697 A CN 110819697A CN 201911180266 A CN201911180266 A CN 201911180266A CN 110819697 A CN110819697 A CN 110819697A
- Authority
- CN
- China
- Prior art keywords
- dna
- uranyl
- dna sequence
- sequence
- gold nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WYICGPHECJFCBA-UHFFFAOYSA-N dioxouranium(2+) Chemical compound O=[U+2]=O WYICGPHECJFCBA-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 238000001514 detection method Methods 0.000 title abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000000523 sample Substances 0.000 claims abstract description 32
- -1 uranyl ions Chemical class 0.000 claims abstract description 28
- 108020004414 DNA Proteins 0.000 claims description 49
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 27
- 239000002105 nanoparticle Substances 0.000 claims description 17
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 15
- 239000010931 gold Substances 0.000 claims description 15
- 229910052737 gold Inorganic materials 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 7
- 239000012488 sample solution Substances 0.000 claims description 7
- 239000007987 MES buffer Substances 0.000 claims description 4
- 239000011780 sodium chloride Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 2
- 230000005284 excitation Effects 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 claims 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 claims 2
- 102000016911 Deoxyribonucleases Human genes 0.000 abstract description 29
- 108010053770 Deoxyribonucleases Proteins 0.000 abstract description 29
- 230000008569 process Effects 0.000 abstract description 18
- 238000003776 cleavage reaction Methods 0.000 abstract description 6
- 230000003321 amplification Effects 0.000 abstract description 5
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 5
- 230000007017 scission Effects 0.000 abstract description 3
- 230000003197 catalytic effect Effects 0.000 abstract description 2
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 229910052770 Uranium Inorganic materials 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 5
- 125000005289 uranyl group Chemical group 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000002848 electrochemical method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 239000012490 blank solution Substances 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 201000002797 childhood leukemia Diseases 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 238000002795 fluorescence method Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 150000002343 gold Chemical class 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000002091 nanocage Substances 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004457 water analysis Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明提出了一种简单的DNA镊子探针,用于基于DNA酶催化裂解的一步法扩增检测铀酰离子。DNA镊子探针的两个臂以原始形式紧靠,因此,臂末端的荧光团的荧光信号被显著淬灭。但是,在存在铀酰离子的情况下,DNA镊子的结构可以从“关闭”变为“打开”,从而产生强荧光信号。通过DNA酶催化裂解反应的扩增,获得的检测铀酰离子的线性范围为0.1nM至60nM,检测极限为25pM。重要的是,整个检测过程非常简单,只需要一个操作步骤。此外,它在实际应用中显示出巨大的潜力和有希望的铀酰离子检测前景。The present invention provides a simple DNA tweezers probe for one-step amplification and detection of uranyl ions based on DNase catalytic cleavage. The two arms of the DNA tweezers probe abut in their original form, and therefore, the fluorescence signal of the fluorophore at the end of the arms is significantly quenched. However, in the presence of uranyl ions, the structure of the DNA tweezers can be changed from "closed" to "open," resulting in a strong fluorescent signal. Amplification by DNase-catalyzed cleavage reaction resulted in a linear range of 0.1 nM to 60 nM for the detection of uranyl ions with a detection limit of 25 pM. Importantly, the entire detection process is very simple and requires only one operation step. Furthermore, it shows great potential and promising prospects for uranyl ion detection in practical applications.
Description
技术领域technical field
本发明涉及铀酰离子的检测领域,特别是基于DNA镊子探针和DNA酶催化裂解的一步法扩增检测铀酰离子方法领域。The invention relates to the field of detection of uranyl ions, in particular to the field of one-step amplification and detection of uranyl ions based on DNA tweezers probes and DNase catalytic cracking.
背景技术Background technique
浓缩铀可以用作核能燃料和核武器材料。全球范围内的铀消费可能导致铀矿开采和核废料将其释放到环境中,从而导致严重的环境污染和人类健康问题。铀可以通过食物链富集到人体中,这可能导致严重的儿童白血病,肺癌和其他与辐射有关的疾病。因此,美国环境保护署(EPA)设定了水中铀酰离子的最大污染水平(130nM)。Enriched uranium can be used as nuclear fuel and nuclear weapons material. Global uranium consumption can lead to uranium mining and nuclear waste releasing it into the environment, causing serious environmental pollution and human health problems. Uranium can be enriched into the human body through the food chain, which can lead to severe childhood leukemia, lung cancer and other radiation-related diseases. Therefore, the US Environmental Protection Agency (EPA) has set a maximum contamination level (130 nM) for uranyl ions in water.
到目前为止,已经开发了许多用于铀检测的技术,包括电感耦合等离子体质谱法和原子发射光谱法等。但是,他们需要昂贵的仪器和复杂的操作。最近,结合酶链(E-DNA)和底物链(S-DNA)的DNA酶被用于设计金属离子的生物传感器,例如铀酰离子,Mg2+,Cu2+,Pb2+,Zn2+和Cd2+。已经报道了多种基于DNA酶的铀酰离子检测方法,包括比色法,荧光法和电化学法等。此外,基于DNA酶的探针已用于在活细胞中对铀酰离子进行荧光成像。To date, a number of techniques have been developed for uranium detection, including inductively coupled plasma mass spectrometry and atomic emission spectrometry, among others. However, they require expensive instruments and complicated operations. Recently, DNases that combine enzyme strands (E-DNA) and substrate strands (S-DNA) have been used to design biosensors for metal ions, such as uranyl ions, Mg2+, Cu2+, Pb2+, Zn2+, and Cd2+. A variety of DNase-based uranyl ion detection methods have been reported, including colorimetric, fluorescent, and electrochemical methods, among others. In addition, DNase-based probes have been used for fluorescence imaging of uranyl ions in living cells.
DNA纳米机是一种可以在纳米级实现纳米机械运动的DNA组装纳米结构。DNA纳米机是由通用材料“DNA”进行编程和构建的,它具有一些独特的优点,例如易于化学合成,良好的热稳定性和功能修饰。而且,DNA纳米机器是具有生物纳米设计,药物输送和具有一维,二维和三维纳米结构的逻辑分子计算的有前途的平台。已经设计出了具有纳米级可控性和生物相容性的严肃的DNA纳米机械,例如DNA镊子,DNA Walker,DNA电机,DNA齿轮和DNA纳米笼。DNA镊子是典型的纳米机器,可以对不同的外部刺激做出反应,包括核酸,金属离子,蛋白质,酶和pH值。到目前为止,尚无DNA镊子与DNA酶结合用于金属离子检测。DNA nanomachines are DNA-assembled nanostructures that can achieve nanomechanical motion at the nanoscale. DNA nanomachines are programmed and constructed from the universal material "DNA", which has some unique advantages such as easy chemical synthesis, good thermal stability and functional modification. Moreover, DNA nanomachines are promising platforms for biological nanodesign, drug delivery, and logical molecular computing with one-, two-, and three-dimensional nanostructures. Serious DNA nanomachines such as DNA tweezers, DNA Walkers, DNA motors, DNA gears, and DNA nanocages have been designed with nanoscale controllability and biocompatibility. DNA tweezers are typical nanomachines that can respond to different external stimuli, including nucleic acids, metal ions, proteins, enzymes, and pH. So far, there are no DNA tweezers combined with DNase for metal ion detection.
发明内容SUMMARY OF THE INVENTION
为解决上述问题,本发明提供一种基于基于DNA镊子探针和DNA酶催化裂解的一步法扩增检测铀酰离子方法。In order to solve the above problems, the present invention provides a one-step amplification and detection method for uranyl ions based on DNA tweezers probe and DNase catalytic cleavage.
本发明包括如下步骤:The present invention comprises the following steps:
一种溶液中铀酰离子浓度的检测方法,包括如下步骤:A method for detecting uranyl ion concentration in a solution, comprising the steps of:
(1)制备金纳米粒子;(1) Preparation of gold nanoparticles;
(2)用所述金纳米粒子修饰的DNA序列4,DNA序列4一端硫醇化,另一端连接荧光基团;(2)
(3)用步骤(2)所得修饰金纳米粒子后的DNA序列4制备DNA镊子探针;(3) preparing a DNA tweezer probe with the
(4)将步骤(3)所得DNA镊子探针、适量铀酰离子特异性DNA酶链、待测铀酰离子样品溶液混合;(4) mixing the DNA tweezers probe obtained in step (3), an appropriate amount of uranyl ion-specific DNase chain, and the uranyl ion sample solution to be tested;
(5)检测步骤(4)所得溶液的荧光信号,并利用标准曲线得出试样溶液中铀酰离子的浓度。(5) Detecting the fluorescence signal of the solution obtained in step (4), and using the standard curve to obtain the concentration of uranyl ions in the sample solution.
其中,所述DNA序列4具体为:HS-TACCCAAAAAACCT GGCTGCAACTCACTATrAGGAAGAGATGGACGTGACATACGGTACAAAAACCCTA-FAM。Wherein, the
其中,步骤(3)中与DNA序列4一起制备DNA镊子探针的还有DNA序列1-3,其中DNA序列1为:TAGGCTTCGTAAGGTCCACATACATACATACACCAGCGAGAATGTTCCGT,DNA序列2为:TAGGGTTTTTGTACCGTACCGACGGAACATTCTCGCTGG,DNA序列3为:TGGACCTTACGAAGCCTAACTAGCCAGGTTTTTTGGGTA。Wherein, in step (3), DNA sequences 1-3 are prepared together with
优选的,所铀酰离子特异性DNA酶链具体为:CACGTCCATCTCTGCAGTCGGGTAGTTAAACCGACCTTCAGACATAGTGAGT。Preferably, the uranyl ion-specific DNA enzyme chain is specifically: CACGTCCATCTCTGCAGTCGGGTAGTTAAACCGACCTTCAGACATAGTGAGT.
优选的,步骤(2)具体为:将硫醇化的DNA序列4与金纳米粒子以1:1的摩尔比混合12小时,得到金纳米粒子修饰的DNA序列4。Preferably, step (2) is specifically as follows: mixing the thiolated
优选的,步骤(3)具体为:通过在100mM MES缓冲溶液(pH 5.5)和300mM NaCl中混合100nM的DNA序列1-4,然后将混合物加热至95℃,并缓慢冷却以形成DNA镊子探针。Preferably, step (3) is specifically as follows: by mixing 100 nM of DNA sequences 1-4 in 100 mM MES buffer solution (pH 5.5) and 300 mM NaCl, then heating the mixture to 95° C. and slowly cooling to form DNA tweezers probes .
优选的,步骤(4)具体为:将30nM铀酰离子特异性DNA酶链和待测铀酰离子溶液与DNA镊子在含300mM NaCl的10mM MES缓冲溶液(pH 5.5)中混合,然后在40℃下孵育60分钟。Preferably, step (4) is specifically as follows: mixing 30 nM uranyl ion-specific DNase chain and the uranyl ion solution to be tested with DNA tweezers in 10 mM MES buffer solution (pH 5.5) containing 300 mM NaCl, and then at 40° C. Incubate for 60 min.
优选的,步骤(5)中荧光信号为492nm激发下500nm至600nm测量的荧光信号。Preferably, the fluorescence signal in step (5) is the fluorescence signal measured at 500 nm to 600 nm under excitation at 492 nm.
本发明构建了一个基于DNA酶的一步扩增催化DNA镊子,用于铀酰离子的灵敏荧光检测。DNA镊子是通过DNA序列的杂交形成的。荧光团和金纳米颗粒(金纳米粒子)分别固定在DNA镊子的两个臂的末端。DNA镊子的两条臂通过单链DNA紧密连接,从而导致荧光信号淬灭。然后,在铀酰离子特异性DNA酶链和铀酰的存在下,接头序列被铀酰离子特异性DNA酶链切割,导致荧光强度的恢复。DNA酶可以循环切割其他DNA镊子,以显着提高灵敏度。The invention constructs a DNA tweezers based on one-step amplification and catalysis of DNase, which is used for the sensitive fluorescence detection of uranyl ions. DNA tweezers are formed by hybridization of DNA sequences. Fluorophores and gold nanoparticles (gold nanoparticles) were immobilized on the ends of the two arms of the DNA tweezers, respectively. The two arms of the DNA tweezers are tightly connected by single-stranded DNA, resulting in quenching of the fluorescent signal. Then, in the presence of the uranyl ion-specific DNase strand and uranyl, the linker sequence is cleaved by the uranyl ion-specific DNase strand, resulting in the recovery of fluorescence intensity. DNase can cycle through other DNA tweezers to dramatically increase sensitivity.
本发明创造性地将DNA镊子与DNA酶结合用于金属离子检测,提高了灵敏度,还使得检测过程容易操作,成本降低。The invention creatively combines the DNA tweezers with the DNA enzyme for metal ion detection, which improves the sensitivity, makes the detection process easy to operate, and reduces the cost.
附图说明Description of drawings
图1为本发明的原理图。FIG. 1 is a schematic diagram of the present invention.
图2为改变检测条件后的荧光信号强度图。Figure 2 is a graph of the fluorescence signal intensity after changing the detection conditions.
图3(A)DNA镊子对不同浓度的铀酰离子的荧光光谱:0.1nM,5nM,10nM,30nM,60nM,100nM,150nM,200nM。(B)荧光强度与铀酰离子浓度之间的关系。插图:荧光强度和铀酰离子在0.1nM至60nM之间的校准图。Figure 3(A) Fluorescence spectra of DNA tweezers for different concentrations of uranyl ions: 0.1nM, 5nM, 10nM, 30nM, 60nM, 100nM, 150nM, 200nM. (B) Relationship between fluorescence intensity and uranyl ion concentration. Inset: calibration plot of fluorescence intensity and uranyl ion between 0.1 nM and 60 nM.
图4为含相同浓度(60nM)的铀酰离子、Ca2+,Mg2+,Pb2+,Sn2+,Hg2+,Zn2+,Cu2+和Co2+的溶液所产生的荧光信号强度图。Figure 4 is a graph of the fluorescence signal intensity generated by solutions containing the same concentration (60nM) of uranyl ions, Ca2+, Mg2+, Pb2+, Sn2+, Hg2+, Zn2+, Cu2+ and Co2+.
具体实施方式Detailed ways
下面结合实施方式对本发明作进一步详细的说明。The present invention will be described in further detail below in conjunction with the embodiments.
如图1所示,本发明的原理为:DNA镊子结构与序列1-4组合在一起。序列2和3分别与序列1的末端区域部分互补。它们可以分别与序列1的末端杂交形成DNA镊子的两个臂。然后,在两端用FAM和金纳米粒子修饰的序列4可以分别与序列2和3的单一部分杂交,形成一个完整的DNA镊子结构。序列4的中间部分紧密连接DNA镊子的两个臂,从而导致严重的荧光猝灭。连接区具有与铀酰特异性DNA酶的底物链相同的序列。它可以与铀酰离子特异性DNA酶链杂交形成铀酰离子特异性DNA酶。可以在铀酰离子存在的情况下切割连接区域,从而分离出FAM和金纳米粒子。然后,铀酰离子特异性DNA酶链可以与其他DNA镊子重新结合以形成另一个DNA酶结构,然后催化裂解DNA镊子的连接部分,因此,荧光信号被显著恢复。铀酰的浓度可以通过荧光强度定量检测。As shown in FIG. 1 , the principle of the present invention is that the DNA tweezers structure is combined with sequences 1-4.
下列实验验证了本发明检测方法的可行性:将最佳检测过程的检测结果和改变最佳检测过程的部分条件后的检测结果进行对比,证明本方法的可行性。所述最佳检测过程为:制备金纳米粒子;用所述金纳米粒子修饰的DNA序列4(HS-TACCCAAAAAACCTGGCTGCAACTCACTATrAGGAAGAGATGGACGTGACATACGGTACAAAAACCCTA-FAM),DNA序列4一端硫醇化,另一端连接荧光基团;用所得修饰金纳米粒子后的DNA序列4制备DNA镊子探针;将所得100nM DNA镊子探针、30nM铀酰离子特异性DNA酶链(CACGTCCATCTCTGCAGTCGGGTAGTTAAACCGACCTTCAGACATAGTGAGT)、待测铀酰离子样品溶液混合,然后在40℃下孵育60分钟;测量所得溶液的荧光信号(图2中样品6的信号)。样品1为空白溶液,即,待测液中不含有铀酰离子,其余过程同最佳检测过程,在没有铀酰离子的情况下,DNA镊子仍处于“关闭”状态,因此,可获得弱荧光信号(图2中样品1的信号)。样品2为没有铀酰离子特异性DNA酶链的样品,其余过程同最佳检测过程(图2中样品2的信号),具有与样品1相似的荧光强度,表明没有铀酰离子特异性DNA酶链不能形成铀酰离子特异性DNA酶,并且序列4的接头仍然完整。样品3为将最佳检测过程中的铀酰离子特异性DNA酶链替换成Pb2+特异性DNA酶链:CATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT,其余过程同最佳检测过程(图2中样品3的信号)。样品3的低荧光强度原因在于Pb2+特异性DNA酶链不能与序列4形成铀酰离子特异性DNA酶,导致遇铀酰离子时镊子不能打开。样品4为半反应时间,即,与待测铀酰离子样品溶液混合后在40℃下孵育30分钟,其余过程同最佳检测过程(图2中样品4的信号),荧光强度被显着恢复。这是因为裂解反应在一半的反应时间内已经进行到一定程度,部分镊子已经打开。样品5为铀酰离子特异性DNA酶链与DNA镊子的摩尔比变为2:10,其余过程同最佳检测过程(图2中样品5的信号),由于DNA酶裂解反应不完整,而DNA酶量较少,导致荧光强度降低。The feasibility of the detection method of the present invention is verified by the following experiments: the detection results of the optimal detection process are compared with the detection results after changing some conditions of the optimal detection process to prove the feasibility of the method. The optimal detection process is as follows: preparing gold nanoparticles; using the gold nanoparticles modified DNA sequence 4 (HS-TACCCAAAAAAACCTGGCTGCAACTCACTATrAGGAAGAGATGGACGTGACATACGGTACAAAAACCCTA-FAM), one end of the
为了确定铀酰离子的荧光响应,用形成的DNA镊子探针测试了不同浓度的铀酰离子。如图3A所示,荧光信号随着铀酰离子在0.1nM至200nM的范围内逐渐升高。在荧光强度和铀酰浓度之间的0.1nM至60nM范围内,可获得良好的线性关系,相关系数为0.993(图3B)。根据3σ空白标准,该敏感DNA镊子的检出限评估为25pM。这种检测限与其他报道的基于DNA酶的方法(包括荧光,比色法和电化学方法)相当。六次重复测量的0.1nM铀酰离子的RSD为8.8%,表明该DNA镊子探针具有令人满意的重现性。To determine the fluorescence response of uranyl ions, different concentrations of uranyl ions were tested with the formed DNA tweezers probes. As shown in Figure 3A, the fluorescence signal gradually increased with uranyl ions in the range of 0.1 nM to 200 nM. A good linear relationship was obtained in the range of 0.1 nM to 60 nM between fluorescence intensity and uranyl concentration, with a correlation coefficient of 0.993 (Figure 3B). The detection limit of this sensitive DNA tweezers was estimated to be 25 pM according to the 3σ blank criterion. This detection limit is comparable to other reported DNase-based methods including fluorescence, colorimetric and electrochemical methods. The RSD of 0.1 nM uranyl ion measured in six replicates was 8.8%, indicating a satisfactory reproducibility of this DNA tweezers probe.
特异性方面,将上述最佳检测过程中“含铀酰离子的样品溶液”改变为含相同浓度(60nM)的Ca2+,Mg2+,Pb2+,Sn2+,Hg2+,Zn2+,Cu2+和Co2+的溶液,其余检测过程同所述最佳检测过程,所得荧光信号可忽略不计(参见图4)。可见,其他金属离子的荧光强度远低于铀酰离子。同时实验证明,即使上述干扰离子浓度是铀酰离子的100倍,其产生的干扰也可以忽略不计。该方法的良好选择性可归因于铀酰离子特异性DNA酶链的强特异性。In terms of specificity, the "sample solution containing uranyl ions" in the above optimal detection process was changed to a solution containing the same concentration (60nM) of Ca2+, Mg2+, Pb2+, Sn2+, Hg2+, Zn2+, Cu2+ and Co2+, and the rest of the detection process As with the optimal detection procedure described, the resulting fluorescent signal was negligible (see Figure 4). It can be seen that the fluorescence intensity of other metal ions is much lower than that of uranyl ions. At the same time, experiments have shown that even if the concentration of the above-mentioned interfering ions is 100 times that of uranyl ions, the interference generated by them can be ignored. The good selectivity of this method can be attributed to the strong specificity of the uranyl ion-specific DNase chain.
检测实际样品中的铀酰离子:Detection of uranyl ions in real samples:
通过不同的水样(饮用水,自来水和河水)评估了该方法检测铀酰离子的可行性和适用性。通过离心纯化水样并用0.22μm膜过滤。将上述样品的pH调节至5.5。然后根据所述最佳检测过程检测样品。用这种方法测定的自来水水样中的铀酰浓度为2.9nM,河水中为4.7nM。加标样品测定的回收率在91.0%至107.0%之间。另外,RSD从5.6%到9.2%。结果表明,该DNA镊子是可行的,可用于实际水分析。The feasibility and applicability of this method for the detection of uranyl ions were evaluated by different water samples (drinking water, tap water and river water). The water samples were purified by centrifugation and filtered through a 0.22 μm membrane. The pH of the above sample was adjusted to 5.5. The sample is then tested according to the optimal testing procedure. The uranyl concentration in tap water samples determined by this method was 2.9 nM and 4.7 nM in river water. The recoveries of the spiked samples assayed ranged from 91.0% to 107.0%. Also, the RSD went from 5.6% to 9.2%. The results show that the DNA tweezers are feasible and can be used for practical water analysis.
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, the present application may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911180266.8A CN110819697B (en) | 2019-11-27 | 2019-11-27 | Detection method of uranyl ions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911180266.8A CN110819697B (en) | 2019-11-27 | 2019-11-27 | Detection method of uranyl ions |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110819697A true CN110819697A (en) | 2020-02-21 |
CN110819697B CN110819697B (en) | 2023-03-17 |
Family
ID=69559830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911180266.8A Expired - Fee Related CN110819697B (en) | 2019-11-27 | 2019-11-27 | Detection method of uranyl ions |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110819697B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112391447A (en) * | 2020-11-19 | 2021-02-23 | 重庆工商大学 | Method for simultaneously detecting divalent copper ions and magnesium ions by using nanomachines based on entropy driving |
CN112461803A (en) * | 2020-06-12 | 2021-03-09 | 重庆工商大学 | Method for detecting aflatoxin B1 and ochratoxin A in food sample |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102288568A (en) * | 2011-07-29 | 2011-12-21 | 广西师范大学 | Method for rapidly measuring nanogold catalysis-silver nitrate reduction luminosity of UO2<2+> in water |
CN104774915A (en) * | 2014-01-14 | 2015-07-15 | 东华理工大学 | Catalytic light mark and preparation method thereof, and method for determination of trace uranium by catalytic light mark |
CN104964942A (en) * | 2015-07-01 | 2015-10-07 | 福州大学 | Visualization method for rapidly detecting trace amount of uranyl ions in water environment |
CN105241945A (en) * | 2015-09-30 | 2016-01-13 | 中国工程物理研究院材料研究所 | Sensor for detecting uranyl ions, and making method and application thereof |
CN106841130A (en) * | 2016-12-28 | 2017-06-13 | 成都理工大学 | A kind of method of uranyl ion content in unmarked fluoroscopic examination water sample |
CN107828417A (en) * | 2017-11-15 | 2018-03-23 | 华北电力大学 | A kind of binary channels fluorescence uranyl ion probe and its application |
CN108700535A (en) * | 2015-12-23 | 2018-10-23 | 加利福尼亚大学董事会 | Nanosensors for nucleic acid detection and identification |
CN109929823A (en) * | 2018-11-30 | 2019-06-25 | 清华大学 | 39E DNA enzymatic and its application |
CN109946279A (en) * | 2019-03-29 | 2019-06-28 | 重庆工商大学 | A kind of detection method of uranyl ion |
CN110106226A (en) * | 2019-06-04 | 2019-08-09 | 中国工程物理研究院化工材料研究所 | Bio-sensing chip of recyclable detection trace uranyl ion and preparation method thereof, application method |
-
2019
- 2019-11-27 CN CN201911180266.8A patent/CN110819697B/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102288568A (en) * | 2011-07-29 | 2011-12-21 | 广西师范大学 | Method for rapidly measuring nanogold catalysis-silver nitrate reduction luminosity of UO2<2+> in water |
CN104774915A (en) * | 2014-01-14 | 2015-07-15 | 东华理工大学 | Catalytic light mark and preparation method thereof, and method for determination of trace uranium by catalytic light mark |
CN104964942A (en) * | 2015-07-01 | 2015-10-07 | 福州大学 | Visualization method for rapidly detecting trace amount of uranyl ions in water environment |
CN105241945A (en) * | 2015-09-30 | 2016-01-13 | 中国工程物理研究院材料研究所 | Sensor for detecting uranyl ions, and making method and application thereof |
CN108700535A (en) * | 2015-12-23 | 2018-10-23 | 加利福尼亚大学董事会 | Nanosensors for nucleic acid detection and identification |
CN106841130A (en) * | 2016-12-28 | 2017-06-13 | 成都理工大学 | A kind of method of uranyl ion content in unmarked fluoroscopic examination water sample |
CN107828417A (en) * | 2017-11-15 | 2018-03-23 | 华北电力大学 | A kind of binary channels fluorescence uranyl ion probe and its application |
CN109929823A (en) * | 2018-11-30 | 2019-06-25 | 清华大学 | 39E DNA enzymatic and its application |
CN109946279A (en) * | 2019-03-29 | 2019-06-28 | 重庆工商大学 | A kind of detection method of uranyl ion |
CN110106226A (en) * | 2019-06-04 | 2019-08-09 | 中国工程物理研究院化工材料研究所 | Bio-sensing chip of recyclable detection trace uranyl ion and preparation method thereof, application method |
Non-Patent Citations (3)
Title |
---|
HONGYAN ZHANG ET AL.: "A turn-off fluorescent biosensor for the rapid and sensitive detection of uranyl ion based on molybdenum disulfide nanosheets and specific DNAzyme", 《SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY》 * |
MORITZ K. BEISSENHIRTZ AND ITAMAR WILLNER: "DNA-based machines", 《ORGANIC & BIOMOLECULAR CHEMISTRY》 * |
姜交来等: "基于DNA酶的铀酰离子传感方法", 《核化学与放射化学》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112461803A (en) * | 2020-06-12 | 2021-03-09 | 重庆工商大学 | Method for detecting aflatoxin B1 and ochratoxin A in food sample |
CN112391447A (en) * | 2020-11-19 | 2021-02-23 | 重庆工商大学 | Method for simultaneously detecting divalent copper ions and magnesium ions by using nanomachines based on entropy driving |
CN112391447B (en) * | 2020-11-19 | 2023-08-04 | 重庆工商大学 | Method for simultaneously detecting cupric ions and magnesium ions by using nano machine based on entropy driving |
Also Published As
Publication number | Publication date |
---|---|
CN110819697B (en) | 2023-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20230003470A (en) | Rapid field-deployable detection of SARS-CoV-2 virus | |
CN111440851B (en) | An electrochemical biosensor for detecting miRNA and its preparation method and application | |
CN109072205A (en) | The detection of nucleic acid | |
CN110455756B (en) | Method for simultaneously detecting divalent lead ions and divalent copper ions | |
CN113552188B (en) | An electrochemical biosensor for the detection of ochratoxin A based on DNA tetrahedra | |
CN110819697B (en) | Detection method of uranyl ions | |
CN113640268A (en) | A tobramycin detection system and detection method based on CRISPR-Cas12a | |
CN110257482A (en) | A kind of blood coagulation enzyme assay method based on aptamer and telomere enzymatic amplification | |
Liu et al. | G-triplex molecular beacon‒based fluorescence biosensor for sensitive detection of small molecule-protein interaction via exonuclease III‒assisted recycling amplification | |
CN114480583A (en) | Colorimetric biosensor, preparation method thereof and method for detecting novel coronavirus | |
CN113502341A (en) | Real-time fluorescent nucleic acid isothermal amplification detection kit for treponema pallidum 16s RNA, and special primer and probe thereof | |
CN115786544B (en) | Reagent, kit and detection method for detecting mycobacterium bovis | |
CN102220417B (en) | Method for detecting food pathogen by electrochemical luminescence gene sensor on basis of magnetic in-situ amplification | |
JP2019519192A (en) | Compositions and methods for detecting Zika virus | |
CN111304298B (en) | Caspase biosensor and application, detection method of caspase activity | |
CN113092556A (en) | Preparation method and application of electrochemical sensor for detecting transgenic soybeans through double signal output based on gene editing technology | |
CN106093023A (en) | A kind of colorimetric sensor detecting mercury ion and preparation method thereof | |
CN108982458B (en) | Fluorescence method for zinc ion detection based on magnetic bead particles modified by deoxyribozymes | |
Zhou et al. | The construction of CRISPR/Cas9-mediated FRET 16S rDNA sensor for detection of Mycobacterium tuberculosis | |
KR101857684B1 (en) | Primers and probe for detection of middle east respiratory syndrome coronavirus and detecting method for middle east respiratory syndrome coronavirus using the same | |
CN118147284A (en) | Method and kit for fluorescence detection of ochratoxin | |
KR102535008B1 (en) | Composition for detecting dengue virus and a biosensor including the same | |
Li et al. | A signal-off double probes electrochemical DNA sensor for the simultaneous detection of Legionella and Legionella pneumophila | |
CN112378975B (en) | An electrochemical sensor for the detection of AChE inhibitors | |
CN110129043B (en) | Preparation method of carbon quantum dots and kit and method for detecting nucleic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230317 |