CN110819657B - Preparation method and application of attenuated rhabdovirus - Google Patents

Preparation method and application of attenuated rhabdovirus Download PDF

Info

Publication number
CN110819657B
CN110819657B CN201810913350.5A CN201810913350A CN110819657B CN 110819657 B CN110819657 B CN 110819657B CN 201810913350 A CN201810913350 A CN 201810913350A CN 110819657 B CN110819657 B CN 110819657B
Authority
CN
China
Prior art keywords
seq
cell
sequence
vector
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810913350.5A
Other languages
Chinese (zh)
Other versions
CN110819657A (en
Inventor
秦晓峰
吴飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruifengkang Biomedical Technology Zhejiang Co ltd
Original Assignee
Ruifengkang Biomedical Technology Zhejiang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruifengkang Biomedical Technology Zhejiang Co Ltd filed Critical Ruifengkang Biomedical Technology Zhejiang Co Ltd
Priority to CN201810913350.5A priority Critical patent/CN110819657B/en
Publication of CN110819657A publication Critical patent/CN110819657A/en
Application granted granted Critical
Publication of CN110819657B publication Critical patent/CN110819657B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20211Vesiculovirus, e.g. vesicular stomatitis Indiana virus
    • C12N2760/20221Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20211Vesiculovirus, e.g. vesicular stomatitis Indiana virus
    • C12N2760/20241Use of virus, viral particle or viral elements as a vector
    • C12N2760/20243Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20211Vesiculovirus, e.g. vesicular stomatitis Indiana virus
    • C12N2760/20251Methods of production or purification of viral material
    • C12N2760/20252Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20211Vesiculovirus, e.g. vesicular stomatitis Indiana virus
    • C12N2760/20261Methods of inactivation or attenuation
    • C12N2760/20262Methods of inactivation or attenuation by genetic engineering

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Plant Pathology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present disclosure relates to a method for preparing attenuated rhabdovirus and its application. In particular, the present disclosure provides a method for preparing an attenuated viral vector by which an attenuated RNA viral recombinant expression vector system can be prepared that chimerically expresses antibodies directed against a specific target, such as an attenuated viral vector system targeted to a tumor microenvironment. The aforementioned vector system can stably express the corresponding antibody against a specific target. The vector disclosed by the invention has wide host cell sources, and the in vivo and in vitro expression efficiency of the exogenous chimeric antibody-like body is greatly improved; meanwhile, the genome of the vector system is simple and stable, the mutation rate is low, and the humanized specific antibody can be quickly and efficiently chimeric expressed. Moreover, the vector system disclosed by the invention is subjected to gene mutation modification, so that the toxicity of the virus is reduced, and the normal cells of a host are not obviously damaged when the antibody is expressed.

Description

Preparation method and application of attenuated rhabdovirus
Technical Field
The present disclosure relates to the fields of oncology, virology and molecular cell biology. In particular, the present disclosure relates to a vector system using non-integrated, replicable negative-sense strand RNA viruses, a method of constructing the same, and uses of the vectors constructed by the above method.
Background
The range of options for cancer patient treatment options has changed tremendously over the past decade. With the knowledge of the growth and development of the related driver mutations (driver mutation) of tumors and the development of the research and development of the specific mutant targeting molecule inhibitors, a new tumor treatment field, namely precise oncology, ensues, and the theoretical basis of tumor immunotherapy is that the immune system has the capacity of recognizing tumor-related antigens and regulating and controlling the body to attack tumor cells (highly specific cytolysis). This biological process is very complex and is still under considerable basic research.
In the last 90 s of the century, several research groups have discovered tumor antigens that can be recognized by T lymphocytes in a major histocompatibility complex-dependent manner. In some cases, antigens are often referred to as viral proteins, mutated self-antigens (some of which are driver oncogenes), derepressed embryonic antigens, over-expressed differentiated or autologous normal proteins. Tumor cells produce and release antigens in a variety of ways, such as intracellular kinases, primary necrosis of tumor cells, and the body's response to radiation, chemotherapy, or targeted therapies. In addition to antigens, in the context of cellular stress, hypoxia, nutrient depletion, and trauma, dead tumor cells can also release a variety of immunogenic molecules that can bind to cell surface or intracellular receptors (e.g., toll-like receptors) to trigger an innate immune response. In addition, specific antigen presenting cells (e.g., dendritic cells) in the tumor microenvironment can phagocytose dead tumor cells and soluble antigens, CD8+ T cells. To achieve better differentiation, T cell activation also sets a secondary signal recognition system, a signaling pathway mediated by co-stimulatory molecules. Once activated in the presence of co-stimulatory molecules, T cells can migrate into the tumor microenvironment following a concentration gradient of local chemokines. After the T cell reaches the vicinity of the tumor cell, the T cell receptor can recognize the cognate antigen on the surface of the tumor cell via MHC class I-polypeptide complexes. T cells can release cytotoxic factors (e.g., granzyme B and perforins) that can regulate direct lysis of antigen-expressing tumor cells while producing a bystander effect on adjacent non-antigen-expressing tumor cells. There are a number of activated effector lymphocytes present in the microenvironment of tumors that generally have a better prognosis and respond better to immunotherapy, and despite the existence of the tumor-immune cycle, established tumors may escape immune detection and elimination by a variety of hosts, tumors, and immune mechanisms.
In addition, studies have reported that tumor microenvironments accumulate a large number of suppressive immune cells, such as regulatory CD4+ positive T cells, tumor-associated macrophages, myeloid suppressive cells, which can suppress the activity of activated effector T cells. The manner in which tumor cells die may determine which immune response is activated. For example, apoptosis of tumor cells may induce T cell tolerance, while necrosis or apoptosis (pyroptosis) of tumor cells, programmed cell death may induce an activated tumor-specific T cell response
Cancer has long been at the head of various causes of death. The world health organization has long predicted that malignancies will become the "first killer" in humans in the 21 st century, and cancer control has become a key point of global health strategy. Although China is a developing country, the disease spectrum has been changed, and China has become the first cancer major country in the world. In recent years, the morbidity and mortality of malignant tumors are more serious, the number of new cases is about 160 ten thousand, the death number is 130 ten thousand, and more than 200 ten thousand of patients with the existing diseases are. Moreover, most cancers are on the rise and are worth high attention.
Although the cure rate for several malignancies has improved significantly, the outcome for patients with advanced solid tumors has remained crudely maintained over the past several decades. Currently, antibodies of tumor immune checkpoints, such as antibodies of PD-1/PDL1 and CTLA4, have been put into clinical use in solid tumors, and the key point of these monoclonal antibodies that effectively antagonize immune checkpoint molecules lies in the efficient production per unit volume, and in addition, the problem of drug resistance faced by immune checkpoint antibodies is urgently to be solved, and the research progress of tumor immunotherapy is currently receiving attention from various countries. A variety of immune-related tumor treatment strategies including T cell node inhibitors, oncolytic viruses, chimeric antigen receptor T cells, and the like have been derived. It is well known that efficient immunotherapy requires several major features: inducing a lasting clinical response; there is no typical drug resistance; inducing autoimmunity-like toxicity. Clinical oncologists need to have a thorough understanding of the current clinical application of tumor-targeted therapy and tumor immunotherapy, only to provide high quality treatment regimens for cancer patients. The rationale for tumor immunotherapy is that the immune system has the ability to recognize tumor-associated antigens, regulate the body's ability to attack tumor cells (highly specific cytolysis).
Some gene editing modified recombinant viruses are used as a new tumor treatment preparation, and the anti-tumor immune response is initiated through two action mechanisms of the killing action of the viruses on tumor cells and the induction of systemic anti-tumor immune response. However, the specific molecular mechanism is not clear, and some of the existing research results show that the mechanism is the combined action of various action factors such as the replication and proliferation of the virus in tumor cells to induce cell death, the interaction with the anti-virus elements of the tumor cells, and the promotion of the intrinsic spontaneous or specific anti-tumor immune response.
Vesicular Stomatitis Virus (VSV) is a negative strand RNA virus that infects most mammalian cells and expresses up to 60% of the total protein of the viral protein in the infected cells. In nature, VSV infects pigs, cattle and horses and causes varicella diseases near the mouth and feet. Although human infection with VSV has been reported, VSV does not cause any serious symptoms in humans. VSV encodes 5 proteins, including a nucleocapsid protein (N), a phosphoprotein (P), a matrix protein (M), a surface glycoprotein (G), and an RNA-dependent RNA polymerase (L). Blocking host cell protein synthesis by VSV matrix protein (M) induces cell death.
However, the existing medicines in the prior art still have the defects of long medication period, drug resistance, high price and the like. Therefore, there is a need to provide new medicaments to overcome the above-mentioned drawbacks.
Disclosure of Invention
The problem to be solved by the inventionQuestion (I)
Based on the deficiency of the prior art, the present disclosure provides an Attenuated RNA virus recombinant expression vector system for chimeric expression of an antibody against a specific target, in particular an Attenuated virus vector system (AVTM system) targeting tumor microenvironment. The aforementioned vector system can stably express the corresponding antibody against a specific target.
At the same time, the disclosure also relates to a preparation method and application of the attenuated virus vector system.
Means for solving the problems
The technical scheme related to the disclosure is as follows.
(1) A method for producing an attenuated viral vector, comprising the steps of:
(S1) mixing the nucleotide sequence of the gene encoding the vesicular stomatitis virus matrix protein, as set forth in SEQ ID NO: 1(M gene of VSV), with the first vector, and adding a transposase to perform a transposition reaction;
(S2) mixing the transposition product obtained in the step (S1) with competent bacteria, and transforming;
(S3) extracting the plasmid of the bacterium obtained by the step (S2) to obtain the gene encoding the vesicular stomatitis virus matrix protein after transposition;
(S4) recombining the gene obtained in the step (S3) into a second vector to obtain the attenuated viral vector;
wherein the sequence encoding the second vector comprises the genomic sequence of vesicular stomatitis virus;
wherein the first vector is selected from a vector having a transposition function;
optionally, the first vector comprises a sequence shown as SEQ ID NO. 2;
optionally, the second vector comprises a sequence as set forth in GENEBANK numbering EU 849003.1.
(2) An attenuated virus vector obtained by the production method of (1).
(3) The attenuated viral vector of (2), wherein the sequence encoding the attenuated viral vector comprises the sequence set forth in SEQ ID NO:3, and (b) is the sequence shown in the specification.
(4) The attenuated viral vector of (3), wherein the sequence encoding the attenuated viral vector comprises the sequence set forth in SEQ ID NO:4, or a sequence shown in the figure.
(5) A cloning scaffold vector system, characterized in that the cloning scaffold vector system recombines the sequence shown as SEQ ID NO. 5 into the vector described in (3); wherein, the site of the sequence shown in SEQ ID NO. 5 inserted into the vector coded in (3) is shown in SEQ ID NO:4, position 4632 of the sequence shown in fig. 4.
(6) The cloning scaffold vector system according to (5), wherein the sequence encoding the cloning scaffold vector system comprises the sequence shown in SEQ ID NO. 6.
(7) A method of producing an attenuated monoclonal virus strain comprising the steps of:
(S1) culturing the first cell to be transfected;
(S2) co-transfecting a plasmid comprising the sequence shown as SEQ ID NO:3, and a plasmid (pN) comprising the sequence shown as SEQ ID NO:7, a plasmid (pL) comprising the sequence shown as SEQ ID NO:8, a plasmid mixture of a plasmid (pP) comprising the sequence shown as SEQ ID NO:9, into the cells to be transfected in step (S1);
(S3) extracting the supernatant of the cell mixture obtained after the co-transfection in the step (S2), and transfecting the cell mixture into a cell of a second cell to be transfected;
(S4) culturing the second cell to be transfected after being transfected in the step (S3), and screening to obtain an attenuated monoclonal virus strain.
(8) The method according to (7), wherein the weight ratio of the plasmid containing the sequence shown by SEQ ID NO. 3, the plasmid (pN) containing the sequence shown by SEQ ID NO. 7, the plasmid (pL) containing the sequence shown by SEQ ID NO. 8 and the plasmid (pP) containing the sequence shown by SEQ ID NO. 9 is 10:4:1: 5.
(9) The method according to any one of (7) to (8), wherein the plasmid comprising the sequence shown by SEQ ID NO. 3 is a plasmid comprising the sequence shown by SEQ ID NO. 4; optionally, the second cell to be transfected is selected from Vero cells; the first cell to be transfected is selected from BSR-T7 cells;
(10) the method according to (9), wherein the plasmid comprising the sequence shown as SEQ ID NO. 4 in step (S2) is selected from plasmids comprising the sequence shown as SEQ ID NO. 6.
(11) The method according to (10), wherein the coding sequence of the plasmid comprising the sequence shown as SEQ ID NO. 6 in the step (S2) further comprises the sequence shown as SEQ ID NO. 10 and the sequence shown as SEQ ID NO. 11.
(12) The method according to (10), wherein the coding sequence of the plasmid comprising the sequence shown as SEQ ID NO. 6 in step (S2) further comprises the sequence shown as SEQ ID NO. 12.
(13) The method according to (12), wherein the 5' end comprising the sequence shown as SEQ ID NO 12 further comprises a signal peptide sequence; the sequence of the signal peptide is selected from the sequences shown as SEQ ID NO. 13, SEQ ID NO. 14, SEQ ID NO. 15 or SEQ ID NO. 16; preferably, the signal peptide sequence is selected from the group consisting of the sequences shown in SEQ ID NO. 15.
(14) An attenuated monoclonal virus strain produced by the method for producing an attenuated monoclonal virus strain according to any one of (7) to (13).
(15) A monoclonal antibody secreted by the attenuated monoclonal virus strain of (14).
(16) A monoclonal antibody comprising a fragment encoded by the sequence shown as SEQ ID NO. 4, the sequence shown as SEQ ID NO. 10 and the coding sequence shown as SEQ ID NO. 11.
(17) The monoclonal antibody according to (16), wherein the sequence comprising SEQ ID NO. 4 is selected from the group consisting of the sequences comprising SEQ ID NO. 6.
(18) The monoclonal antibody according to (17), wherein the coding sequence further comprises a sequence shown as SEQ ID NO 13, SEQ ID NO 14, SEQ ID NO 15 or SEQ ID NO 16; preferably, the coding sequence further comprises the sequence shown in SEQ ID NO. 15.
(19) A pharmaceutical composition comprising the monoclonal antibody according to any one of (15) to (18).
(20) Use of the monoclonal antibody according to any one of (15) to (18) or the pharmaceutical composition of (19) for the preparation of a medicament for killing an abnormally proliferative cell, inducing a promotion of an anti-tumor immune response, or eliminating microenvironment immunosuppression of tumor tissue.
(21) The use of (20), wherein the hyperproliferative cell is contained in a patient.
(22) The use of (21), wherein the hyperproliferative cell is selected from the group consisting of a tumor cell and a tumor tissue-associated cell; preferably, the tumor cell is a cancer cell; more preferably, the cancer cell is a metastatic cancer cell.
(23) A method for slow and sustained killing of an hyperproliferative cell comprising the step of contacting said hyperproliferative cell with the monoclonal antibody of any one of (15) to (18) or the pharmaceutical composition of (19).
(24) The method of (23), wherein the hyperproliferative cell is contained in a patient.
(25) The method of (23), wherein the hyperproliferative cell is selected from the group consisting of a tumor cell and a tumor tissue-associated cell; preferably, the tumor cell is a cancer cell; more preferably, the cancer cell is a metastatic cancer cell.
(26) The method of (23), wherein the monoclonal antibody of any one of (15) to (18) or the pharmaceutical composition of (19) is administered into a patient.
(27) The method of (23), wherein the monoclonal antibody of any one of (15) to (18) or the pharmaceutical composition of (19) is administered by a mode of administration comprising one or more of intraperitoneal, intravenous, intraarterial, intramuscular, intradermal, intratumoral, subcutaneous, or intranasal administration; preferably, the administration route of the administration mode comprises one or more of endoscopy, intervention, minimally invasive surgery and traditional surgery.
(28) The method of (23), further comprising the step of ー administering a second anti-tumor therapy.
(29) The method of (28), wherein the second anti-tumor therapy is selected from one or more of chemotherapy, radiation therapy, immunotherapy, surgical therapy.
(30) A polynucleotide comprising the sequence shown in SEQ ID NO. 6.
ADVANTAGEOUS EFFECTS OF INVENTION
The host cells of the AVTM vector systems of the present disclosure are widely available. Because of the existence of the surface glycoprotein (G) of the virus system, the virus system can enter host cells without specific receptor mediation, can infect almost all cells of mammals, and can simultaneously complete virus replication and realize high-efficiency expression of exogenous chimeric genes, thereby greatly improving the in vitro and in vivo expression efficiency of the exogenous chimeric antibody.
The genome of a rhabdovirus corresponding to the AVTM attenuated vector system is single negative strand RNA, and the expression of a foreign gene of the system is very stable, the attenuated viral vector system does not generate genome integration in cells, the genome of the viral vector system is simple and stable, and the mutation rate is low.
The system can quickly and efficiently carry out chimeric expression on the human specific antibody, complete specific replication in the tumor cells and express the specific antibody of an exocrine antagonistic tumor cell. Meanwhile, when the tumor antigen is released to activate the specific immune response of immune cells to tumor, a large number of specific antibodies without immunosuppression are gathered in a local tumor microenvironment in a short time, so that the regional immunosuppression barrier is effectively broken, the specific killing activity of T cells is activated, the removal of the killing T cells to the tumor cells is promoted, and the systemic specific anti-tumor immune memory reaction of an organism is promoted.
The gene of the AVTM of the disclosure is subjected to gene mutation modification, so that the toxicity of the virus is reduced, and when the AVTM expresses the antibody at 37 ℃, the normal cells of a host cannot be obviously damaged, so that the infected cells can continuously express the secretory antibody for a period of time. In contrast, for traditional transfected myeloma cells, the cell lines used to express specific antibodies need to replicate to an order of magnitude higher before they can be used for large-scale production of antibodies.
In one embodiment, the present disclosure inserts a nucleotide sequence encoding an antibody of an immune checkpoint molecule into a modified viral expression vector by means of gene editing, and recombines in a specific eukaryotic cell, thereby obtaining an attenuated viral system stably expressing the chimeric antibody.
In one technical scheme, the AVTM-scFV vector system capable of efficiently expressing the single-chain antibody in tumor body tissues is obtained by screening through optimizing a secretion signal peptide sequence of the antibody, and meanwhile, the system is utilized to further evaluate the curative effect of the recombinant system in a solid tumor model, so that a new technical scheme and a new choice are provided for developing a therapeutic product of the solid tumor.
Drawings
FIG. 1A is a schematic diagram showing the specific process of screening a library of attenuated virus strains established by random base insertion of exogenous bases in a rhabdovirus vector system and screening an attenuated strain of a four-gene mutant strain RV-Mut 4.
FIG. 1B is a schematic diagram of a modified pRV-2MCS vector rhabdovirus core backbone, and the modified system can integrate two different exogenous genes (PDL1 antibody heavy chain and PDL1 antibody light chain genes) at the same time.
FIG. 2 is a schematic diagram showing the expression of 2 genes simultaneously from outside source in RV-2MCS vector system. Wherein, shown in part a of fig. 2 are schematic diagrams of a heavy chain and a light chain expressing PDL1 antibody, respectively; shown in part B of fig. 2 is a schematic representation of an RV-2MCS vector system simultaneously expressing both the heavy and light chains of PDL1 antibody; FIG. 2, section C, is a schematic representation of the RV-2MCS vector system simultaneously integrating the fluorescent expression of Green Fluorescent Protein (GFP) and Red Fluorescent Protein (RFP) in Vero cells.
FIG. 3 is a schematic diagram showing codon preference optimization by a mock analysis of a vector system of a single-chain antibody AVTM chimeric PDL 1. Wherein, part A in FIG. 3 shows the average GC content (58%) in the designed and optimized foreign gene sequence; part B of fig. 3 shows the codon preference in mammalian cells with a corresponding complex CAI of 0.95, and part C of fig. 3 shows the optimal distribution pattern of the various codons in mammalian cells and the relative distribution frequency of amino acid synonymous codons in the gene sequence.
FIG. 4 shows a comparison of the superiority of the RV-G21E-M51A-L111F-V221F (RV-Mut4) four mutant vector system. Wherein, part A in FIG. 4 and part B in FIG. 4 are schematic diagrams showing the characteristic of long-term sustained expression of foreign proteins in vitro cells of the vector RV-Mut 4; FIG. 4, section C, is a graph showing the time-course curves of the amount of expressed exogenous GFP protein replicated in Vero cells by RV-Mut4 and other mutants, as detected by FACS; section D of FIG. 4 shows a schematic representation of a comparative experiment in which MTT measures the toxicity of RV-Mut4 and three additional mutants against tumor cells.
FIG. 5 is a schematic diagram showing the ability of PDL1 single-chain antibody to bind to two tumor cell surface molecules detected by FACS, wherein the exogenous single-chain antibody secreted by an engineered cell line Vero (RV-Mut4-scFV-PDL1 high-expression PDL1 single-chain antibody) is used, and the antibody in the supernatant is incubated with two kinds of cells LLC and MC38 stably expressing human PDL1 in vitro.
FIG. 6 is a schematic representation of the identification of the level of exocrine in eukaryotic cells of the PDL1 single-chain antibody mediated by three different signal peptide linkages in vitro at the cell line level, by IB (Western blot) experiments.
FIG. 7A is a schematic representation of the secretion of four single-chain antibodies PDL1 into the supernatant mediated by the AVTM vector system in engineered cell Vero.
FIG. 7B is a schematic diagram showing detection of antibody presence in serum and local tumor tissue (near tumor tissue subcutaneous injection and intratumoral injection) by single-chain antibody linked with signal 3 signal peptide in LLC animal model by two different inoculation methods.
FIG. 8 is a schematic diagram showing the evaluation of therapeutic effects of AVTM-mediated single-chain antibodies in lung cancer. As shown in fig. 8Part A shows that there are three treatment groups, namely an AVTM system mediated expression single-chain antibody group (RV-scFV-PDL1 attenuated strain), an RV-WT experimental control group and a PBS blank control group, and an overall statistical chart of the treatment effect on solid tumors in an LLC mediated non-small cell lung cancer model mouse animal model; wherein, in order to further not determine the difference between individuals of different treatment groups, the individuals of each group are separately counted; section B of figure 8 shows the individual statistics for the PBS treated group; FIG. 8, section C, is a schematic statistical representation of individuals from the RV-GFP-WT treated group; section D of FIG. 8 shows a statistical chart of individuals in the RV-scFV-PDL1 treatment group. Inoculating the non-small cell lung cancer tissue of model mouse in tumor 10 times every other day7The attenuation of PFU by 30. mu.l was performed three times in a total immunization, and the change in tumor volume of the model mice in each experimental group was measured every other day, and the portions B-D in FIG. 8 represent the simultaneous display of the change in tumor volume of the individual individuals in the three groups with time.
FIG. 9 is a graph of the individual therapeutic effect of PBS, RV-GFP and RV-scFV-PDL1, on portions A-C, respectively, on a lung cancer model; part D of fig. 9 is a statistical graph of the treatment effects of the above three groups of drugs on day 10; section E of figure 9 is a statistical plot of the therapeutic effects of the three groups of drugs on day 20.
FIG. 10 shows the evaluation of the effect of RV-scFV-PDL1 attenuated strain on lung cancer metastasis animal models, the metastasis of the model mouse lung tissue metastasis model (LLC-JSP) treated by the experimental group and the control group under low power microscope (part A in FIG. 10) and the survival rate of the model mouse (part B in FIG. 10).
FIG. 11 shows the initial establishment of a murine model of colon cancer expressing human-derived CD274 (human-derived PDL1), RV-scFV-PDL1 and corresponding control group virus (RV-WT) intratumorally administered 30 μ l 107Dose of PFU, once every other day, for a total of 3 doses, a graphical representation of the change in tumor volume was recorded.
Detailed Description
Definition of
In the claims and/or the description of the present disclosure, the words "a" or "an" or "the" may mean "one", but may also mean "one or more", "at least one", and "one or more than one".
As used in the claims and specification, the terms "comprising," "having," "including," or "containing" are intended to be inclusive or open-ended and do not exclude additional, unrecited elements or method steps. Also, the terms "comprising," "having," "including," or "containing" are intended to be inclusive and mean that there may be additional, unrecited elements or method steps.
Throughout this specification, the term "about" means: a value includes the standard deviation of error for the device or method used to determine the value.
Although the disclosure supports the definition of the term "or" as merely an alternative as well as "and/or," the term "or" in the claims means "and/or" unless expressly indicated to be merely an alternative or a mutual exclusion between alternatives.
The terms "inhibit," "reduce," or "prevent," or any variation of these terms, as used in the claims and/or the specification, include any measurable reduction or complete inhibition to achieve a desired result (e.g., tumor treatment). Desirable results include, but are not limited to, alleviation, reduction, slowing, or eradication of cancer or a proliferative disorder or cancer-related symptoms, as well as improved quality of life or prolongation of life.
The vaccination methods of the present disclosure can be used to treat tumors in mammals, and optionally, the vaccination methods of the present disclosure can be used to treat cancer in mammals. The term "cancer" as used in this disclosure includes any cancer, including, but not limited to, melanoma, sarcoma, lymphoma, cancer (e.g., brain, breast, liver, stomach, lung, and colon), and leukemia.
The term "mammal" refers to humans as well as non-human mammals.
The methods of the present disclosure comprise administering to a mammal an oncolytic vector that expresses a tumor antigen to which the mammal has a pre-existing immunity. The term "pre-existing immunity" as used in this disclosure is meant to include immunity induced by vaccination with an antigen as well as immunity naturally occurring in mammals.
The term "RV virus" as used in this disclosure refers to an attenuated VSV oncolytic rhabdovirus. The term "RV-Mut" refers to an oncolytic rhabdovirus that has a mutation compared to a wild-type VSV oncolytic rhabdovirus. The term "RV-Mut 4" refers to an oncolytic rhabdovirus having a mutation at 4 positions compared to wild-type VSV oncolytic rhabdovirus.
The term "VSV" refers to vesicular stomatitis virus, which is one of the oncolytic rhabdoviruses. It encodes 5 proteins, including the nucleocapsid protein (N), phosphoprotein (P), matrix protein (M), surface glycoprotein (G) and RNA-dependent RNA polymerase (L).
The term "PDL 1" refers to the cellular death ligand 1.PDL1 protein is a ligand of PD1, is related to the inhibition of the immune system, and can conduct inhibitory signals. Once bound, PD1 and PDL1 transmit a negative regulatory signal to T cells, inducing T cells to enter a quiescent state, reducing the proliferation of lymph node CD8+ T cells, rendering them unable to recognize cancer cells, and causing T cells to proliferate less or to undergo apoptosis.
The term "vaccine" in the present disclosure is an immune preparation for preventing diseases, which is prepared from pathogenic microorganisms (such as bacteria, etc.) and metabolites thereof by artificial attenuation, inactivation, or using transgenosis, etc.
The term "radiotherapeutic agent" in the present disclosure includes the use of drugs that cause DNA damage. Radiotherapy has been widely used in cancer and disease treatment and includes those commonly referred to as gamma rays, X-rays and/or the targeted delivery of radioisotopes to tumor cells.
The term "chemotherapeutic agent" in the present disclosure is a chemical compound useful for the treatment of cancer. Classes of chemotherapeutic agents include, but are not limited to: alkylating agents, antimetabolites, kinase inhibitors, spindle poison plant alkaloids, cytotoxic/antitumor antibiotics, topoisomerase inhibitors, photosensitizers, anti-estrogen and selective estrogen receptor modulators, anti-progestins, estrogen receptor downregulators, estrogen receptor antagonists, luteinizing hormone-releasing hormone agonists, anti-androgens, aromatase inhibitors, EGFR inhibitors, VEGF inhibitors, antisense oligonucleotides that inhibit the expression of genes involved in abnormal cell proliferation or tumor growth. Chemotherapeutic agents useful in the treatment methods of the present disclosure include cytostatic and/or cytotoxic agents.
The term "immunotherapeutic agent" in the present disclosure includes "immunomodulators" and agents that promote or mediate antigen presentation that promotes a cell-mediated immune response. Among these, "immune modulators" include immune checkpoint modulators, such as immune checkpoint protein receptors and their ligands that mediate the inhibition of T cell-mediated cytotoxicity and are typically expressed by tumors or on anergic T cells in the tumor microenvironment and allow the tumor to evade immune attack. Inhibitors of the activity of immunosuppressive checkpoint protein receptors and their ligands can overcome the immunosuppressive tumor environment to allow cytotoxic T cell attack of the tumor. Examples of immune checkpoint proteins include, but are not limited to, PD-1, PD-L1, PDL2, CTLA4, LAG3, TIM3, TIGIT, and CD 103. Modulation (including inhibition) of the activity of such proteins may be accomplished by immune checkpoint modulators, which may include, for example, antibodies, aptamers, small molecules that target checkpoint proteins, and soluble forms of checkpoint receptor proteins, among others. PD-1 targeted inhibitors include the approved pharmaceutical agents pembrolizumab and nivolumab, while plepima (ipilimumab) is an approved CTLA-4 inhibitor. Antibodies specific for PD-L1, PD-L2, LAG3, TIM3, TIGIT, and CD103 are known and/or commercially available and can also be produced by those skilled in the art.
"methods in general Biology in the art" in the present disclosure can be referred to corresponding methods described in publications such as "Current Protocols in Molecular Biology, Wiley publication", "Molecular Cloning, A Laboratory Manual, Cold spring harbor Laboratory publication", and the like.
The specific meanings of the nucleotide/amino acid sequences referred to in the present disclosure are as follows.
SEQ ID NO:1 shows the nucleotide sequence of the M gene in the Core backbone of VSV (i.e., the M gene in pRV-Core vector).
SEQ ID NO. 2 shows the nucleotide sequence of the vector Entrancepson with transposition function.
SEQ ID NO 3 shows the nucleotide sequence of the M gene in the attenuated viral vector prepared by the method of the present disclosure.
SEQ ID NO. 4 shows the nucleotide sequence of the pRV-core Mut4 vector.
SEQ ID NO 5 shows a nucleotide sequence of 2 MCS.
SEQ ID NO 6 shows the nucleotide sequence of the pRV-2MCS vector.
SEQ ID NO 7 shows the nucleotide sequence of a plasmid containing the N gene in the core skeleton of VSV.
SEQ ID NO 8 shows the nucleotide sequence of a plasmid containing the L gene in the core skeleton of VSV.
SEQ ID NO 9 shows the nucleotide sequence of a plasmid containing the P gene in the core backbone of VSV.
10 shows the nucleotide sequence of the heavy chain portion of the PDL1 antibody.
Shown in SEQ ID NO 11 is the nucleotide sequence of the light chain portion of the PDL1 antibody.
12 shows the nucleotide sequence of the single-chain PDL1 single-chain antibody.
13 shows the amino acid sequence of signal peptide Sig1 secreting PDL1 single chain antibody.
SEQ ID NO. 14 shows the amino acid sequence of signal peptide Sig2 secreting PDL1 single chain antibody.
SEQ ID NO. 15 shows the amino acid sequence of signal peptide Sig3 secreting PDL1 single chain antibody.
16 shows the amino acid sequence of signal peptide Sig4 secreting PDL1 single chain antibody.
Examples
Other objects, features and advantages of the present disclosure will become apparent from the following detailed description. However, it should be understood that the detailed description and specific examples, while indicating specific embodiments of the disclosure, are given by way of illustration only, since various changes and modifications within the spirit and scope of the disclosure will become apparent to those skilled in the art from this detailed description.
The sources of reagents and consumables employed in this disclosure are as follows:
PBS (Hyclone SH30256.01), DMEM high-sugar medium (Gibco C11995500), RPMI1640(Gibco C22400500CP), diabody (Gibco 15140-,
Figure BDA0001762328030000151
i Reduced Serum Medium (Gibco 31985. sup. 070), Lipofectamine LTX (Invitrogen 15338100), 96-well cell culture plate (Corning 3599), 6-well cell culture plate (Corning 3516), 0.22um filter (Millipore SLGP033rb), DMSO (Macklin D806645), thiazole blue (Sigma M2128).
Unless otherwise indicated, reagents referred to in the examples of the present disclosure are commercially available.
The virus packaging method related to the disclosure comprises the following steps:
1. BSR-T7 cells were plated in 6-well plates to achieve a cell mass of 3X 105One/well, after plating for 14-16h, poxvirus expressing T7 polymerase was added and transfection was performed 6h after viral infection.
2. The plasmid was diluted to 5. mu.g in 200. mu.l of opti-MEM medium, and 7.5. mu.l of the transfection Reagent PLUS Reagent from Life was added thereto, in a mass ratio of pRV-core: pP: pN: pL: 10:5:4: 1. Lipofectamine LTX 10. mu.l was diluted with 200. mu.l of the medium. Wherein pN represents a baculovirus nucleoprotein gene, pL represents a baculovirus polymerase protein gene, pP represents a baculovirus phosphoprotein gene, and the parent vector corresponding to the three plasmids of pP, pL and pN is pCAGGS (purchased from ATCC).
3. LTX mixture 200. mu.l was mixed with DNA mixture 200. mu.l and incubated at room temperature for 15 min.
4. The culture medium in the 6-well plate is changed to Opti-MEM medium, the mixed solution in the step 3 is dropwise added into the 6-well plate for culturing cells, and the 6-well plate is gently shaken to be uniformly distributed in the 6-well plate.
5. After 6-8h of transfection, the transfection reagent was aspirated and 3ml of fresh complete medium was added.
6. Cell supernatants were harvested after 72h and filtered using a 0.22 μm filter.
Example 1: establishment of attenuated virus vector screening library
In this embodiment, the Mu phage transposition technique, which is a kit manufactured by Thermo, has been widely used for the study of various virus genome functions and virus-host interactions. The principle of establishing a random mutation library by using the Mu phage transposition kit is as follows: mu phage transposon-mediated (transposon-mediated mutagenisis) random insertion high density mutagenesis technology is a method for randomly inserting a short 15bp (5'-NNNNNTGCGGCCGCA-3', 5N stands for 5 repeated base sequences on target sequence DNA) nucleic acid sequence into DNA, thereby generating a high-capacity gene insertion mutant library. Combining the mutant with virus directional genetic manipulation technology to obtain a corresponding virus mutant library, and then combining PCR amplification, capillary electrophoresis, fluorescence labeling DNA sequencing technology, fragment length polymorphism Analysis (AFLP) and other technologies to accurately identify the Mutation number and the plasmid DNA involved in insertion site transformation as M1-M mut, namely, integrating the Mutation sequence library of the M gene into an M1-kan vector to form an M Mutation gene library (the implementation steps refer to the Thermo Scientific Mutation Generation System Kit standard instruction). The target M gene vector plasmid can be randomly inserted into fragments at the base position of the M gene under the combined action of the transposon and the transposase, finally the M gene generates magnitude-order random mutation, the mutant gene M is amplified by using 5'-TGCGGCCGCA-3' specific primers, a mutation library is established, and the M gene library is further cloned into a pRV-core framework plasmid by enzyme digestion.
The experimental method for establishing the virus library system comprises the following steps:
1. the reaction was carried out in a centrifuge tube. Where the transposase should be added last, the system for the in vitro transposition reaction is shown in table 1:
TABLE 1 in vitro transposition reaction System
Reagent Volume of
Target DNA (M Gene in core skeleton of rhabdovirus) 1-14μl
Reaction buffer for 5 Xtransposase 4μl
M1-Kan transposon (Entranceponson) 100ng 1μl
MuA transposase 1μl
H2O The total volume is 20 mu l
A positive control reaction was performed using pBlank 370ng (1. mu.l) as a positive control DNA provided in the Kit Thermo Scientific mutagenesis System Kit (available from Thermo Co., Ltd., cat # F701).
2. Mix gently.
3. Transposition was performed by incubation at 30 ℃ for 1 hour.
4. Transposase was inactivated by incubation at 75 ℃ for 10 minutes.
5. Preparing a competent bacterium, wherein said bacterium is derived from DH5 α.
The reaction mixture obtained in step 4 was diluted 10-fold in deionized water, with a maximum of 10ul per use. Alternatively, the DNA in the reaction mixture is precipitated and then suspended in deionized water for electroporation. For chemical transformations, 5-10. mu.L were used per transformation.
6. 10. mu.g/mL chloramphenicol or 10. mu.g/mL kanamycin was added to the agar plate, and antibiotics of the target DNA clone were additionally added.
7. Plasmids were extracted from colonies on the plates using standard alkaline lysis methods or any commercial DNA preparation kit.
8. Plasmid DNA was digested with restriction enzymes. The single cloning cleavage site (NotI) of the shuttle fragment (provided by the Thermo Scientific mutagenesis System Kit) was determined, and the plasmid was cleaved with two restriction enzymes, cutting out a portion of the vector backbone, to distinguish the fragments by agarose gel electrophoresis.
9. The presence of the shuttle vector was detected by standard agarose gel electrophoresis separation and the shuttle vector pTrans plasmid described above was recovered by gel recovery.
10. Cloning the extracted DNA fragment into a novel cloning vector M1-CAMR(kit provision).
11. Transformation was performed on bacterial agar plates to which was added 10. mu.g/mL chloramphenicol or 10. mu.g/mL kanamycin, and additionally an antibiotic to select cloning vectors
12. Colonies are picked from the plate, expanded and plasmid DNA is extracted using standard alkaline lysis methods or any commercial DNA preparation kit.
13. The plasmid was digested with Not I and the shuttle vector was removed. The resulting fragments can optionally be separated by standard agarose electrophoresis. Extracting the fragment with the target DNA size on the cloning vector.
14. Ligation was performed with Not I cleavage product. If the cleavage products are not separated by agarose electrophoresis, the concentration of the DNA mixture is adjusted to 1-5ng/ml in order to promote self-ligation of the cleavage products.
15. Transformation was performed with E.coli DH 5. alpha. competent cells.
16. Only the antibiotic for screening the cloning vector was added to the plate. The NotI enzyme was cleaved off the shuttle vector and no chloramphenicol or kanamycin was added.
17. Selecting colonies from the plate, culturing bacteria, extracting plasmid DNA, further obtaining an M mut gene fragment from an M1-M mut plasmid through enzyme digestion, and completing the establishment of an M mutation library according to the steps.
The attenuated strain virus rescue system comprises the following steps: further, after the establishment of the mutant pool, the M1-M mut gene mutant fragment was cloned into the backbone vector pRV-core. Wherein pRV-core is a core framework vector for packaging virus, the whole gene of the virus framework is synthesized, pRV-4Mut is shown in a manuscript by sequence reference, the virus gene corresponding to the core framework of the pRV-core is synthesized according to the gene of the MuddSummer strain type of VSV, and the GenBank is numbered as EU 849003.1. pRV-core plasmid and pRV-4Mut only have nonsynonymous mutation at 4 amino acid sites of M gene, pRV-core is an original skeleton vector), wild M gene in a target vector is removed by double enzyme digestion to form a core skeleton vector library of a new M gene mutation library, and the mutation plasmid library is named as pRV-core Mut. Further, various recombinant RV-Mut attenuated strains were obtained by virus rescue in BSR-T7 cell line with the aid of helper plasmids.
Wherein, the specific steps of the virus rescue are as follows: BSR-T7 cells (purchased from ATCC) were transfected with 5. mu.g of the backbone plasmid pRV-core Mut by cell transfection technique using a calcium phosphate transfection kit. The plasmid was diluted to 5. mu.g in 200. mu.l of opti-MEM medium, and 7.5. mu.l of the transfection Reagent PLUS Reagent from Life was added thereto, in a plasmid ratio of pRV-core: pP: pN: pL: 10:5:4: 1. Lipofectamine LTX 10. mu.l was diluted with 200. mu.l of the medium. Wherein pN represents a baculovirus nucleoprotein gene, pL represents a baculovirus polymerase protein gene, and pP represents a baculovirus phosphoprotein gene. Among these, the three plasmids, pP, pL and pN, correspond to the parent vector pCAGGS (purchased from ATCC). PBS washes the cell twice after 6 hours, further cultivates in DMEM of 10% fetal calf serum for 3 days, transfers the cell supernatant obtained to Vero cell and cultivates in 37 ℃ for 3 days, and the condition that the virus rescued is confirmed to green fluorescence in the fluorescence microscope observation cell, further passes the sudden change rhabdovirus bank rescued through Vero cell passage, picks out the monoclonal virus strain in the plaque screening system that establishes.
When this transposition system is reacted, the in vitro transposon is not affected by foreign DNA, accompanied by minute impurities, and the optimum amount of the target DNA per reaction depends on the size of the plasmid, and the amount of the target DNA (ng) can be calculated by the following formula as the reaction plasmid size (kb) × 40 ng.
The DNA may be inserted into the cloning vector together with the shuttle vector by DNA cloning techniques. Thus, the DNA is cleaved from the cloning vector with restriction enzymes and the shuttle vector does not have this cleavage site. In addition, since the size of the cloning vector and the inserted DNA are significantly different in size, the desired fragment can be separated by agarose gel electrophoresis.
Transformation efficiency is also a very important consideration for maximum insertional cloning (e.g., electroporation of cells for the pUC19 plasmid)>108CFU/. mu.g). Therefore, electroporation is the best transformation method we chose. Meanwhile, considering that the shuttle vector contains a 50bp inverted terminal repeat sequence, in order to avoid the potential homologous recombination between the repeat sequences, RecA produced by e.coli was used as a homologous recombinase.
After the pRV-core Mut plasmid is obtained, the specific steps of virus rescue are as follows: mixing 5X106The BSR-T7 cells were plated evenly on 10cm cell culture dishes and cultured overnight with 10% fetal bovine serum DMEM until the cell density reached 80%, and the cells were washed 2 times with serum-free DEME one hour before transfection. Cells were transfected with 5. mu.g of the backbone plasmid pRV-core Mut, 5. mu.g of pN (rhabdovirus nucleoprotein gene), 2.5. mu.g of pL (rhabdovirus polymerase protein gene), 2.5. mu.g of pP (rhabdovirus phosphoprotein gene), and pCAGGS (from ATCC) as the parent vector for the three plasmids pP, pL, pN. PBS washes the cell twice after 2-3 hours, cultivate 3 days in DMEM of 10% fetal calf serum, transfer the cell supernatant obtained to Vero cell and cultivate 3 days at 37 ℃, the condition that the virus rescued is confirmed to the green fluorescence in the fluorescence microscope observation cell, further passage through Vero cell of the sudden change rhabdovirus storehouse of rescuing, the monoclonal virus is picked out in the plaque screening system of establishment, further will choose to chooseThe selected monoclonal virus strains are continued to infect new Vero cells, from which monoclonal virus strains with reduced ability to lyse cells are selected.
The specific operation steps of cloning the backbone plasmid system are as follows: through gene synthesis technology, gene fragment 2MCS (SEQ ID NO:5) is cloned to a vector pRV-core Mut4, a corresponding core skeleton pRV-core (pRV-core Mut4 is a mutation which generates 4 sites on an M gene corresponding to a pRV-core plasmid, specifically, an amino acid G at the 21 st site of an M protein is mutated into an amino acid E, an amino acid M at the 51 st site of the M protein is mutated into an amino acid A, a leucine L at the 111 st site of the M protein is mutated into phenylalanine F, a valine V at the 221 st site of the M protein is mutated into phenylalanine F), and a cloned new skeleton is named as pRV-2 MCS. The upstream of the cloning site is XhoI, the downstream site is NotI (see FIG. 1B), and the 2MCS gene is located between the vector gene G and the gene L.
The experimental results are as follows: FIG. 1A shows a random mutation library of M gene of a rhabdovirus generated by random insertion of foreign bases according to the preparation method established for the above virus library, and further a screening library of a low virulent virus strain was established using a rhabdovirus vector system as shown in FIG. 1A (see steps 1 to 17 of case 1). Wherein the attenuated strain with reduced replication ability obtained by the method comprises: RV-M51R (single mutant), RV-M51R-V221F (double mutant), RV-G21E-M51R-L111F (triple mutant), RV-G21E-M51A-L111F (triple mutant) and four-gene mutant RV-Mut4 (RV-G21E-M51A-L111F-V221F). The pathogenic gene of RV-Mut4 is four amino acid mutant strains of the M gene of VSV (the corresponding virus core skeleton plasmid is pRV-core Mut4), namely the 21 st amino acid G of the M protein is mutated into the amino acid E, the 51 st amino acid M is mutated into the amino acid A, the 111 th leucine L is mutated into the phenylalanine F, and the 221 th valine amino acid V is mutated into the phenylalanine F.
FIG. 1B shows a schematic diagram of the core backbone vector pRV-core Mut4 based on the virus RV-Mut 4. Further, 2MCS genes shown in FIG. 1B (spacer sequences of 2 foreign genes are cloned at the same time, and the spacer sequences have enzyme cutting sites with individual characteristics) are recombined into the specific positions of the core skeleton plasmid of pRV-core Mut4 (namely virus G gene and L gene spacer sequences) by gene synthesis and molecular cloning technology, and the new skeleton plasmid system is named as pRV-2 MCS.
The specific steps of cloning pRV-2MCS core skeleton plasmid are as follows: 1. by gene synthesis technology, gene fragment 2MCS was cloned to plasmid pRV-core Mut4 (viral G gene and L gene spacer sequence) by restriction, and the new core backbone plasmid after recombination was pRV-2MCS (FIG. 1B).
Example 2: simultaneous expression of specific antibodies using an attenuated viral vector system pRV-2MCS
The experimental method comprises the following steps: based on the plasmid system pRV-2MCS prepared in example 1, the heavy chain and light chain antibody sequences of the PDL1 antibody are independently cloned into the framework plasmid pRV-2MCS to form new cloning vectors pRV-PDL1-H and pRV-PDL1-L, recombinant viruses are rescued, and the corresponding active PDL1 complete antibody is expressed and secreted in different PDL1 heavy chain/PDL 1 light chain ratios in the engineered cell Vero.
The specific operation steps of the method are as follows: complete antibody sequence of PDL 1A PDL1 antibody heavy chain gene PDL1-H (Hongxi bio-gene synthesis) was cloned into a backbone plasmid pRV-2MCS (NheI and NotI specific cleavage site cloning) according to the PDL1 antibody of Roche to form a new core backbone plasmid pRV-PDL1-H, and the synthesized PDL1 light chain antibody sequence was cloned into a plasmid pRV-2MCS by double cleavage (XhoI and AscI specific cleavage site) to form a new core backbone plasmid pRV-PDL1-L, forming two backbone plasmids, by the virus rescue system and the method thereof as described in example 1, recombinant viruses RV-PDL1-H (chimeric expression PDL1 heavy chain antibody) and RV-PDL1-L (chimeric expression PDL1 antibody light chain) were obtained, and further by immunoblot detection, the optimal virus infection ratio of PDL1 heavy chain/PDL 1 light chain was determined.
As a result of experiments shown in section A of FIG. 2, Western blot analysis revealed that PDL1 with a heavy chain/PDL 1 light chain ratio of 6:1 (i.e., RV-PDL1-H corresponds to a virus multiplicity of infection 6 times that of RV-PDL 1-L), the most amount of PDL1 intact antibody was secreted into the supernatant. Similarly, referring to the cloning steps of pRV-PDL1-H and pRV-PDL1-L, the heavy chain and light chain antibody genes of the PDL1 antibody are cloned into the pRV-2MCS plasmid as a framework plasmid, and a new cloning vector pRV-PDL1- (H + L) is formed, the specific cloning positions of the PDL1 heavy chain and light chain antibody are shown in FIG. 1B, the PDL1 heavy chain is cloned to a specific position through XhoI and AscI, and the PDL1 light chain is cloned to the framework vector through NheI and NotI. As shown in part B of FIG. 2, recombinant virus RV-PDL1- (H + L) corresponding to the cloning vector pRV-PDL1- (H + L) replicates and expresses foreign proteins (heavy chain and light chain of PDL1 antibody) in Vero cells, and further immunoblotting experiments detect that a large amount of PDL1 complete monoclonal antibody exists in the secreted supernatant, so that the pRV-2MCS plasmid system is proved to integrate the heavy chain and the light chain of the immune checkpoint antibody simultaneously, and the complete monoclonal antibody with activity can be efficiently expressed in the engineered cells Vero.
Example 3: stability of attenuated viral vector System pRV-2MCS
GFP and RFP gene sequences are cloned to an attenuated virus vector system pRV-2MCS simultaneously to form a new cloning vector pRV-2 MCS-GFP-RFP. After the recombinant virus is rescued and incubated in the engineered cell Vero for 12h, as shown in part C of FIG. 2, it can be observed in a fluorescence microscope that green and red fluorescence is seen simultaneously in most cells in a fixed visual field. The results of the above experiments directly demonstrate that pRV-2MCS-GFP-RFP expresses GFP and RFP fluorescent proteins simultaneously in cells.
Furthermore, after the recombinant pRV-2MCS-GFP-RFP is passaged five times, the corresponding foreign gene expression detection has no difference with the expression efficiency of the first generation infection, and the stability and the high efficiency of the pRV-2MCS rhabdovirus system are further proved.
Example 4: exogenous PDL1 single chain antibody sequence selection integrated into an attenuated viral vector system pRV-2MCS
The amino acid sequence of PDL1 in an exogenous PDL1 single-chain antibody AVTM recombinant vector (RV-scFV-PDL1) was optimized according to the PDL1 antibody known in the art.
The experimental results are as follows: as shown in part A of FIG. 3, the average GC content in the sequence of the single-chain antibody of the foreign gene PDL1 after optimization was designed to be 58%. As shown in part B of fig. 3, the codon diagram is modified by the codon bias plural number to the most reasonable range (CAI ═ 0.95), and part C of fig. 3 shows the optimal distribution pattern of various codons in mammalian cells and the relative distribution frequency of amino acid synonymous codons in the gene sequence.
Example 5: characteristics of RV-Mut4 rhabdovirus attenuated strain obtained by screening of attenuated strain screening system
According to the screening method in example 1 and the attenuated strain screening system shown in FIG. 1A, the attenuated strains of the rhabdovirus with different point mutations are screened, which comprise: RV-M51R (single mutant), RV-M51R-V221F (double mutant), RV-G21E-M51R-L111F (triple mutant), RV-G21E-M51A-L111F (triple mutant), RV-G21E-M51A-L111F-V221F (quadruple mutant, namely RV-Mut 4).
The specific method steps adopted in the embodiment are as follows:
MTT test method:
1. 100 mul of LLC suspension is added into each well of 96-well culture plate to make the cell amount reach 1X 104Cultured at 37 ℃ for 16h in 5% CO2 per well.
2. Separately dilute the virus to 104PFU、103PFU、102PFU、101PFU, 4 wells per dilution gradient, 100. mu.l per well, 37 ℃, 5% CO2Culturing for 40 h.
3. The supernatant from the 96-well plate was discarded, fresh medium was added, MTT solution was added, and 20. mu.L/well was added. 37 ℃ and 5% CO2And culturing for 4 h.
4. The 96-well plate was centrifuged at 2500 rpm/min and at room temperature for 5 min.
5. The supernatant was gently aspirated using a 1mL disposable sterile syringe.
6. DMSO was added to each well at 100. mu.l/well and left at 37 ℃ for 10 minutes.
7. The OD of each well was measured at a wavelength of 570nm or 490nm using a multifunctional microplate reader with shaking for 2 minutes.
Counting the total number of GFP positive cells detected by flow assay:
1. vero (LLC/Hela/MEF) cell suspension (100. mu.l/well) was added to each well of 48-well plate to make the cell amount 2X 104Cell/well, 37 deg.C,5%CO2Culturing for 16 h.
2. 100PFU of a particular mutant virus was added to each well, 21 wells for each virus, and 12 wells for the blank.
3. At each time point (24h, 36h, 48h, 60h, 72h, 84h, 96h), cells were harvested, 3 wells of cells were harvested for each virus, 1 well of cells were harvested for the blank control group, cells were resuspended in 400ul PBS, 100ul cell suspension was taken and analyzed by Life stretch N X T-Next flow cytometer for total GFP positive cells.
As shown in part A of FIG. 4 and part B of FIG. 4, 100. mu.l of MEF/Vero/MC38 cell suspension was first added to each well of a 48-well plate to make the cell amount 2X 104One well, each containing 100PFU of the particular mutant virus, 21 wells of each virus, and 12 wells of the blank. At each time point (24h, 36h, 48h, 60h, 72h, 84h, 96h), cells were harvested, 3 wells of cells were harvested for each virus, 1 well of cells were harvested for the blank control group, cells were resuspended in 400. mu.l PBS, 100ul of cell suspension was taken and analyzed by Life stretch assay NxT-Next flow cytometer to count the total number of GFP positive cells.
The experimental results are as follows: as shown in section A-C of FIG. 4, the mutants obtained by screening (i.e., RV-M51R (single mutant), RV-M51R-V221F (double mutant), RV-G21E-M51R-L111F (triple mutant), RV-G21E-M51A-L111F (triple mutant)) were found to have the ability to continuously express a foreign protein in cells, and when comparison of examined expression of the foreign gene was made, RV-Mut4 reached a peak three days later, and then the expression level gradually dropped back. Further, it was found by comparative experiments (see section C in FIG. 4) that the expression of the foreign gene in RV-Mut4 peaked at 48h compared with the control mutant, and the expression level was much higher than that in the control. The expression level of the exogenous protein (GFP) integrated by the RV-Mut4 attenuated strain is obviously increased, and meanwhile, the specific killing capacity of the virus on tumor cells is not weakened, and as shown in a part D in figure 4, the cracking killing capacity on the tumor cells is not obviously different from that of a control group.
In conclusion, RV-Mut4 is the most prominent among the above strains. The 4 amino acid mutations of the strain do not make the virus toxicity to be strong, and simultaneously, the specificity of killing tumors is continuously kept. At the same time, the property of specific killing of tumors remains intact, although the time point for lysis of tumor cells is found at the cellular level in vitro, delayed. Furthermore, RV-Mut4 has no toxicity to normal cells and completely meets the biological safety requirement.
Example 6: expression of RV-scFV-PDL1 vector in Vero cells
The experimental steps are as follows: using pRV-2MCS system as shown in FIG. 2, the scFV-PDL1 gene was cloned on the backbone plasmid pRV-2MCS by specific endonuclease XhoI and NheI double digestion system based on empty backbone plasmid pRV-2MCS using the method as shown in example 1, the foreign gene position of scFV-PDL1 was between the G protein and L protein of the virus core backbone, and the new backbone plasmid was named pRV-scFV-PDL1 (detailed procedure refers to the process of cloning the foreign gene into core backbone plasmid of example 1). And further rescuing the recombinant virus RV-scFV-PDL1 in BSR-T7 cells, collecting the supernatant expressed by the recombinant virus in Vero cells, incubating the supernatant with cell surface high expression CD274 (human source) cells MC-38-hPDL1 and LLC-hPDL1 for one hour at room temperature respectively (PDL1 single-chain antibody secreted and expressed in the supernatant can be combined with cell surface high expression CD274 receptor molecules), and detecting the specific number and proportion of PDL1 positive cells by a flow cytometer.
The experimental results are as follows: as shown in fig. 5, the positive proportion of PDL1 exceeds 50%, which indicates that RV-scFV-PDL1 can express a single-chain antibody against CD274 molecules with activity through a cell medium, and further proves that the single-chain antibody expressed by RV-scFV-PDL1 has the ability of binding human-derived and murine CD274, has human-mouse cross-reaction, and is beneficial to rapid validation of the efficacy of preclinical animal models.
Example 7: effect of Signal peptide on RV-scFV-PDL1
Design of specific heavy and light chain variable regions by AVTM chimeric foreign immunoglobulin heavy and light chain variable regions of established non-truncated negative strand RNA vector systemsThe junction sequence of the regions is 15 amino acids, i.e. internationally universal (G4S)3As a flexible polypeptide joint, 4 different signal peptides for secreting antibodies are simultaneously designed, and the influence of each signal peptide on the efficiency of single-chain antibody secretion in vitro is compared at the in vitro cell level (plasmid in 293T cell transient transfection expression system).
The specific experimental procedures of the foregoing experiment were as follows:
the method comprises the steps of 1, adding signal peptide sequences of Sig1, Sig2, Sig3 and Sig4 (the sequences are shown in Table 2) to the N end of a PDL1 single-chain antibody respectively, totaling four base sequences, cloning the four gene sequences to a pcDNA3.1 framework (purchased from ATCC company) by using a molecular cloning technology, and finally forming four eukaryotic expression vectors, namely: pcDNA3.1-sig1-scFV-PDL1, pcDNA3.1-sig2-scFV-PDL1, pcDNA3.1-sig3-scFV-PDL1, pcDNA3.1-sig4-scFV-PDL 1.
2. After the four vectors are transfected into 293T cells for 48 hours, respectively collecting secreted supernatant, namely the cells, utilizing a loading buffer solution to crack and prepare a sample, and utilizing an immunoblotting technology to detect the expression quantity of PDL1 single-chain antibody in the supernatant (the pcDNA3.1 vector is provided with a His tag, and the detection of target protein expression is carried out through the His tag antibody).
TABLE 2 amino acid sequence of Signal peptide of secretory antibody
Sig1 Signal peptide MLLTLIILLPVVSK
Sig2 Signal peptide MWLQSLLLLGTVACSIS
Sig3 Signal peptide MYRMQLLSCIALSLALVTNS
Sig4 Signal peptide METDTLLLWVLLLWVPGSTG
The experimental result is shown in fig. 6, in 293T cells, eukaryotic expression vectors connected with three different signal peptides are transfected, cells and supernatant culture solutions are respectively collected, a His tag is fused at the 3' end of scFV-PDL1 after codon optimization is synthesized, and the secretion expression levels of the three different signal peptides connected respectively in the cells are detected by western blotting experiments, so that compared with the other 2 signal peptides, the scFV-PDL1 antibody corresponding to the sig3 signal peptide has the highest secretion efficiency and presents an exponential growth situation.
The four antibody secretion signal peptides related in table 2 were integrated into a pRV-core Mut4 plasmid system by molecular cloning technology, the rescue process of recombinant viruses was completed according to the following virus rescue technology, the four recombinant viruses were infected with Vero E6 cell line, the MOI complex infection was 0.01, the cell supernatant was collected after 24h, and the expression of single-chain antibodies in the supernatant was examined.
The specific steps of the virus rescue technology are as follows: mixing 5X106The BSR-T7 cells were plated evenly on a 10cm dish and cultured overnight with 10% fetal bovine serum DMEM until the cell density reached 80%, and the cells were washed 2 times with serum-free DEME one hour before transfection. Cells were transfected with 5. mu.g of the backbone plasmid pRV-core Mut4 (or a recombinant core backbone plasmid), 5. mu.g of pN (a plasmid expressing a baculovirus nucleoprotein), 2.5. mu.g of pL (a plasmid expressing a baculovirus polymerase protein), and 2.5. mu.g of pP (a plasmid expressing a baculovirus phosphoprotein) using the calcium phosphate transfection kit. After 2-3 hours, the cells were washed twice with PBS, cultured in DMEM with 10% fetal bovine serum for 3 days, and the obtained cell supernatant was transferred to Vero cells and cultured at 37 ℃ for 3 days. The expression of the virus rescued by BSR-T7p cells was examined by immunofluorescence assay using FITC-labeled antibodies specific for the G protein of the rhabdovirus.
The results of virus rescue are shown in figure 7A. FIG. 7A shows that the expression levels of sig3 and sig4 in the supernatant were high, but were barely detectable in sig1 and sig 2.
Furthermore, RV-scFV-PDL1(sig3) attenuated strains using sig3 as a signal peptide are respectively inoculated for 2 days in a mode of subcutaneous injection close to a tumor part and intratumoral injection, model mouse serum and local tumor tissues are respectively collected, tissue samples are ground, and the antibody expression conditions of different parts of the tumor-bearing model mouse and the existence conditions of virus-related proteins are respectively detected by an immunoblotting method.
As shown in fig. 7B, compared with the unvaccinated virus group (marker C), after the RV-scFV-PDL1(sig3) attenuated strain was administered by subcutaneous injection near the tumor site, the mouse tumor tissue (marker 2) detected the presence of the envelope protein of the virus, and the foreign gene single-chain antibody also detected expression, while the mouse serum did not detect the expression of the virus-related gene (marker 1), and further the mouse was administered intratumorally with local administration, and the presence of the significant virus-related protein was detected in both serum (marker 3) and tumor tissue (marker 4), especially in the case of intratumoral administration, the foreign expression level in the tumor tissue was significantly increased, and the experimental results directly demonstrate that RV-scFV 1(sig3) has the ability to express the foreign single-chain antibody in the tumor tissue with high efficiency.
Example 8: RV-scFV-PDL1 immunotherapy pharmacodynamic performance test evaluation under metastatic non-small cell lung cancer model Price of
First, a model of metastatic non-small cell lung cancer was developed, as shown in section A of FIG. 8, by subcutaneously inoculating 1.0 x10 ^6(200uL) LLC-JSP cells (purchased from ATCC in USA) per C57 BL/6. Tumor size was measured every 1 day and calculated as follows: m12*M2/2 (M1: short diameter, M2: long diameter). When the tumor volume growth of each group of model mice is close to 200mm3Thereafter, 10 was administered at day12, day14 and day16, respectively6PFU (20ul) was treated by intratumoral injection of virus and changes in tumor volume were recorded by continuous observation.
The experimental results are as follows: as shown in part A of FIG. 8, there were three treatment groups, i.e., AVTM system mediated expression single-chain antibody group (RV-scFV-PDL1 attenuated strain), RV-WT experimental control group and PBS blank control group, in LLCThe overall statistical graph of the treatment effect on the solid tumor in the mediated non-small cell lung cancer model mouse animal model is used for independently counting the individuals of each group in order to further not determine the difference among the individuals of different treatment groups; panel B in figure 8 is an individual statistical plot for the PBS treated group; section C in FIG. 8 is a statistical representation of individuals in the RV-GFP-WT treated group; section D of FIG. 8 represents the individual statistics of RV-scFV-PDL1 treated groups, and intratumoral (model mouse non-small cell lung cancer tissue) vaccination of model mice was performed 10 times every other day7The attenuation of PFU was 30. mu.l, co-immunized three times, and the change in tumor volume of model mice in each experimental group was examined every other day, and the evaluation of the efficacy performance test of RV-scFV-PDL1 immunotherapy is shown in section D in FIG. 8. The growth trend of tumors can be effectively inhibited by continuous 3 times of intratumoral injection treatment, the life cycle of model mice is greatly delayed, and by independently analyzing the treatment effect of each model mouse receiving the RV-scFV-PDL1 system, about 40% of the model mouse tumors are reduced until disappear (namely completely relieved), the growth rate of nearly 30% of the model mouse tumors is effectively inhibited and partially relieved, the total effective rate is close to 70%, and compared with a control treatment group RV-GFP-WT, the treatment effect is remarkably improved, and the excellence is obvious.
Section a in fig. 9-section C in fig. 9 further shows the change of tumor volume of each individual after 20 days of treatment in the model mice of different treatment groups, and further analyzes the change of tumor volume of the treated mice of different groups at the 10 th day (section D in fig. 9) and the 20 th day (section E in fig. 9), and at the 10 th day of treatment, it can be found that the experimental control group of RV-GFP has a certain inhibitory effect on non-small cell lung cancer at the early treatment stage, and when the time shifts to 20 days, the tumor volume is continuously reduced to only 2 (n ═ 19), while the therapeutic group of RV-scFV-1 shows a continuously reduced status from the 10 th day of treatment to the 20 th day of treatment, the effective control rate is close to 80%, demonstrating that PDL of the group administered in RV-scFV-1 tumor, three times of administration activates immune cells localized to the tumor, inducing and generating a continuous anti-tumor immune response, gathering specific immune cells at the local part of the tumor, finally eliminating the tumor cells, and shrinking the tumor tissue until the tumor tissue disappears. Further analysis of experimental results shows that when RV-scFV-PDL1 drug is administrated intratumorally for three times, all model mice have no drug resistance, and model mice which generate treatment effect in the initial stage have no later-stage recurrence.
Further, by taking out the lung tissues of the model mice of the experimental group and the control group, observing and recording the transfer of the cancer cell metastasis (LLC-JSP) subcutaneously in the lung tissues of the model mice by the fluorescence microscope, the number of the lung metastases of the model mice of the RV-scFV-PDL1 immunotherapy group was the minimum as seen from the section A in FIG. 10. The survival rate of the experimental group was further found to be highest by the record of the effective survival time after the tumor-bearing model mice received the treatment, and approximately 65% of the model mice maintained normal life status within approximately 2 months (as shown in part B of fig. 10).
Example 9: RV-scFV-PDL1 immunotherapy pharmacodynamic performance test evaluation under colon cancer model
Firstly, a tumor cell line (MC38-hPDL1) expressing human PDL1 is established, the cell line is inoculated to C57BL/6, a humanized model mouse colon cancer model is established, and the curative effect of a chimeric expression human mouse universal single-chain antibody RV-scFV-PDL1 is further verified.
The colon cancer model is established based on chimeric expression of human PDL1 after knockout of murine PDL1 molecule of colon cancer cell line (MC-38). The steps and methods for establishing the model are as follows:
step one, knocking out mouse-derived PDL1(mPDL1) by a CRISPR-Cas9 method: according to the CRISPR-Cas9 technology, firstly, a short-chain guide RNA (sgRNA) is designed, and the sequence is designed as follows: 5'-GCTTGCGTTAGTGGTGTACT-3' are provided. The synthesized DNA double strand was inserted into the sgRNA expression vector (FG-BB-U6-sgRNA) via BbsI. MC-38 cells were then co-transfected with Cas9 expression plasmid (FG-hEF/HTLV-Cas9-PGK-Puro-WPRE) and screened for 48 hours at 60 hours with puromycin (Puro) (see Scientific Reports, Vol.7, Article No. (Article number):42687, Anfei Huang et al, 2/16 d.2017).
Subsequently, amplification culture was performed to obtain a library of knockout cells, DNA was extracted and PCR was performed by the following primers: a forward primer: 5'-TGGTTCCTTTTAAACAAGACTGGG-3', reverse primer: 5'-CGCACCACCGTAGCTGATTA-3', PCR products were recovered and TA cloned, followed by sample sequencing.
Step two, overexpression of human PDL1 in MC-38 cells of mPDL1KO by a lentivirus system: the gene of human PDL1 was first cloned and inserted into FG-hEF/HTLV-human CD274-PGK-Puro-WPRE adenovirus expression vector, followed by transfection of HEK293T cells for viral packaging. The resulting virus infected MC-38mPDL1KO cells for 48h and was screened by puromycin for 48 h.
The knockout efficiency of mPDL1 is detected by a sequencing method, interferon-gamma (IFN-gamma) can remarkably stimulate PDL1 expression, the expression conditions of PDL1 of cells before and after stimulation of normal cells and knockout cells IFN-gamma are respectively detected by flow, and the results further indicate that mPDL1 in MC-38 cells is successfully knocked out.
Similarly, the molecular expression level of hPDL1 overexpressed by lentivirus in MC-38 cells of mPDL1KO is detected by a flow analysis method, and the flow result shows that hPDL1 can be normally expressed in the cell line.
In conclusion, the humanized PDL1 tumor cell line MC-38-hPDL1 was established by validation of the steps. Further, effective life cycle records of tumor-bearing model mice after receiving treatment show that the survival rate of the model mice of the RV-scFV-PDL1 drug treatment group is highest, nearly 70% of the model mice maintain normal life state within nearly 2 months (as shown in figure 11), in the curative effect evaluation of the model mice model of colon cancer, as shown in figure 11, after intratumoral inoculation once every other day and three times of treatment, the treated group obviously inhibits the growth of tumors compared with a control group (PBS), prolongs the life cycle of the model mice, analyzes that nearly 70% of individual tumor volume is continuously reduced or the tumors maintain a certain volume from a single individual of the treated group, compared with the control group, the RV-scFV-PDL1 treatment group obviously controls the growth of the tumor volume, has obvious effect and excellent treatment effect, and simultaneously has feasibility for clinically curing the cancers by using a TM AVV vector system to mediate immune checkpoint antibodies, the AVTM vector system has reliable targeting property on the treatment effect of potential malignant tumors, has good drug resistance, can be repeatedly administered for many times, and has remarkable treatment effect.
The above examples of the present disclosure are merely examples provided for clearly illustrating the present disclosure and are not intended to limit the embodiments of the present disclosure. Other variations and modifications will be apparent to persons skilled in the art in light of the above description. And are neither required nor exhaustive of all embodiments. Any modification, equivalent replacement, and improvement made within the spirit and principle of the present disclosure should be included in the protection scope of the claims of the present disclosure.
Sequence listing
<110> Ottoming medicine science and technology Co., Ltd, Suzhou
<120> preparation method and application of attenuated rhabdovirus
<130> 6514-180407I
<160> 16
<170> SIPOSequenceListing 1.0
<210> 1
<211> 690
<212> DNA
<213> Vesicular stomatitis virus (Vesicular stomatis virus)
<400> 1
atgagttcct taaagaagat tctcggtctg aaggggaaag gtaagaaatc taagaaatta 60
gggatcgcac caccccctta tgaagaggac actagcatgg agtatgctcc gagcgctcca 120
attgacaaat cctattttgg agttgacgag atggacacct atgatccgaa tcaattaaga 180
tatgagaaat tcttctttac agtgaaaatg acggttagat ctaatcgtcc gttcagaaca 240
tactcagatg tggcagccgc tgtatcccat tgggatcaca tgtacatcgg aatggcaggg 300
aaacgtccct tctacaaaat cttggctttt ttgggttctt ctaatctaaa ggccactcca 360
gcggtattgg cagatcaagg tcaaccagag tatcacgctc actgcgaagg cagggcttat 420
ttgccacata ggatggggaa gacccctccc atgctcaatg taccagagca cttcagaaga 480
ccattcaata taggtcttta caagggaacg attgagctca caatgaccat ctacgatgat 540
gagtcactgg aagcagctcc tatgatctgg gatcatttca attcttccaa attttctgat 600
ttcagagaga aggccttaat gtttggcctg attgtcgaga aaaaggcatc tggagcgtgg 660
gtcctggact ctatcggcca cttcaaatga 690
<210> 2
<211> 1139
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
gatctgcggc cgcgcacgaa aaacgcgaaa gcgtttcacg ataaatgcga aaacggatcg 60
atcctagtaa gccacgttgt gtctcaaaat ctctgatgtt acattgcaca agataaaaat 120
atatcatcat gaacaataaa actgtctgct tacataaaca gtaatacaag gggtgttatg 180
agccatattc aacgggaaac gtcttgctcg aggccgcgat taaattccaa catggatgct 240
gatttatatg ggtataaatg ggctcgcgat aatgtcgggc aatcaggtgc gacaatctat 300
cgattgtatg ggaagcccga tgcgccagag ttgtttctga aacatggcaa aggtagcgtt 360
gccaatgatg ttacagatga gatggtcaga ctaaactggc tgacggaatt tatgcctctt 420
ccgaccatca agcattttat ccgtactcct gatgatgcat ggttactcac cactgcgatc 480
cccgggaaaa cagcattcca ggtattagaa gaatatcctg attcaggtga aaatattgtt 540
gatgcgctgg cagtgttcct gcgccggttg cattcgattc ctgtttgtaa ttgtcctttt 600
aacagcgatc gcgtatttcg tctcgctcag gcgcaatcac gaatgaataa cggtttggtt 660
gatgcgagtg attttgatga cgagcgtaat ggctggcctg ttgaacaagt ctggaaagaa 720
atgcataagc ttttgccatt ctcaccggat tcagtcgtca ctcatggtga tttctcactt 780
gataacctta tttttgacga ggggaaatta ataggttgta ttgatgttgg acgagtcgga 840
atcgcagacc gataccagga tcttgccatc ctatggaact gcctcggtga gttttctcct 900
tcattacaga aacggctttt tcaaaaatat ggtattgata atcctgatat gaataaattg 960
cagtttcatt tgatgctcga tgagtttttc taatcagaat tggttaattg gttgtaacac 1020
tggcagagca ttacgctgac ttgacgggac ggcggctttg ttgaataaat cgaactggat 1080
catccgtttt cgcatttatc gtgaaacgct ttcgcgtttt tcgtgcgcgg ccgcagatc 1139
<210> 3
<211> 690
<212> DNA
<213> Vesicular stomatitis virus (Vesicular stomatis virus)
<400> 3
atgagttcct taaagaagat tctcggtctg aaggggaaag gtaagaaatc taagaaatta 60
gagatcgcac caccccctta tgaagaggac actagcatgg agtatgctcc gagcgctcca 120
attgacaaat cctattttgg agttgacgag gcggacacct atgatccgaa tcaattaaga 180
tatgagaaat tcttctttac agtgaaaatg acggttagat ctaatcgtcc gttcagaaca 240
tactcagatg tggcagccgc tgtatcccat tgggatcaca tgtacatcgg aatggcaggg 300
aaacgtccct tctacaaaat cttggctttc gcaggttctt ctaatctaaa ggccactcca 360
gcggtattgg cagatcaagg tcaaccagag tatcacgctc actgcgaagg cagggcttat 420
ttgccacata ggatggggaa gacccctccc atgctcaatg taccagagca cttcagaaga 480
ccattcaata taggtcttta caagggaacg attgagctca caatgaccat ctacgatgat 540
gagtcactgg aagcagctcc tatgatctgg gatcatttca attcttccaa attttctgat 600
ttcagagaga aggccttaat gtttggcctg attgtcgaga aaaaggcatc tggagcgtgg 660
ttcctggact ctatcggcca cttcaaatga 690
<210> 4
<211> 13513
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
ttgcaagcag cagattacgc gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc 60
tacggggtct gacgctcagt ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt 120
atcaaaaagg atcttcacct agatcctttt aaattaaaaa tgaagtttta aatcaatcta 180
aagtatatat gagtaaactt ggtctgacag ttaccaatgc ttaatcagtg aggcacctat 240
ctcagcgatc tgtctatttc gttcatccat agttgcctga ctccccgtcg tgtagataac 300
tacgatacgg gagggcttac catctggccc cagtgctgca atgataccgc gagacccacg 360
ctcaccggct ccagatttat cagcaataaa ccagccagcc ggaagggccg agcgcagaag 420
tggtcctgca actttatccg cctccatcca gtctattaat tgttgccggg aagctagagt 480
aagtagttcg ccagttaata gtttgcgcaa cgttgttgcc attgctacag gcatcgtggt 540
gtcacgctcg tcgtttggta tggcttcatt cagctccggt tcccaacgat caaggcgagt 600
tacatgatcc cccatgttgt gcaaaaaagc ggttagctcc ttcggtcctc cgatcgttgt 660
cagaagtaag ttggccgcag tgttatcact catggttatg gcagcactgc atacttctct 720
tactgtcatg ccatccgtaa gatgcttttc tgtgactggt gagtactcaa ccaagtcatt 780
ctgagaatag tgtatgcggc gaccgagttg ctcttgcccg gcgtcaatac gggataatac 840
cgcgccacat agcagaactt taaaagtgct catcattgga aaacgttctt cggggcgaaa 900
actctcaagg atcttaccgc tgttgagatc cagttcgatg taacccactc gtgcacccaa 960
ctgatcttca gcatctttta ctttcaccag cgtttctggg tgagcaaaaa caggaaggca 1020
aaatgccgca aaaaagggaa taagggcgac acggaaatgt tgaatactca tactcttcct 1080
ttttcaatat tattgaagca tttatcaggg ttattgtctc atgagcggat acatatttga 1140
atgtatttag aaaaataaac aaataggggt tccgcgcaca tttccccgaa aagtgccacc 1200
taaattgtaa gcgttaatat tttgttaaaa ttcgcgttaa atttttgtta aatcagctca 1260
ttttttaacc aataggccga aatcggcaaa atcccttata aatcaaaaga atagaccgag 1320
atagggttga gtgttgttcc agtttggaac aagagtccac tattaaagaa cgtggactcc 1380
aacgtcaaag ggcgaaaaac cgtctatcag ggcgatggcc cactacgtga accatcaccc 1440
taatcaagtt ttttggggtc gaggtgccgt aaagcactaa atcggaaccc taaagggagc 1500
ccccgattta gagcttgacg gggaaagccg gcgaacgtgg cgagaaagga agggaagaaa 1560
gcgaaaggag cgggcgctag ggcgctggca agtgtagcgg tcacgctgcg cgtaaccacc 1620
acacccgccg cgcttaatgc gccgctacag ggcgcgtccc attcgccatt caggctgcgc 1680
aactgttggg aagggcgatc ggtgcgggcc tcttcgctat tacgccagct ggcgaaaggg 1740
ggatgtgctg caaggcgatt aagttgggta acgccagggt tttcccagtc acgacgttgt 1800
aaaacgacgg ccagtgaatt gtaatacgac tcactatagg acgaagacaa acaaaccatt 1860
attatcatta aaaggctcag gagaaacttt aacagtaatc aaaatgtctg ttacagtcaa 1920
gagaatcatt gacaacacag tcgtagttcc aaaacttcct gcaaatgagg atccagtgga 1980
atacccggca gattacttca gaaaatcaaa ggagattcct ctttacatca atactacaaa 2040
aagtttgtca gatctaagag gatatgtcta ccaaggcctc aaatccggaa atgtatcaat 2100
catacatgtc aacagctact tgtatggagc attaaaggac atccggggta agttggataa 2160
agattggtca agtttcggaa taaacatcgg gaaagcaggg gatacaatcg gaatatttga 2220
ccttgtatcc ttgaaagccc tggacggcgt acttccagat ggagtatcgg atgcttccag 2280
aaccagcgca gatgacaaat ggttgccttt gtatctactt ggcttataca gagtgggcag 2340
aacacaaatg cctgaataca gaaaaaagct catggatggg ctgacaaatc aatgcaaaat 2400
gatcaatgaa cagtttgaac ctcttgtgcc agaaggtcgt gacatttttg atgtgtgggg 2460
aaatgacagt aattacacaa aaattgtcgc tgcagtggac atgttcttcc acatgttcaa 2520
aaaacatgaa tgtgcctcgt tcagatacgg aactattgtt tccagattca aagattgtgc 2580
tgcattggca acatttggac acctctgcaa aataaccgga atgtctacag aagatgtaac 2640
gacctggatc ttgaaccgag aagttgcaga tgaaatggtc caaatgatgc ttccaggcca 2700
agaaattgac aaggccgatt catacatgcc ttatttgatc gactttggat tgtcttctaa 2760
gtctccatat tcttccgtca aaaaccctgc cttccacttc tgggggcaat tgacagctct 2820
tctgctcaga tccaccagag caaggaatgc ccgacagcct gatgacattg agtatacatc 2880
tcttactaca gcaggtttgt tgtacgctta tgcagtagga tcctctgccg acttggcaca 2940
acagttttgt gttggagata acaaatacac tccagatgat agtaccggag gattgacgac 3000
taatgcaccg ccacaaggca gagatgtggt cgaatggctc ggatggtttg aagatcaaaa 3060
cagaaaaccg actcctgata tgatgcagta tgcgaaaaga gcagtcatgt cactgcaagg 3120
cctaagagag aagacaattg gcaagtatgc taagtcagaa tttgacaaat gaccctataa 3180
ttctcagatc acctattata tattatgcta catatgaaaa aaactaacag atatcatgga 3240
taatctcaca aaagttcgtg agtatctcaa gtcctattct cgtctggatc aggcggtagg 3300
agagatagat gagatcgaag cacaacgagc tgaaaagtcc aattatgagt tgttccaaga 3360
ggatggagtg gaagagcata ctaagccctc ttattttcag gcagcagatg attctgacac 3420
agaatctgaa ccagaaattg aagacaatca aggcttgtat gcaccagatc cagaagctga 3480
gcaagttgaa ggctttatac aggggccttt agatgactat gcagatgagg aagtggatgt 3540
tgtatttact tcggactgga aacagcctga gcttgaatct gacgagcatg gaaagacctt 3600
acggttgaca tcgccagagg gtttaagtgg agagcagaaa tcccagtggc tttcgacgat 3660
taaagcagtc gtgcaaagtg ccaaatactg gaatctggca gagtgcacat ttgaagcatc 3720
gggagaaggg gtcattatga aggagcgcca gataactccg gatgtatata aggtcactcc 3780
agtgatgaac acacatccgt cccaatcaga agcagtatca gatgtttggt ctctctcaaa 3840
gacatccatg actttccaac ccaagaaagc aagtcttcag cctctcacca tatccttgga 3900
tgaattgttc tcatctagag gagagttcat ctctgtcgga ggtgacggac gaatgtctca 3960
taaagaggcc atcctgctcg gcctgagata caaaaagttg tacaatcagg cgagagtcaa 4020
atattctctg tagactatga aaaaaagtaa cagatatcac gatctaagtg ttatcccaat 4080
ccattcatca tgagttcctt aaagaagatt ctcggtctga aggggaaagg taagaaatct 4140
aagaaattag agatcgcacc acccccttat gaagaggaca ctagcatgga gtatgctccg 4200
agcgctccaa ttgacaaatc ctattttgga gttgacgagg cggacaccta tgatccgaat 4260
caattaagat atgagaaatt cttctttaca gtgaaaatga cggttagatc taatcgtccg 4320
ttcagaacat actcagatgt ggcagccgct gtatcccatt gggatcacat gtacatcgga 4380
atggcaggga aacgtccctt ctacaaaatc ttggcttttg caggttcttc taatctaaag 4440
gccactccag cggtattggc agatcaaggt caaccagagt atcacgctca ctgcgaaggc 4500
agggcttatt tgccacatag gatggggaag acccctccca tgctcaatgt accagagcac 4560
ttcagaagac cattcaatat aggtctttac aagggaacga ttgagctcac aatgaccatc 4620
tacgatgatg agtcactgga agcagctcct atgatctggg atcatttcaa ttcttccaaa 4680
ttttctgatt tcagagagaa ggccttaatg tttggcctga ttgtcgagaa aaaggcatct 4740
ggagcgtggt tcctggactc tatcggccac ttcaaatgag ctagtctaac ttctagcttc 4800
tgaacaatcc ccggtttact cagtctcccc taattccagc ctctcgaaca actaatatcc 4860
tgtcttttct atccctatga aaaaaactaa cagagatcga tctgtttacg cgtcactatg 4920
aagtgccttt tgtacttagc ctttttattc attggggtga attgcaagtt caccatagtt 4980
tttccacaca accaaaaagg aaactggaaa aatgttcctt ctaattacca ttattgcccg 5040
tcaagctcag atttaaattg gcataatgac ttaataggca cagccttaca agtcaaaatg 5100
cccaagagtc acaaggctat tcaagcagac ggttggatgt gtcatgcttc caaatgggtc 5160
actacttgtg atttccgctg gtatggaccg aagtatataa cacattccat ccgatccttc 5220
actccatctg tagaacaatg caaggaaagc attgaacaaa cgaaacaagg aacttggctg 5280
aatccaggct tccctcctca aagttgtgga tatgcaactg tgacggatgc cgaagcagtg 5340
attgtccagg tgactcctca ccatgtgctg gttgatgaat acacaggaga atgggttgat 5400
tcacagttca tcaacggaaa atgcagcaat tacatatgcc ccactgtcca taactctaca 5460
acctggcatt ctgactataa ggtcaaaggg ctatgtgatt ctaacctcat ttccatggac 5520
atcaccttct tctcagagga cggagagcta tcatccctgg gaaaggaggg cacagggttc 5580
agaagtaact actttgctta tgaaactgga ggcaaggcct gcaaaatgca atactgcaag 5640
cattggggag tcagactccc atcaggtgtc tggttcgaga tggctgataa ggatctcttt 5700
gctgcagcca gattccctga atgcccagaa gggtcaagta tctctgctcc atctcagacc 5760
tcagtggatg taagtctaat tcaggacgtt gagaggatct tggattattc cctctgccaa 5820
gaaacctgga gcaaaatcag agcgggtctt ccaatctctc cagtggatct cagctatctt 5880
gctcctaaaa acccaggaac cggtcctgct ttcaccataa tcaatggtac cctaaaatac 5940
tttgagacca gatacatcag agtcgatatt gctgctccaa tcctctcaag aatggtcgga 6000
atgatcagtg gaactaccac agaaagggaa ctgtgggatg actgggcacc atatgaagac 6060
gtggaaattg gacccaatgg agttctgagg accagttcag gatataagtt tcctttatac 6120
atgattggac atggtatgtt ggactccgat cttcatctta gctcaaaggc tcaggtgttc 6180
gaacatcctc acattcaaga cgctgcttcg caacttcctg atgatgagag tttatttttt 6240
ggtgatactg ggctatccaa aaatccaatc gagcttgtag aaggttggtt cagtagttgg 6300
aaaagctcta ttgcctcttt tttctttatc atagggttaa tcattggact attcttggtt 6360
ctccgagttg gtatccatct ttgcattaaa ttaaagcaca ccaagaaaag acagatttat 6420
acagacatag agatgaaccg acttggaaag taactcaaat cctgctaggt atgaaaaaaa 6480
ctaacagata tcacgctcga gatggtgagc aagggcgagg agctgttcac cggggtggtg 6540
cccatcctgg tcgagctgga cggcgacgta aacggccaca agttcagcgt gtccggcgag 6600
ggcgagggcg atgccaccta cggcaagctg accctgaagt tcatctgcac caccggcaag 6660
ctgcccgtgc cctggcccac cctcgtgacc accctgacct acggcgtgca gtgcttcagc 6720
cgctaccccg accacatgaa gcagcacgac ttcttcaagt ccgccatgcc cgaaggctac 6780
gtccaggagc gcaccatctt cttcaaggac gacggcaact acaagacccg cgccgaggtg 6840
aagttcgagg gcgacaccct ggtgaaccgc atcgagctga agggcatcga cttcaaggag 6900
gacggcaaca tcctggggca caagctggag tacaactaca acagccacaa cgtctatatc 6960
atggccgaca agcagaagaa cggcatcaag gtgaacttca agatccgcca caacatcgag 7020
gacggcagcg tgcagctcgc cgaccactac cagcagaaca cccccatcgg cgacggcccc 7080
gtgctgctgc ccgacaacca ctacctgagc acccagtccg ccctgagcaa agaccccaac 7140
gagaagcgcg atcacatggt cctgctggag ttcgtgaccg ccgccgggat cactctcggc 7200
atggacgagc tgtacaagta agctagccag attcttcatg tttggaccaa atcaacttgt 7260
gataccatgc tcaaagaggc ctcaattata tttgagtttt taatttttat gaaaaaaact 7320
aacagcaatc atggaagtcc acgattttga gaccgacgag ttcaatgatt tcaatgaaga 7380
tgactatgcc acaagagaat tcctgaatcc cgatgagcgc atgacgtact tgaatcatgc 7440
tgattacaac ctgaattctc ctctaattag tgatgatatt gacaatttaa tcaggaaatt 7500
caattctctt ccaattccct cgatgtggga tagtaagaac tgggatggag ttcttgagat 7560
gttaacgtca tgtcaagcca atcccatccc aacatctcag atgcataaat ggatgggaag 7620
ttggttaatg tctgataatc atgatgccag tcaagggtat agttttttac atgaagtgga 7680
caaagaggca gaaataacat ttgacgtggt ggagaccttc atccgcggct ggggcaacaa 7740
accaattgaa tacatcaaaa aggaaagatg gactgactca ttcaaaattc tcgcttattt 7800
gtgtcaaaag tttttggact tacacaagtt gacattaatc ttaaatgctg tctctgaggt 7860
ggaattgctc aacttggcga ggactttcaa aggcaaagtc agaagaagtt ctcatggaac 7920
gaacatatgc aggattaggg ttcccagctt gggtcctact tttatttcag aaggatgggc 7980
ttacttcaag aaacttgata ttctaatgga ccgaaacttt ctgttaatgg tcaaagatgt 8040
gattataggg aggatgcaaa cggtgctatc catggtatgt agaatagaca acctgttctc 8100
agagcaagac atcttctccc ttctaaatat ctacagaatt ggagataaaa ttgtggagag 8160
gcagggaaat ttttcttatg acttgattaa aatggtggaa ccgatatgca acttgaagct 8220
gatgaaatta gcaagagaat caaggccttt agtcccacaa ttccctcatt ttgaaaatca 8280
tatcaagact tctgttgatg aaggggcaaa aattgaccga ggtataagat tcctccatga 8340
tcagataatg agtgtgaaaa cagtggatct cacactggtg atttatggat cgttcagaca 8400
ttggggtcat ccttttatag attattacac tggactagaa aaattacatt cccaagtaac 8460
catgaagaaa gatattgatg tgtcatatgc aaaagcactt gcaagtgatt tagctcggat 8520
tgttctattt caacagttca atgatcataa aaagtggttc gtgaatggag acttgctccc 8580
tcatgatcat ccctttaaaa gtcatgttaa agaaaataca tggcccacag ctgctcaagt 8640
tcaagatttt ggagataaat ggcatgaact tccgctgatt aaatgttttg aaatacccga 8700
cttactagac ccatcgataa tatactctga caaaagtcat tcaatgaata ggtcagaggt 8760
gttgaaacat gtccgaatga atccgaacac tcctatccct agtaaaaagg tgttgcagac 8820
tatgttggac acaaaggcta ccaattggaa agaatttctt aaagagattg atgagaaggg 8880
cttagatgat gatgatctaa ttattggtct taaaggaaag gagagggaac tgaagttggc 8940
aggtagattt ttctccctaa tgtcttggaa attgcgagaa tactttgtaa ttaccgaata 9000
tttgataaag actcatttcg tccctatgtt taaaggcctg acaatggcgg acgatctaac 9060
tgcagtcatt aaaaagatgt tagattcctc atccggccaa ggattgaagt catatgaggc 9120
aatttgcata gccaatcaca ttgattacga aaaatggaat aaccaccaaa ggaagttatc 9180
aaacggccca gtgttccgag ttatgggcca gttcttaggt tatccatcct taatcgagag 9240
aactcatgaa ttttttgaga aaagtcttat atactacaat ggaagaccag acttgatgcg 9300
tgttcacaac aacacactga tcaattcaac ctcccaacga gtttgttggc aaggacaaga 9360
gggtggactg gaaggtctac ggcaaaaagg atggagtatc ctcaatctac tggttattca 9420
aagagaggct aaaatcagaa acactgctgt caaagtcttg gcacaaggtg ataatcaagt 9480
tatttgcaca cagtataaaa cgaagaaatc gagaaacgtt gtagaattac agggtgctct 9540
caatcaaatg gtttctaata atgagaaaat tatgactgca atcaaaatag ggacagggaa 9600
gttaggactt ttgataaatg acgatgagac tatgcaatct gcagattact tgaattatgg 9660
aaaaataccg attttccgtg gagtgattag agggttagag accaagagat ggtcacgagt 9720
gacttgtgtc accaatgacc aaatacccac ttgtgctaat ataatgagct cagtttccac 9780
aaatgctctc accgtagctc attttgctga gaacccaatc aatgccatga tacagtacaa 9840
ttattttggg acatttgcta gactcttgtt gatgatgcat gatcctgctc ttcgtcaatc 9900
attgtatgaa gttcaagata agataccggg cttgcacagt tctactttca aatacgccat 9960
gttgtatttg gacccttcca ttggaggagt gtcgggcatg tctttgtcca ggtttttgat 10020
tagagccttc ccagatcccg taacagaaag tctctcattc tggagattca tccatgtaca 10080
tgctcgaagt gagcatctga aggagatgag tgcagtattt ggaaaccccg agatagccaa 10140
gtttcgaata actcacatag acaagctagt agaagatcca acctctctga acatcgctat 10200
gggaatgagt ccagcgaact tgttaaagac tgaggttaaa aaatgcttaa tcgaatcaag 10260
acaaaccatc aggaaccagg tgattaagga tgcaaccata tatttgtatc atgaagagga 10320
tcggctcaga agtttcttat ggtcaataaa tcctctgttc cctagatttt taagtgaatt 10380
caaatcaggc acttttttgg gagtcgcaga cgggctcatc agtctatttc aaaattctcg 10440
tactattcgg aactccttta agaaaaagta tcatagggaa ttggatgatt tgattgtgag 10500
gagtgaggta tcctctttga cacatttagg gaaacttcat ttgagaaggg gatcatgtaa 10560
aatgtggaca tgttcagcta ctcatgctga cacattaaga tacaaatcct ggggccgtac 10620
agttattggg acaactgtac cccatccatt agaaatgttg ggtccacaac atcgaaaaga 10680
gactccttgt gcaccatgta acacatcagg gttcaattat gtttctgtgc attgtccaga 10740
cgggatccat gacgtcttta gttcacgggg accattgcct gcttatctag ggtctaaaac 10800
atctgaatct acatctattt tgcagccttg ggaaagggaa agcaaagtcc cactgattaa 10860
aagagctaca cgtcttagag atgctatctc ttggtttgtt gaacccgact ctaaactagc 10920
aatgactata ctttctaaca tccactcttt aacaggcgaa gaatggacca aaaggcagca 10980
tgggttcaaa agaacagggt ctgcccttca taggttttcg acatctcgga tgagccatgg 11040
tgggttcgca tctcagagca ctgcagcatt gaccaggttg atggcaacta cagacaccat 11100
gagggatctg ggagatcaga atttcgactt tttattccaa gcaacgttgc tctatgctca 11160
aattaccacc actgttgcaa gagacggatg gatcaccagt tgtacagatc attatcatat 11220
tgcctgtaag tcctgtttga gacccataga agagatcacc ctggactcaa gtatggacta 11280
cacgccccca gatgtatccc atgtgctgaa gacatggagg aatggggaag gttcgtgggg 11340
acaagagata aaacagatct atcctttaga agggaattgg aagaatttag cacctgctga 11400
gcaatcctat caagtcggcg gatgtatagg ttttctatat ggagacttgg cgtatagaaa 11460
atctactcat gccgaggaca gttctctatt tcctctatct atacaaggtc gtattagagg 11520
tcgaggtttc ttaaaagggt tgctagacgg attaatgaga gcaagttgct gccaagtaat 11580
acaccggaga agtctggctc atttgaagag gccggccaac gcagtgtacg gaggtttgat 11640
ttacttgatt gataaattga gtgtatcacc tccattcctt tctcttacta gatcaggacc 11700
tattagagac gaattagaaa cgattcccca caagatccca acctcctatc cgacaagcaa 11760
ccgtgatatg ggggtgattg tcagaaatta cttcaaatac caatgccgtc taattgaaaa 11820
gggaaaatac agatcacatt attcacaatt atggttattc tcagatgtct tatccataga 11880
cttcattgga ccattctcta tttccaccac cctcttgcaa atcctataca agccattttt 11940
atctgggaaa gataagaatg agttgagaga gctggcaaat ctttcttcat tgctaagatc 12000
aggagagggg tgggaagaca tacatgtgaa attcttcacc aaggacatat tattgtgtcc 12060
agaggaaatc agacatgctt gcaagttcgg gattgctaag gataataata aagacatgag 12120
ctatccccct tggggaaggg aatccagagg gacaattaca acaatccctg tttattatac 12180
gaccacccct tacccaaaga tgctagagat gcctccaaga atccaaaatc ccctgctgtc 12240
cggaatcagg ttgggccaat taccaactgg cgctcattat aaaattcgga gtatattaca 12300
tggaatggga atccattaca gggacttctt gagttgtgga gacggctccg gagggatgac 12360
tgctgcatta ctacgagaaa atgtgcatag cagaggaata ttcaatagtc tgttagaatt 12420
atcagggtca gtcatgcgag gcgcctctcc tgagcccccc agtgccctag aaactttagg 12480
aggagataaa tcgagatgtg taaatggtga aacatgttgg gaatatccat ctgacttatg 12540
tgacccaagg acttgggact atttcctccg actcaaagca ggcttggggc ttcaaattga 12600
tttaattgta atggatatgg aagtgcggga ttcttctact agcctgaaaa ttgagacgaa 12660
tgttagaaat tatgtgcacc ggattttgga tgagcaagga gttttaatct acaagactta 12720
tggaacatat atttgtgaga gcgaaaagaa tgcagtaaca atccttggtc ccatgttcaa 12780
gacggtcgac ttagttcaaa cagaatttag tagttctcaa acgtctgaag tatatatggt 12840
atgtaaaggt ttgaagaaat taatcgatga acccaatccc gattggtctt ccatcaatga 12900
atcctggaaa aacctgtacg cattccagtc atcagaacag gaatttgcca gagcaaagaa 12960
ggttagtaca tactttacct tgacaggtat tccctcccaa ttcattcctg atccttttgt 13020
aaacattgag actatgctac aaatattcgg agtacccacg ggtgtgtctc atgcggctgc 13080
cttaaaatca tctgatagac ctgcagattt attgaccatt agcctttttt atatggcgat 13140
tatatcgtat tataacatca atcatatcag agtaggaccg atacctccga accccccatc 13200
agatggaatt gcacaaaatg tggggatcgc tataactggt ataagctttt ggctgagttt 13260
gatggagaaa gacattccac tatatcaaca gtgtttagca gttatccagc aatcattccc 13320
gattaggtgg gaggctgttt cagtaaaagg aggatacaag cagaagtgga gtactagagg 13380
tgatgggctc ccaaaagata cccgaatttc agactccttg gccccaatcg ggaactggat 13440
cagatctctg gaattggtcc gaaaccaagt tcgtctaaat ccattcaatg agatcttgtt 13500
caatcagcta tgt 13513
<210> 5
<211> 74
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
ctcgagcgcc accggcgcgc ctctagctat agcatgaaaa aaactaaaca gatatcatgg 60
ctaagcgcgg ccgc 74
<210> 6
<211> 14359
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
taatacgact cactatagga cgaagacaaa caaaccatta ttatcattaa aaggctcagg 60
agaaacttta acagtaatca aaatgtctgt tacagtcaag agaatcattg acaacacagt 120
cgtagttcca aaacttcctg caaatgagga tccagtggaa tacccggcag attacttcag 180
aaaatcaaag gagattcctc tttacatcaa tactacaaaa agtttgtcag atctaagagg 240
atatgtctac caaggcctca aatccggaaa tgtatcaatc atacatgtca acagctactt 300
gtatggagca ttaaaggaca tccggggtaa gttggataaa gattggtcaa gtttcggaat 360
aaacatcggg aaagcagggg atacaatcgg aatatttgac cttgtatcct tgaaagccct 420
ggacggcgta cttccagatg gagtatcgga tgcttccaga accagcgcag atgacaaatg 480
gttgcctttg tatctacttg gcttatacag agtgggcaga acacaaatgc ctgaatacag 540
aaaaaagctc atggatgggc tgacaaatca atgcaaaatg atcaatgaac agtttgaacc 600
tcttgtgcca gaaggtcgtg acatttttga tgtgtgggga aatgacagta attacacaaa 660
aattgtcgct gcagtggaca tgttcttcca catgttcaaa aaacatgaat gtgcctcgtt 720
cagatacgga actattgttt ccagattcaa agattgtgct gcattggcaa catttggaca 780
cctctgcaaa ataaccggaa tgtctacaga agatgtaacg acctggatct tgaaccgaga 840
agttgcagat gaaatggtcc aaatgatgct tccaggccaa gaaattgaca aggccgattc 900
atacatgcct tatttgatcg actttggatt gtcttctaag tctccatatt cttccgtcaa 960
aaaccctgcc ttccacttct gggggcaatt gacagctctt ctgctcagat ccaccagagc 1020
aaggaatgcc cgacagcctg atgacattga gtatacatct cttactacag caggtttgtt 1080
gtacgcttat gcagtaggat cctctgccga cttggcacaa cagttttgtg ttggagataa 1140
caaatacact ccagatgata gtaccggagg attgacgact aatgcaccgc cacaaggcag 1200
agatgtggtc gaatggctcg gatggtttga agatcaaaac agaaaaccga ctcctgatat 1260
gatgcagtat gcgaaaagag cagtcatgtc actgcaaggc ctaagagaga agacaattgg 1320
caagtatgct aagtcagaat ttgacaaatg accctataat tctcagatca cctattatat 1380
attatgctac atatgaaaaa aactaacaga tatcatggat aatctcacaa aagttcgtga 1440
gtatctcaag tcctattctc gtctggatca ggcggtagga gagatagatg agatcgaagc 1500
acaacgagct gaaaagtcca attatgagtt gttccaagag gatggagtgg aagagcatac 1560
taagccctct tattttcagg cagcagatga ttctgacaca gaatctgaac cagaaattga 1620
agacaatcaa ggcttgtatg caccagatcc agaagctgag caagttgaag gctttataca 1680
ggggccttta gatgactatg cagatgagga agtggatgtt gtatttactt cggactggaa 1740
acagcctgag cttgaatctg acgagcatgg aaagacctta cggttgacat cgccagaggg 1800
tttaagtgga gagcagaaat cccagtggct ttcgacgatt aaagcagtcg tgcaaagtgc 1860
caaatactgg aatctggcag agtgcacatt tgaagcatcg ggagaagggg tcattatgaa 1920
ggagcgccag ataactccgg atgtatataa ggtcactcca gtgatgaaca cacatccgtc 1980
ccaatcagaa gcagtatcag atgtttggtc tctctcaaag acatccatga ctttccaacc 2040
caagaaagca agtcttcagc ctctcaccat atccttggat gaattgttct catctagagg 2100
agagttcatc tctgtcggag gtgacggacg aatgtctcat aaagaggcca tcctgctcgg 2160
cctgagatac aaaaagttgt acaatcaggc gagagtcaaa tattctctgt agactatgaa 2220
aaaaagtaac agatatcacg atctaagtgt tatcccaatc cattcatcat gagttcctta 2280
aagaagattc tcggtctgaa ggggaaaggt aagaaatcta agaaattagg gatcgcacca 2340
cccccttatg aagaggacac tagcatggag tatgctccga gcgctccaat tgacaaatcc 2400
tattttggag ttgacgagat ggacacctat gatccgaatc aattaagata tgagaaattc 2460
ttctttacag tgaaaatgac ggttagatct aatcgtccgt tcagaacata ctcagatgtg 2520
gcagccgctg tatcccattg ggatcacatg tacatcggaa tggcagggaa acgtcccttc 2580
tacaaaatct tggctttttt gggttcttct aatctaaagg ccactccagc ggtattggca 2640
gatcaaggtc aaccagagta tcacgctcac tgcgaaggca gggcttattt gccacatagg 2700
atggggaaga cccctcccat gctcaatgta ccagagcact tcagaagacc attcaatata 2760
ggtctttaca agggaacgat tgagctcaca atgaccatct acgatgatga gtcactggaa 2820
gcagctccta tgatctggga tcatttcaat tcttccaaat tttctgattt cagagagaag 2880
gccttaatgt ttggcctgat tgtcgagaaa aaggcatctg gagcgtgggt cctggactct 2940
atcggccact tcaaatgagc tagtctaact tctagcttct gaacaatccc cggtttactc 3000
agtctcccct aattccagcc tctcgaacaa ctaatatcct gtcttttcta tccctatgaa 3060
aaaaactaac agagatcgat ctgtttacgc gtcactatga agtgcctttt gtacttagcc 3120
tttttattca ttggggtgaa ttgcaagttc accatagttt ttccacacaa ccaaaaagga 3180
aactggaaaa atgttccttc taattaccat tattgcccgt caagctcaga tttaaattgg 3240
cataatgact taataggcac agccttacaa gtcaaaatgc ccaagagtca caaggctatt 3300
caagcagacg gttggatgtg tcatgcttcc aaatgggtca ctacttgtga tttccgctgg 3360
tatggaccga agtatataac acattccatc cgatccttca ctccatctgt agaacaatgc 3420
aaggaaagca ttgaacaaac gaaacaagga acttggctga atccaggctt ccctcctcaa 3480
agttgtggat atgcaactgt gacggatgcc gaagcagtga ttgtccaggt gactcctcac 3540
catgtgctgg ttgatgaata cacaggagaa tgggttgatt cacagttcat caacggaaaa 3600
tgcagcaatt acatatgccc cactgtccat aactctacaa cctggcattc tgactataag 3660
gtcaaagggc tatgtgattc taacctcatt tccatggaca tcaccttctt ctcagaggac 3720
ggagagctat catccctggg aaaggagggc acagggttca gaagtaacta ctttgcttat 3780
gaaactggag gcaaggcctg caaaatgcaa tactgcaagc attggggagt cagactccca 3840
tcaggtgtct ggttcgagat ggctgataag gatctctttg ctgcagccag attccctgaa 3900
tgcccagaag ggtcaagtat ctctgctcca tctcagacct cagtggatgt aagtctaatt 3960
caggacgttg agaggatctt ggattattcc ctctgccaag aaacctggag caaaatcaga 4020
gcgggtcttc caatctctcc agtggatctc agctatcttg ctcctaaaaa cccaggaacc 4080
ggtcctgctt tcaccataat caatggtacc ctaaaatact ttgagaccag atacatcaga 4140
gtcgatattg ctgctccaat cctctcaaga atggtcggaa tgatcagtgg aactaccaca 4200
gaaagggaac tgtgggatga ctgggcacca tatgaagacg tggaaattgg acccaatgga 4260
gttctgagga ccagttcagg atataagttt cctttataca tgattggaca tggtatgttg 4320
gactccgatc ttcatcttag ctcaaaggct caggtgttcg aacatcctca cattcaagac 4380
gctgcttcgc aacttcctga tgatgagagt ttattttttg gtgatactgg gctatccaaa 4440
aatccaatcg agcttgtaga aggttggttc agtagttgga aaagctctat tgcctctttt 4500
ttctttatca tagggttaat cattggacta ttcttggttc tccgagttgg tatccatctt 4560
tgcattaaat taaagcacac caagaaaaga cagatttata cagacataga gatgaaccga 4620
cttggaaagt aactcaaatc ctgctaggta tgaaaaaaac taacagatat cacgctcgag 4680
cgccaccggc gcgcctctag ctatagcatg aaaaaaacta aacagatatc atggctaagc 4740
gcggccgcca gattcttcat gtttggacca aatcaacttg tgataccatg ctcaaagagg 4800
cctcaattat atttgagttt ttaattttta tgaaaaaaac taacagcaat catggaagtc 4860
cacgattttg agaccgacga gttcaatgat ttcaatgaag atgactatgc cacaagagaa 4920
ttcctgaatc ccgatgagcg catgacgtac ttgaatcatg ctgattacaa cctgaattct 4980
cctctaatta gtgatgatat tgacaattta atcaggaaat tcaattctct tccaattccc 5040
tcgatgtggg atagtaagaa ctgggatgga gttcttgaga tgttaacgtc atgtcaagcc 5100
aatcccatcc caacatctca gatgcataaa tggatgggaa gttggttaat gtctgataat 5160
catgatgcca gtcaagggta tagtttttta catgaagtgg acaaagaggc agaaataaca 5220
tttgacgtgg tggagacctt catccgcggc tggggcaaca aaccaattga atacatcaaa 5280
aaggaaagat ggactgactc attcaaaatt ctcgcttatt tgtgtcaaaa gtttttggac 5340
ttacacaagt tgacattaat cttaaatgct gtctctgagg tggaattgct caacttggcg 5400
aggactttca aaggcaaagt cagaagaagt tctcatggaa cgaacatatg caggattagg 5460
gttcccagct tgggtcctac ttttatttca gaaggatggg cttacttcaa gaaacttgat 5520
attctaatgg accgaaactt tctgttaatg gtcaaagatg tgattatagg gaggatgcaa 5580
acggtgctat ccatggtatg tagaatagac aacctgttct cagagcaaga catcttctcc 5640
cttctaaata tctacagaat tggagataaa attgtggaga ggcagggaaa tttttcttat 5700
gacttgatta aaatggtgga accgatatgc aacttgaagc tgatgaaatt agcaagagaa 5760
tcaaggcctt tagtcccaca attccctcat tttgaaaatc atatcaagac ttctgttgat 5820
gaaggggcaa aaattgaccg aggtataaga ttcctccatg atcagataat gagtgtgaaa 5880
acagtggatc tcacactggt gatttatgga tcgttcagac attggggtca tccttttata 5940
gattattaca ctggactaga aaaattacat tcccaagtaa ccatgaagaa agatattgat 6000
gtgtcatatg caaaagcact tgcaagtgat ttagctcgga ttgttctatt tcaacagttc 6060
aatgatcata aaaagtggtt cgtgaatgga gacttgctcc ctcatgatca tccctttaaa 6120
agtcatgtta aagaaaatac atggcccaca gctgctcaag ttcaagattt tggagataaa 6180
tggcatgaac ttccgctgat taaatgtttt gaaatacccg acttactaga cccatcgata 6240
atatactctg acaaaagtca ttcaatgaat aggtcagagg tgttgaaaca tgtccgaatg 6300
aatccgaaca ctcctatccc tagtaaaaag gtgttgcaga ctatgttgga cacaaaggct 6360
accaattgga aagaatttct taaagagatt gatgagaagg gcttagatga tgatgatcta 6420
attattggtc ttaaaggaaa ggagagggaa ctgaagttgg caggtagatt tttctcccta 6480
atgtcttgga aattgcgaga atactttgta attaccgaat atttgataaa gactcatttc 6540
gtccctatgt ttaaaggcct gacaatggcg gacgatctaa ctgcagtcat taaaaagatg 6600
ttagattcct catccggcca aggattgaag tcatatgagg caatttgcat agccaatcac 6660
attgattacg aaaaatggaa taaccaccaa aggaagttat caaacggccc agtgttccga 6720
gttatgggcc agttcttagg ttatccatcc ttaatcgaga gaactcatga attttttgag 6780
aaaagtctta tatactacaa tggaagacca gacttgatgc gtgttcacaa caacacactg 6840
atcaattcaa cctcccaacg agtttgttgg caaggacaag agggtggact ggaaggtcta 6900
cggcaaaaag gatggagtat cctcaatcta ctggttattc aaagagaggc taaaatcaga 6960
aacactgctg tcaaagtctt ggcacaaggt gataatcaag ttatttgcac acagtataaa 7020
acgaagaaat cgagaaacgt tgtagaatta cagggtgctc tcaatcaaat ggtttctaat 7080
aatgagaaaa ttatgactgc aatcaaaata gggacaggga agttaggact tttgataaat 7140
gacgatgaga ctatgcaatc tgcagattac ttgaattatg gaaaaatacc gattttccgt 7200
ggagtgatta gagggttaga gaccaagaga tggtcacgag tgacttgtgt caccaatgac 7260
caaataccca cttgtgctaa tataatgagc tcagtttcca caaatgctct caccgtagct 7320
cattttgctg agaacccaat caatgccatg atacagtaca attattttgg gacatttgct 7380
agactcttgt tgatgatgca tgatcctgct cttcgtcaat cattgtatga agttcaagat 7440
aagataccgg gcttgcacag ttctactttc aaatacgcca tgttgtattt ggacccttcc 7500
attggaggag tgtcgggcat gtctttgtcc aggtttttga ttagagcctt cccagatccc 7560
gtaacagaaa gtctctcatt ctggagattc atccatgtac atgctcgaag tgagcatctg 7620
aaggagatga gtgcagtatt tggaaacccc gagatagcca agtttcgaat aactcacata 7680
gacaagctag tagaagatcc aacctctctg aacatcgcta tgggaatgag tccagcgaac 7740
ttgttaaaga ctgaggttaa aaaatgctta atcgaatcaa gacaaaccat caggaaccag 7800
gtgattaagg atgcaaccat atatttgtat catgaagagg atcggctcag aagtttctta 7860
tggtcaataa atcctctgtt ccctagattt ttaagtgaat tcaaatcagg cacttttttg 7920
ggagtcgcag acgggctcat cagtctattt caaaattctc gtactattcg gaactccttt 7980
aagaaaaagt atcataggga attggatgat ttgattgtga ggagtgaggt atcctctttg 8040
acacatttag ggaaacttca tttgagaagg ggatcatgta aaatgtggac atgttcagct 8100
actcatgctg acacattaag atacaaatcc tggggccgta cagttattgg gacaactgta 8160
ccccatccat tagaaatgtt gggtccacaa catcgaaaag agactccttg tgcaccatgt 8220
aacacatcag ggttcaatta tgtttctgtg cattgtccag acgggatcca tgacgtcttt 8280
agttcacggg gaccattgcc tgcttatcta gggtctaaaa catctgaatc tacatctatt 8340
ttgcagcctt gggaaaggga aagcaaagtc ccactgatta aaagagctac acgtcttaga 8400
gatgctatct cttggtttgt tgaacccgac tctaaactag caatgactat actttctaac 8460
atccactctt taacaggcga agaatggacc aaaaggcagc atgggttcaa aagaacaggg 8520
tctgcccttc ataggttttc gacatctcgg atgagccatg gtgggttcgc atctcagagc 8580
actgcagcat tgaccaggtt gatggcaact acagacacca tgagggatct gggagatcag 8640
aatttcgact ttttattcca agcaacgttg ctctatgctc aaattaccac cactgttgca 8700
agagacggat ggatcaccag ttgtacagat cattatcata ttgcctgtaa gtcctgtttg 8760
agacccatag aagagatcac cctggactca agtatggact acacgccccc agatgtatcc 8820
catgtgctga agacatggag gaatggggaa ggttcgtggg gacaagagat aaaacagatc 8880
tatcctttag aagggaattg gaagaattta gcacctgctg agcaatccta tcaagtcggc 8940
ggatgtatag gttttctata tggagacttg gcgtatagaa aatctactca tgccgaggac 9000
agttctctat ttcctctatc tatacaaggt cgtattagag gtcgaggttt cttaaaaggg 9060
ttgctagacg gattaatgag agcaagttgc tgccaagtaa tacaccggag aagtctggct 9120
catttgaaga ggccggccaa cgcagtgtac ggaggtttga tttacttgat tgataaattg 9180
agtgtatcac ctccattcct ttctcttact agatcaggac ctattagaga cgaattagaa 9240
acgattcccc acaagatccc aacctcctat ccgacaagca accgtgatat gggggtgatt 9300
gtcagaaatt acttcaaata ccaatgccgt ctaattgaaa agggaaaata cagatcacat 9360
tattcacaat tatggttatt ctcagatgtc ttatccatag acttcattgg accattctct 9420
atttccacca ccctcttgca aatcctatac aagccatttt tatctgggaa agataagaat 9480
gagttgagag agctggcaaa tctttcttca ttgctaagat caggagaggg gtgggaagac 9540
atacatgtga aattcttcac caaggacata ttattgtgtc cagaggaaat cagacatgct 9600
tgcaagttcg ggattgctaa ggataataat aaagacatga gctatccccc ttggggaagg 9660
gaatccagag ggacaattac aacaatccct gtttattata cgaccacccc ttacccaaag 9720
atgctagaga tgcctccaag aatccaaaat cccctgctgt ccggaatcag gttgggccaa 9780
ttaccaactg gcgctcatta taaaattcgg agtatattac atggaatggg aatccattac 9840
agggacttct tgagttgtgg agacggctcc ggagggatga ctgctgcatt actacgagaa 9900
aatgtgcata gcagaggaat attcaatagt ctgttagaat tatcagggtc agtcatgcga 9960
ggcgcctctc ctgagccccc cagtgcccta gaaactttag gaggagataa atcgagatgt 10020
gtaaatggtg aaacatgttg ggaatatcca tctgacttat gtgacccaag gacttgggac 10080
tatttcctcc gactcaaagc aggcttgggg cttcaaattg atttaattgt aatggatatg 10140
gaagtgcggg attcttctac tagcctgaaa attgagacga atgttagaaa ttatgtgcac 10200
cggattttgg atgagcaagg agttttaatc tacaagactt atggaacata tatttgtgag 10260
agcgaaaaga atgcagtaac aatccttggt cccatgttca agacggtcga cttagttcaa 10320
acagaattta gtagttctca aacgtctgaa gtatatatgg tatgtaaagg tttgaagaaa 10380
ttaatcgatg aacccaatcc cgattggtct tccatcaatg aatcctggaa aaacctgtac 10440
gcattccagt catcagaaca ggaatttgcc agagcaaaga aggttagtac atactttacc 10500
ttgacaggta ttccctccca attcattcct gatccttttg taaacattga gactatgcta 10560
caaatattcg gagtacccac gggtgtgtct catgcggctg ccttaaaatc atctgataga 10620
cctgcagatt tattgaccat tagccttttt tatatggcga ttatatcgta ttataacatc 10680
aatcatatca gagtaggacc gatacctccg aaccccccat cagatggaat tgcacaaaat 10740
gtggggatcg ctataactgg tataagcttt tggctgagtt tgatggagaa agacattcca 10800
ctatatcaac agtgtttagc agttatccag caatcattcc cgattaggtg ggaggctgtt 10860
tcagtaaaag gaggatacaa gcagaagtgg agtactagag gtgatgggct cccaaaagat 10920
acccgaattt cagactcctt ggccccaatc gggaactgga tcagatctct ggaattggtc 10980
cgaaaccaag ttcgtctaaa tccattcaat gagatcttgt tcaatcagct atgtcgtaca 11040
gtggataatc atttgaaatg gtcaaatttg cgaagaaaca caggaatgat tgaatggatc 11100
aatagacgaa tttcaaaaga agaccggtct atactgatgt tgaagagtga cctacacgag 11160
gaaaactctt ggagagatta aaaaatcatg aggagactcc aaactttaag tatgaaaaaa 11220
actttgatcc ttaagaccct cttgtggttt ttatttttta tctggttttg tggtcttcgt 11280
gggtcggcat ggcatctcca cctcctcgcg gtccgacctg ggcatccgaa ggaggacgtc 11340
gtccactcgg atggctaagg gaggggcccc cgcggggctg ctaacaaagc ccgaaaggaa 11400
gctgagttgg ctgctgccac cgctgagcaa taactagcat aaccccttgg ggcctctaaa 11460
cgggtcttga ggggtttttt gctgaaagga ggaactatat ccggatcgag acctcgatac 11520
tagtgcggtg gagctccagc ttttgttccc tttagtgagg gttaatttcg agcttggcgt 11580
aatcatggtc atagctgttt cctgtgtgaa attgttatcc gctcacaatt ccacacaaca 11640
tacgagccgg aagcataaag tgtaaagcct ggggtgccta atgagtgagc taactcacat 11700
taattgcgtt gcgctcactg cccgctttcc agtcgggaaa cctgtcgtgc cagctgcatt 11760
aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat tgggcgctct tccgcttcct 11820
cgctcactga ctcgctgcgc tcggtcgttc ggctgcggcg agcggtatca gctcactcaa 11880
aggcggtaat acggttatcc acagaatcag gggataacgc aggaaagaac atgtgagcaa 11940
aaggccagca aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc 12000
tccgcccccc tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga 12060
caggactata aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc 12120
cgaccctgcc gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgcttt 12180
ctcatagctc acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct 12240
gtgtgcacga accccccgtt cagcccgacc gctgcgcctt atccggtaac tatcgtcttg 12300
agtccaaccc ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta 12360
gcagagcgag gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct 12420
acactagaag aacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa 12480
gagttggtag ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt 12540
gcaagcagca gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta 12600
cggggtctga cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat 12660
caaaaaggat cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa 12720
gtatatatga gtaaacttgg tctgacagtt accaatgctt aatcagtgag gcacctatct 12780
cagcgatctg tctatttcgt tcatccatag ttgcctgact ccccgtcgtg tagataacta 12840
cgatacggga gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct 12900
caccggctcc agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg 12960
gtcctgcaac tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa 13020
gtagttcgcc agttaatagt ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt 13080
cacgctcgtc gtttggtatg gcttcattca gctccggttc ccaacgatca aggcgagtta 13140
catgatcccc catgttgtgc aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca 13200
gaagtaagtt ggccgcagtg ttatcactca tggttatggc agcactgcat acttctctta 13260
ctgtcatgcc atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct 13320
gagaatagtg tatgcggcga ccgagttgct cttgcccggc gtcaatacgg gataataccg 13380
cgccacatag cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac 13440
tctcaaggat cttaccgctg ttgagatcca gttcgatgta acccactcgt gcacccaact 13500
gatcttcagc atcttttact ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa 13560
atgccgcaaa aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt 13620
ttcaatatta ttgaagcatt tatcagggtt attgtctcat gagcggatac atatttgaat 13680
gtatttagaa aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccaccta 13740
aattgtaagc gttaatattt tgttaaaatt cgcgttaaat ttttgttaaa tcagctcatt 13800
ttttaaccaa taggccgaaa tcggcaaaat cccttataaa tcaaaagaat agaccgagat 13860
agggttgagt gttgttccag tttggaacaa gagtccacta ttaaagaacg tggactccaa 13920
cgtcaaaggg cgaaaaaccg tctatcaggg cgatggccca ctacgtgaac catcacccta 13980
atcaagtttt ttggggtcga ggtgccgtaa agcactaaat cggaacccta aagggagccc 14040
ccgatttaga gcttgacggg gaaagccggc gaacgtggcg agaaaggaag ggaagaaagc 14100
gaaaggagcg ggcgctaggg cgctggcaag tgtagcggtc acgctgcgcg taaccaccac 14160
acccgccgcg cttaatgcgc cgctacaggg cgcgtcccat tcgccattca ggctgcgcaa 14220
ctgttgggaa gggcgatcgg tgcgggcctc ttcgctatta cgccagctgg cgaaaggggg 14280
atgtgctgca aggcgattaa gttgggtaac gccagggttt tcccagtcac gacgttgtaa 14340
aacgacggcc agtgaattg 14359
<210> 7
<211> 6058
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
gtcgacattg attattgact agttattaat agtaatcaat tacggggtca ttagttcata 60
gcccatatat ggagttccgc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 120
ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag 180
ggactttcca ttgacgtcaa tgggtggact atttacggta aactgcccac ttggcagtac 240
atcaagtgta tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg 300
cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg 360
tattagtcat cgctattacc atgggtcgag gtgagcccca cgttctgctt cactctcccc 420
atctcccccc cctccccacc cccaattttg tatttattta ttttttaatt attttgtgca 480
gcgatggggg cggggggggg gggggcgcgc gccaggcggg gcggggcggg gcgaggggcg 540
gggcggggcg aggcggagag gtgcggcggc agccaatcag agcggcgcgc tccgaaagtt 600
tccttttatg gcgaggcggc ggcggcggcg gccctataaa aagcgaagcg cgcggcgggc 660
gggagtcgct gcgttgcctt cgccccgtgc cccgctccgc gccgcctcgc gccgcccgcc 720
ccggctctga ctgaccgcgt tactcccaca ggtgagcggg cgggacggcc cttctcctcc 780
gggctgtaat tagcgcttgg tttaatgacg gctcgtttct tttctgtggc tgcgtgaaag 840
ccttaaaggg ctccgggagg gccctttgtg cgggggggag cggctcgggg ggtgcgtgcg 900
tgtgtgtgtg cgtggggagc gccgcgtgcg gcccgcgctg cccggcggct gtgagcgctg 960
cgggcgcggc gcggggcttt gtgcgctccg cgtgtgcgcg aggggagcgc ggccgggggc 1020
ggtgccccgc ggtgcggggg ggctgcgagg ggaacaaagg ctgcgtgcgg ggtgtgtgcg 1080
tgggggggtg agcagggggt gtgggcgcgg cggtcgggct gtaacccccc cctgcacccc 1140
cctccccgag ttgctgagca cggcccggct tcgggtgcgg ggctccgtgc ggggcgtggc 1200
gcggggctcg ccgtgccggg cggggggtgg cggcaggtgg gggtgccggg cggggcgggg 1260
ccgcctcggg ccggggaggg ctcgggggag gggcgcggcg gccccggagc gccggcggct 1320
gtcgaggcgc ggcgagccgc agccattgcc ttttatggta atcgtgcgag agggcgcagg 1380
gacttccttt gtcccaaatc tggcggagcc gaaatctggg aggcgccgcc gcaccccctc 1440
tagcgggcgc gggcgaagcg gtgcggcgcc ggcaggaagg aaatgggcgg ggagggcctt 1500
cgtgcgtcgc cgcgccgccg tccccttctc catctccagc ctcggggctg ccgcaggggg 1560
acggctgcct tcggggggga cggggcaggg cggggttcgg cttctggcgt gtgaccggcg 1620
gctctagagc ctctgctaac catgttcatg ccttcttctt tttcctacag ctcctgggca 1680
acgtgctggt tgttgtgctg tctcatcatt ttggcaaaga attcatgtct gttacagtca 1740
agagaatcat tgacaacaca gtcgtagttc caaaacttcc tgcaaatgag gatccagtgg 1800
aatacccggc agattacttc agaaaatcaa aggagattcc tctttacatc aatactacaa 1860
aaagtttgtc agatctaaga ggatatgtct accaaggcct caaatccgga aatgtatcaa 1920
tcatacatgt caacagctac ttgtatggag cattaaagga catccggggt aagttggata 1980
aagattggtc aagtttcgga ataaacatcg ggaaagcagg ggatacaatc ggaatatttg 2040
accttgtatc cttgaaagcc ctggacggcg tacttccaga tggagtatcg gatgcttcca 2100
gaaccagcgc agatgacaaa tggttgcctt tgtatctact tggcttatac agagtgggca 2160
gaacacaaat gcctgaatac agaaaaaagc tcatggatgg gctgacaaat caatgcaaaa 2220
tgatcaatga acagtttgaa cctcttgtgc cagaaggtcg tgacattttt gatgtgtggg 2280
gaaatgacag taattacaca aaaattgtcg ctgcagtgga catgttcttc cacatgttca 2340
aaaaacatga atgtgcctcg ttcagatacg gaactattgt ttccagattc aaagattgtg 2400
ctgcattggc aacatttgga cacctctgca aaataaccgg aatgtctaca gaagatgtaa 2460
cgacctggat cttgaaccga gaagttgcag atgaaatggt ccaaatgatg cttccaggcc 2520
aagaaattga caaggccgat tcatacatgc cttatttgat cgactttgga ttgtcttcta 2580
agtctccata ttcttccgtc aaaaaccctg ccttccactt ctgggggcaa ttgacagctc 2640
ttctgctcag atccaccaga gcaaggaatg cccgacagcc tgatgacatt gagtatacat 2700
ctcttactac agcaggtttg ttgtacgctt atgcagtagg atcctctgcc gacttggcac 2760
aacagttttg tgttggagat aacaaataca ctccagatga tagtaccgga ggattgacga 2820
ctaatgcacc gccacaaggc agagatgtgg tcgaatggct cggatggttt gaagatcaaa 2880
acagaaaacc gactcctgat atgatgcagt atgcgaaaag agcagtcatg tcactgcaag 2940
gcctaagaga gaagacaatt ggcaagtatg ctaagtcaga atttgacaaa tgactcgagg 3000
aattcactcc tcaggtgcag gctgcctatc agaaggtggt ggctggtgtg gccaatgccc 3060
tggctcacaa ataccactga gatctttttc cctctgccaa aaattatggg gacatcatga 3120
agccccttga gcatctgact tctggctaat aaaggaaatt tattttcatt gcaatagtgt 3180
gttggaattt tttgtgtctc tcactcggaa ggacatatgg gagggcaaat catttaaaac 3240
atcagaatga gtatttggtt tagagtttgg caacatatgc catatgctgg ctgccatgaa 3300
caaaggtggc tataaagagg tcatcagtat atgaaacagc cccctgctgt ccattcctta 3360
ttccatagaa aagccttgac ttgaggttag atttttttta tattttgttt tgtgttattt 3420
ttttctttaa catccctaaa attttcctta catgttttac tagccagatt tttcctcctc 3480
tcctgactac tcccagtcat agctgtccct cttctcttat gaagatccct cgacctgcag 3540
cccaagcttg gcgtaatcat ggtcatagct gtttcctgtg tgaaattgtt atccgctcac 3600
aattccacac aacatacgag ccggaagcat aaagtgtaaa gcctggggtg cctaatgagt 3660
gagctaactc acattaattg cgttgcgctc actgcccgct ttccagtcgg gaaacctgtc 3720
gtgccagcgg atccgcatct caattagtca gcaaccatag tcccgcccct aactccgccc 3780
atcccgcccc taactccgcc cagttccgcc cattctccgc cccatggctg actaattttt 3840
tttatttatg cagaggccga ggccgcctcg gcctctgagc tattccagaa gtagtgagga 3900
ggcttttttg gaggcctagg cttttgcaaa aagctaactt gtttattgca gcttataatg 3960
gttacaaata aagcaatagc atcacaaatt tcacaaataa agcatttttt tcactgcatt 4020
ctagttgtgg tttgtccaaa ctcatcaatg tatcttatca tgtctggatc cgctgcatta 4080
atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt gggcgctctt ccgcttcctc 4140
gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa 4200
ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 4260
aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 4320
ccgcccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 4380
aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 4440
gaccctgccg cttaccggat acctgtccgc ctttctccct tcgggaagcg tggcgctttc 4500
tcaatgctca cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca agctgggctg 4560
tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact atcgtcttga 4620
gtccaacccg gtaagacacg acttatcgcc actggcagca gccactggta acaggattag 4680
cagagcgagg tatgtaggcg gtgctacaga gttcttgaag tggtggccta actacggcta 4740
cactagaagg acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag 4800
agttggtagc tcttgatccg gcaaacaaac caccgctggt agcggtggtt tttttgtttg 4860
caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga tcttttctac 4920
ggggtctgac gctcagtgga acgaaaactc acgttaaggg attttggtca tgagattatc 4980
aaaaaggatc ttcacctaga tccttttaaa ttaaaaatga agttttaaat caatctaaag 5040
tatatatgag taaacttggt ctgacagtta ccaatgctta atcagtgagg cacctatctc 5100
agcgatctgt ctatttcgtt catccatagt tgcctgactc cccgtcgtgt agataactac 5160
gatacgggag ggcttaccat ctggccccag tgctgcaatg ataccgcgag acccacgctc 5220
accggctcca gatttatcag caataaacca gccagccgga agggccgagc gcagaagtgg 5280
tcctgcaact ttatccgcct ccatccagtc tattaattgt tgccgggaag ctagagtaag 5340
tagttcgcca gttaatagtt tgcgcaacgt tgttgccatt gctacaggca tcgtggtgtc 5400
acgctcgtcg tttggtatgg cttcattcag ctccggttcc caacgatcaa ggcgagttac 5460
atgatccccc atgttgtgca aaaaagcggt tagctccttc ggtcctccga tcgttgtcag 5520
aagtaagttg gccgcagtgt tatcactcat ggttatggca gcactgcata attctcttac 5580
tgtcatgcca tccgtaagat gcttttctgt gactggtgag tactcaacca agtcattctg 5640
agaatagtgt atgcggcgac cgagttgctc ttgcccggcg tcaatacggg ataataccgc 5700
gccacatagc agaactttaa aagtgctcat cattggaaaa cgttcttcgg ggcgaaaact 5760
ctcaaggatc ttacgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga 5820
tcttcagcat cttttacttt caccagcgtt tctgggtgag caaaaacagg aaggcaaaat 5880
gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt 5940
caatattatt gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt 6000
atttagaaaa ataaacaaat aggggttccg cgcacatttc cccgaaaagt gccacctg 6058
<210> 8
<211> 11119
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
gtcgacattg attattgact agttattaat agtaatcaat tacggggtca ttagttcata 60
gcccatatat ggagttccgc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 120
ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag 180
ggactttcca ttgacgtcaa tgggtggact atttacggta aactgcccac ttggcagtac 240
atcaagtgta tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg 300
cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg 360
tattagtcat cgctattacc atgggtcgag gtgagcccca cgttctgctt cactctcccc 420
atctcccccc cctccccacc cccaattttg tatttattta ttttttaatt attttgtgca 480
gcgatggggg cggggggggg gggggcgcgc gccaggcggg gcggggcggg gcgaggggcg 540
gggcggggcg aggcggagag gtgcggcggc agccaatcag agcggcgcgc tccgaaagtt 600
tccttttatg gcgaggcggc ggcggcggcg gccctataaa aagcgaagcg cgcggcgggc 660
gggagtcgct gcgttgcctt cgccccgtgc cccgctccgc gccgcctcgc gccgcccgcc 720
ccggctctga ctgaccgcgt tactcccaca ggtgagcggg cgggacggcc cttctcctcc 780
gggctgtaat tagcgcttgg tttaatgacg gctcgtttct tttctgtggc tgcgtgaaag 840
ccttaaaggg ctccgggagg gccctttgtg cgggggggag cggctcgggg ggtgcgtgcg 900
tgtgtgtgtg cgtggggagc gccgcgtgcg gcccgcgctg cccggcggct gtgagcgctg 960
cgggcgcggc gcggggcttt gtgcgctccg cgtgtgcgcg aggggagcgc ggccgggggc 1020
ggtgccccgc ggtgcggggg ggctgcgagg ggaacaaagg ctgcgtgcgg ggtgtgtgcg 1080
tgggggggtg agcagggggt gtgggcgcgg cggtcgggct gtaacccccc cctgcacccc 1140
cctccccgag ttgctgagca cggcccggct tcgggtgcgg ggctccgtgc ggggcgtggc 1200
gcggggctcg ccgtgccggg cggggggtgg cggcaggtgg gggtgccggg cggggcgggg 1260
ccgcctcggg ccggggaggg ctcgggggag gggcgcggcg gccccggagc gccggcggct 1320
gtcgaggcgc ggcgagccgc agccattgcc ttttatggta atcgtgcgag agggcgcagg 1380
gacttccttt gtcccaaatc tggcggagcc gaaatctggg aggcgccgcc gcaccccctc 1440
tagcgggcgc gggcgaagcg gtgcggcgcc ggcaggaagg aaatgggcgg ggagggcctt 1500
cgtgcgtcgc cgcgccgccg tccccttctc catctccagc ctcggggctg ccgcaggggg 1560
acggctgcct tcggggggga cggggcaggg cggggttcgg cttctggcgt gtgaccggcg 1620
gctctagagc ctctgctaac catgttcatg ccttcttctt tttcctacag ctcctgggca 1680
acgtgctggt tgttgtgctg tctcatcatt ttggcaaaga attcatggaa gtccacgatt 1740
ttgagaccga cgagttcaat gatttcaatg aagatgacta tgccacaaga gaattcctga 1800
atcccgatga gcgcatgacg tacttgaatc atgctgatta caacctgaat tctcctctaa 1860
ttagtgatga tattgacaat ttaatcagga aattcaattc tcttccaatt ccctcgatgt 1920
gggatagtaa gaactgggat ggagttcttg agatgttaac gtcatgtcaa gccaatccca 1980
tcccaacatc tcagatgcat aaatggatgg gaagttggtt aatgtctgat aatcatgatg 2040
ccagtcaagg gtatagtttt ttacatgaag tggacaaaga ggcagaaata acatttgacg 2100
tggtggagac cttcatccgc ggctggggca acaaaccaat tgaatacatc aaaaaggaaa 2160
gatggactga ctcattcaaa attctcgctt atttgtgtca aaagtttttg gacttacaca 2220
agttgacatt aatcttaaat gctgtctctg aggtggaatt gctcaacttg gcgaggactt 2280
tcaaaggcaa agtcagaaga agttctcatg gaacgaacat atgcaggatt agggttccca 2340
gcttgggtcc tacttttatt tcagaaggat gggcttactt caagaaactt gatattctaa 2400
tggaccgaaa ctttctgtta atggtcaaag atgtgattat agggaggatg caaacggtgc 2460
tatccatggt atgtagaata gacaacctgt tctcagagca agacatcttc tcccttctaa 2520
atatctacag aattggagat aaaattgtgg agaggcaggg aaatttttct tatgacttga 2580
ttaaaatggt ggaaccgata tgcaacttga agctgatgaa attagcaaga gaatcaaggc 2640
ctttagtccc acaattccct cattttgaaa atcatatcaa gacttctgtt gatgaagggg 2700
caaaaattga ccgaggtata agattcctcc atgatcagat aatgagtgtg aaaacagtgg 2760
atctcacact ggtgatttat ggatcgttca gacattgggg tcatcctttt atagattatt 2820
acactggact agaaaaatta cattcccaag taaccatgaa gaaagatatt gatgtgtcat 2880
atgcaaaagc acttgcaagt gatttagctc ggattgttct atttcaacag ttcaatgatc 2940
ataaaaagtg gttcgtgaat ggagacttgc tccctcatga tcatcccttt aaaagtcatg 3000
ttaaagaaaa tacatggccc acagctgctc aagttcaaga ttttggagat aaatggcatg 3060
aacttccgct gattaaatgt tttgaaatac ccgacttact agacccatcg ataatatact 3120
ctgacaaaag tcattcaatg aataggtcag aggtgttgaa acatgtccga atgaatccga 3180
acactcctat ccctagtaaa aaggtgttgc agactatgtt ggacacaaag gctaccaatt 3240
ggaaagaatt tcttaaagag attgatgaga agggcttaga tgatgatgat ctaattattg 3300
gtcttaaagg aaaggagagg gaactgaagt tggcaggtag atttttctcc ctaatgtctt 3360
ggaaattgcg agaatacttt gtaattaccg aatatttgat aaagactcat ttcgtcccta 3420
tgtttaaagg cctgacaatg gcggacgatc taactgcagt cattaaaaag atgttagatt 3480
cctcatccgg ccaaggattg aagtcatatg aggcaatttg catagccaat cacattgatt 3540
acgaaaaatg gaataaccac caaaggaagt tatcaaacgg cccagtgttc cgagttatgg 3600
gccagttctt aggttatcca tccttaatcg agagaactca tgaatttttt gagaaaagtc 3660
ttatatacta caatggaaga ccagacttga tgcgtgttca caacaacaca ctgatcaatt 3720
caacctccca acgagtttgt tggcaaggac aagagggtgg actggaaggt ctacggcaaa 3780
aaggatggag tatcctcaat ctactggtta ttcaaagaga ggctaaaatc agaaacactg 3840
ctgtcaaagt cttggcacaa ggtgataatc aagttatttg cacacagtat aaaacgaaga 3900
aatcgagaaa cgttgtagaa ttacagggtg ctctcaatca aatggtttct aataatgaga 3960
aaattatgac tgcaatcaaa atagggacag ggaagttagg acttttgata aatgacgatg 4020
agactatgca atctgcagat tacttgaatt atggaaaaat accgattttc cgtggagtga 4080
ttagagggtt agagaccaag agatggtcac gagtgacttg tgtcaccaat gaccaaatac 4140
ccacttgtgc taatataatg agctcagttt ccacaaatgc tctcaccgta gctcattttg 4200
ctgagaaccc aatcaatgcc atgatacagt acaattattt tgggacattt gctagactct 4260
tgttgatgat gcatgatcct gctcttcgtc aatcattgta tgaagttcaa gataagatac 4320
cgggcttgca cagttctact ttcaaatacg ccatgttgta tttggaccct tccattggag 4380
gagtgtcggg catgtctttg tccaggtttt tgattagagc cttcccagat cccgtaacag 4440
aaagtctctc attctggaga ttcatccatg tacatgctcg aagtgagcat ctgaaggaga 4500
tgagtgcagt atttggaaac cccgagatag ccaagtttcg aataactcac atagacaagc 4560
tagtagaaga tccaacctct ctgaacatcg ctatgggaat gagtccagcg aacttgttaa 4620
agactgaggt taaaaaatgc ttaatcgaat caagacaaac catcaggaac caggtgatta 4680
aggatgcaac catatatttg tatcatgaag aggatcggct cagaagtttc ttatggtcaa 4740
taaatcctct gttccctaga tttttaagtg aattcaaatc aggcactttt ttgggagtcg 4800
cagacgggct catcagtcta tttcaaaatt ctcgtactat tcggaactcc tttaagaaaa 4860
agtatcatag ggaattggat gatttgattg tgaggagtga ggtatcctct ttgacacatt 4920
tagggaaact tcatttgaga aggggatcat gtaaaatgtg gacatgttca gctactcatg 4980
ctgacacatt aagatacaaa tcctggggcc gtacagttat tgggacaact gtaccccatc 5040
cattagaaat gttgggtcca caacatcgaa aagagactcc ttgtgcacca tgtaacacat 5100
cagggttcaa ttatgtttct gtgcattgtc cagacgggat ccatgacgtc tttagttcac 5160
ggggaccatt gcctgcttat ctagggtcta aaacatctga atctacatct attttgcagc 5220
cttgggaaag ggaaagcaaa gtcccactga ttaaaagagc tacacgtctt agagatgcta 5280
tctcttggtt tgttgaaccc gactctaaac tagcaatgac tatactttct aacatccact 5340
ctttaacagg cgaagaatgg accaaaaggc agcatgggtt caaaagaaca gggtctgccc 5400
ttcataggtt ttcgacatct cggatgagcc atggtgggtt cgcatctcag agcactgcag 5460
cattgaccag gttgatggca actacagaca ccatgaggga tctgggagat cagaatttcg 5520
actttttatt ccaagcaacg ttgctctatg ctcaaattac caccactgtt gcaagagacg 5580
gatggatcac cagttgtaca gatcattatc atattgcctg taagtcctgt ttgagaccca 5640
tagaagagat caccctggac tcaagtatgg actacacgcc cccagatgta tcccatgtgc 5700
tgaagacatg gaggaatggg gaaggttcgt ggggacaaga gataaaacag atctatcctt 5760
tagaagggaa ttggaagaat ttagcacctg ctgagcaatc ctatcaagtc ggcggatgta 5820
taggttttct atatggagac ttggcgtata gaaaatctac tcatgccgag gacagttctc 5880
tatttcctct atctatacaa ggtcgtatta gaggtcgagg tttcttaaaa gggttgctag 5940
acggattaat gagagcaagt tgctgccaag taatacaccg gagaagtctg gctcatttga 6000
agaggccggc caacgcagtg tacggaggtt tgatttactt gattgataaa ttgagtgtat 6060
cacctccatt cctttctctt actagatcag gacctattag agacgaatta gaaacgattc 6120
cccacaagat cccaacctcc tatccgacaa gcaaccgtga tatgggggtg attgtcagaa 6180
attacttcaa ataccaatgc cgtctaattg aaaagggaaa atacagatca cattattcac 6240
aattatggtt attctcagat gtcttatcca tagacttcat tggaccattc tctatttcca 6300
ccaccctctt gcaaatccta tacaagccat ttttatctgg gaaagataag aatgagttga 6360
gagagctggc aaatctttct tcattgctaa gatcaggaga ggggtgggaa gacatacatg 6420
tgaaattctt caccaaggac atattattgt gtccagagga aatcagacat gcttgcaagt 6480
tcgggattgc taaggataat aataaagaca tgagctatcc cccttgggga agggaatcca 6540
gagggacaat tacaacaatc cctgtttatt atacgaccac cccttaccca aagatgctag 6600
agatgcctcc aagaatccaa aatcccctgc tgtccggaat caggttgggc caattaccaa 6660
ctggcgctca ttataaaatt cggagtatat tacatggaat gggaatccat tacagggact 6720
tcttgagttg tggagacggc tccggaggga tgactgctgc attactacga gaaaatgtgc 6780
atagcagagg aatattcaat agtctgttag aattatcagg gtcagtcatg cgaggcgcct 6840
ctcctgagcc ccccagtgcc ctagaaactt taggaggaga taaatcgaga tgtgtaaatg 6900
gtgaaacatg ttgggaatat ccatctgact tatgtgaccc aaggacttgg gactatttcc 6960
tccgactcaa agcaggcttg gggcttcaaa ttgatttaat tgtaatggat atggaagtgc 7020
gggattcttc tactagcctg aaaattgaga cgaatgttag aaattatgtg caccggattt 7080
tggatgagca aggagtttta atctacaaga cttatggaac atatatttgt gagagcgaaa 7140
agaatgcagt aacaatcctt ggtcccatgt tcaagacggt cgacttagtt caaacagaat 7200
ttagtagttc tcaaacgtct gaagtatata tggtatgtaa aggtttgaag aaattaatcg 7260
atgaacccaa tcccgattgg tcttccatca atgaatcctg gaaaaacctg tacgcattcc 7320
agtcatcaga acaggaattt gccagagcaa agaaggttag tacatacttt accttgacag 7380
gtattccctc ccaattcatt cctgatcctt ttgtaaacat tgagactatg ctacaaatat 7440
tcggagtacc cacgggtgtg tctcatgcgg ctgccttaaa atcatctgat agacctgcag 7500
atttattgac cattagcctt ttttatatgg cgattatatc gtattataac atcaatcata 7560
tcagagtagg accgatacct ccgaaccccc catcagatgg aattgcacaa aatgtgggga 7620
tcgctataac tggtataagc ttttggctga gtttgatgga gaaagacatt ccactatatc 7680
aacagtgttt agcagttatc cagcaatcat tcccgattag gtgggaggct gtttcagtaa 7740
aaggaggata caagcagaag tggagtacta gaggtgatgg gctcccaaaa gatacccgaa 7800
tttcagactc cttggcccca atcgggaact ggatcagatc tctggaattg gtccgaaacc 7860
aagttcgtct aaatccattc aatgagatct tgttcaatca gctatgtcgt acagtggata 7920
atcatttgaa atggtcaaat ttgcgaagaa acacaggaat gattgaatgg atcaatagac 7980
gaatttcaaa agaagaccgg tctatactga tgttgaagag tgacctacac gaggaaaact 8040
cttggagaga ttaactcgag gaattcactc ctcaggtgca ggctgcctat cagaaggtgg 8100
tggctggtgt ggccaatgcc ctggctcaca aataccactg agatcttttt ccctctgcca 8160
aaaattatgg ggacatcatg aagccccttg agcatctgac ttctggctaa taaaggaaat 8220
ttattttcat tgcaatagtg tgttggaatt ttttgtgtct ctcactcgga aggacatatg 8280
ggagggcaaa tcatttaaaa catcagaatg agtatttggt ttagagtttg gcaacatatg 8340
ccatatgctg gctgccatga acaaaggtgg ctataaagag gtcatcagta tatgaaacag 8400
ccccctgctg tccattcctt attccataga aaagccttga cttgaggtta gatttttttt 8460
atattttgtt ttgtgttatt tttttcttta acatccctaa aattttcctt acatgtttta 8520
ctagccagat ttttcctcct ctcctgacta ctcccagtca tagctgtccc tcttctctta 8580
tgaagatccc tcgacctgca gcccaagctt ggcgtaatca tggtcatagc tgtttcctgt 8640
gtgaaattgt tatccgctca caattccaca caacatacga gccggaagca taaagtgtaa 8700
agcctggggt gcctaatgag tgagctaact cacattaatt gcgttgcgct cactgcccgc 8760
tttccagtcg ggaaacctgt cgtgccagcg gatccgcatc tcaattagtc agcaaccata 8820
gtcccgcccc taactccgcc catcccgccc ctaactccgc ccagttccgc ccattctccg 8880
ccccatggct gactaatttt ttttatttat gcagaggccg aggccgcctc ggcctctgag 8940
ctattccaga agtagtgagg aggctttttt ggaggcctag gcttttgcaa aaagctaact 9000
tgtttattgc agcttataat ggttacaaat aaagcaatag catcacaaat ttcacaaata 9060
aagcattttt ttcactgcat tctagttgtg gtttgtccaa actcatcaat gtatcttatc 9120
atgtctggat ccgctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 9180
tgggcgctct tccgcttcct cgctcactga ctcgctgcgc tcggtcgttc ggctgcggcg 9240
agcggtatca gctcactcaa aggcggtaat acggttatcc acagaatcag gggataacgc 9300
aggaaagaac atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa aggccgcgtt 9360
gctggcgttt ttccataggc tccgcccccc tgacgagcat cacaaaaatc gacgctcaag 9420
tcagaggtgg cgaaacccga caggactata aagataccag gcgtttcccc ctggaagctc 9480
cctcgtgcgc tctcctgttc cgaccctgcc gcttaccgga tacctgtccg cctttctccc 9540
ttcgggaagc gtggcgcttt ctcaatgctc acgctgtagg tatctcagtt cggtgtaggt 9600
cgttcgctcc aagctgggct gtgtgcacga accccccgtt cagcccgacc gctgcgcctt 9660
atccggtaac tatcgtcttg agtccaaccc ggtaagacac gacttatcgc cactggcagc 9720
agccactggt aacaggatta gcagagcgag gtatgtaggc ggtgctacag agttcttgaa 9780
gtggtggcct aactacggct acactagaag gacagtattt ggtatctgcg ctctgctgaa 9840
gccagttacc ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa ccaccgctgg 9900
tagcggtggt ttttttgttt gcaagcagca gattacgcgc agaaaaaaag gatctcaaga 9960
agatcctttg atcttttcta cggggtctga cgctcagtgg aacgaaaact cacgttaagg 10020
gattttggtc atgagattat caaaaaggat cttcacctag atccttttaa attaaaaatg 10080
aagttttaaa tcaatctaaa gtatatatga gtaaacttgg tctgacagtt accaatgctt 10140
aatcagtgag gcacctatct cagcgatctg tctatttcgt tcatccatag ttgcctgact 10200
ccccgtcgtg tagataacta cgatacggga gggcttacca tctggcccca gtgctgcaat 10260
gataccgcga gacccacgct caccggctcc agatttatca gcaataaacc agccagccgg 10320
aagggccgag cgcagaagtg gtcctgcaac tttatccgcc tccatccagt ctattaattg 10380
ttgccgggaa gctagagtaa gtagttcgcc agttaatagt ttgcgcaacg ttgttgccat 10440
tgctacaggc atcgtggtgt cacgctcgtc gtttggtatg gcttcattca gctccggttc 10500
ccaacgatca aggcgagtta catgatcccc catgttgtgc aaaaaagcgg ttagctcctt 10560
cggtcctccg atcgttgtca gaagtaagtt ggccgcagtg ttatcactca tggttatggc 10620
agcactgcat aattctctta ctgtcatgcc atccgtaaga tgcttttctg tgactggtga 10680
gtactcaacc aagtcattct gagaatagtg tatgcggcga ccgagttgct cttgcccggc 10740
gtcaatacgg gataataccg cgccacatag cagaacttta aaagtgctca tcattggaaa 10800
acgttcttcg gggcgaaaac tctcaaggat cttacgctgt tgagatccag ttcgatgtaa 10860
cccactcgtg cacccaactg atcttcagca tcttttactt tcaccagcgt ttctgggtga 10920
gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa gggcgacacg gaaatgttga 10980
atactcatac tcttcctttt tcaatattat tgaagcattt atcagggtta ttgtctcatg 11040
agcggataca tatttgaatg tatttagaaa aataaacaaa taggggttcc gcgcacattt 11100
ccccgaaaag tgccacctg 11119
<210> 9
<211> 5587
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
gtcgacattg attattgact agttattaat agtaatcaat tacggggtca ttagttcata 60
gcccatatat ggagttccgc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 120
ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag 180
ggactttcca ttgacgtcaa tgggtggact atttacggta aactgcccac ttggcagtac 240
atcaagtgta tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg 300
cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg 360
tattagtcat cgctattacc atgggtcgag gtgagcccca cgttctgctt cactctcccc 420
atctcccccc cctccccacc cccaattttg tatttattta ttttttaatt attttgtgca 480
gcgatggggg cggggggggg gggggcgcgc gccaggcggg gcggggcggg gcgaggggcg 540
gggcggggcg aggcggagag gtgcggcggc agccaatcag agcggcgcgc tccgaaagtt 600
tccttttatg gcgaggcggc ggcggcggcg gccctataaa aagcgaagcg cgcggcgggc 660
gggagtcgct gcgttgcctt cgccccgtgc cccgctccgc gccgcctcgc gccgcccgcc 720
ccggctctga ctgaccgcgt tactcccaca ggtgagcggg cgggacggcc cttctcctcc 780
gggctgtaat tagcgcttgg tttaatgacg gctcgtttct tttctgtggc tgcgtgaaag 840
ccttaaaggg ctccgggagg gccctttgtg cgggggggag cggctcgggg ggtgcgtgcg 900
tgtgtgtgtg cgtggggagc gccgcgtgcg gcccgcgctg cccggcggct gtgagcgctg 960
cgggcgcggc gcggggcttt gtgcgctccg cgtgtgcgcg aggggagcgc ggccgggggc 1020
ggtgccccgc ggtgcggggg ggctgcgagg ggaacaaagg ctgcgtgcgg ggtgtgtgcg 1080
tgggggggtg agcagggggt gtgggcgcgg cggtcgggct gtaacccccc cctgcacccc 1140
cctccccgag ttgctgagca cggcccggct tcgggtgcgg ggctccgtgc ggggcgtggc 1200
gcggggctcg ccgtgccggg cggggggtgg cggcaggtgg gggtgccggg cggggcgggg 1260
ccgcctcggg ccggggaggg ctcgggggag gggcgcggcg gccccggagc gccggcggct 1320
gtcgaggcgc ggcgagccgc agccattgcc ttttatggta atcgtgcgag agggcgcagg 1380
gacttccttt gtcccaaatc tggcggagcc gaaatctggg aggcgccgcc gcaccccctc 1440
tagcgggcgc gggcgaagcg gtgcggcgcc ggcaggaagg aaatgggcgg ggagggcctt 1500
cgtgcgtcgc cgcgccgccg tccccttctc catctccagc ctcggggctg ccgcaggggg 1560
acggctgcct tcggggggga cggggcaggg cggggttcgg cttctggcgt gtgaccggcg 1620
gctctagagc ctctgctaac catgttcatg ccttcttctt tttcctacag ctcctgggca 1680
acgtgctggt tgttgtgctg tctcatcatt ttggcaaaga attcatggat aatctcacaa 1740
aagttcgtga gtatctcaag tcctattctc gtctggatca ggcggtagga gagatagatg 1800
agatcgaagc acaacgagct gaaaagtcca attatgagtt gttccaagag gatggagtgg 1860
aagagcatac taagccctct tattttcagg cagcagatga ttctgacaca gaatctgaac 1920
cagaaattga agacaatcaa ggcttgtatg caccagatcc agaagctgag caagttgaag 1980
gctttataca ggggccttta gatgactatg cagatgagga agtggatgtt gtatttactt 2040
cggactggaa acagcctgag cttgaatctg acgagcatgg aaagacctta cggttgacat 2100
cgccagaggg tttaagtgga gagcagaaat cccagtggct ttcgacgatt aaagcagtcg 2160
tgcaaagtgc caaatactgg aatctggcag agtgcacatt tgaagcatcg ggagaagggg 2220
tcattatgaa ggagcgccag ataactccgg atgtatataa ggtcactcca gtgatgaaca 2280
cacatccgtc ccaatcagaa gcagtatcag atgtttggtc tctctcaaag acatccatga 2340
ctttccaacc caagaaagca agtcttcagc ctctcaccat atccttggat gaattgttct 2400
catctagagg agagttcatc tctgtcggag gtgacggacg aatgtctcat aaagaggcca 2460
tcctgctcgg cctgagatac aaaaagttgt acaatcaggc gagagtcaaa tattctctgt 2520
agctcgagga attcactcct caggtgcagg ctgcctatca gaaggtggtg gctggtgtgg 2580
ccaatgccct ggctcacaaa taccactgag atctttttcc ctctgccaaa aattatgggg 2640
acatcatgaa gccccttgag catctgactt ctggctaata aaggaaattt attttcattg 2700
caatagtgtg ttggaatttt ttgtgtctct cactcggaag gacatatggg agggcaaatc 2760
atttaaaaca tcagaatgag tatttggttt agagtttggc aacatatgcc atatgctggc 2820
tgccatgaac aaaggtggct ataaagaggt catcagtata tgaaacagcc ccctgctgtc 2880
cattccttat tccatagaaa agccttgact tgaggttaga ttttttttat attttgtttt 2940
gtgttatttt tttctttaac atccctaaaa ttttccttac atgttttact agccagattt 3000
ttcctcctct cctgactact cccagtcata gctgtccctc ttctcttatg aagatccctc 3060
gacctgcagc ccaagcttgg cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta 3120
tccgctcaca attccacaca acatacgagc cggaagcata aagtgtaaag cctggggtgc 3180
ctaatgagtg agctaactca cattaattgc gttgcgctca ctgcccgctt tccagtcggg 3240
aaacctgtcg tgccagcgga tccgcatctc aattagtcag caaccatagt cccgccccta 3300
actccgccca tcccgcccct aactccgccc agttccgccc attctccgcc ccatggctga 3360
ctaatttttt ttatttatgc agaggccgag gccgcctcgg cctctgagct attccagaag 3420
tagtgaggag gcttttttgg aggcctaggc ttttgcaaaa agctaacttg tttattgcag 3480
cttataatgg ttacaaataa agcaatagca tcacaaattt cacaaataaa gcattttttt 3540
cactgcattc tagttgtggt ttgtccaaac tcatcaatgt atcttatcat gtctggatcc 3600
gctgcattaa tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc 3660
cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc 3720
tcactcaaag gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat 3780
gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt 3840
ccataggctc cgcccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg 3900
aaacccgaca ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc 3960
tcctgttccg accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt 4020
ggcgctttct caatgctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa 4080
gctgggctgt gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta 4140
tcgtcttgag tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa 4200
caggattagc agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa 4260
ctacggctac actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt 4320
cggaaaaaga gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt 4380
ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat 4440
cttttctacg gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat 4500
gagattatca aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc 4560
aatctaaagt atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc 4620
acctatctca gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcgtgta 4680
gataactacg atacgggagg gcttaccatc tggccccagt gctgcaatga taccgcgaga 4740
cccacgctca ccggctccag atttatcagc aataaaccag ccagccggaa gggccgagcg 4800
cagaagtggt cctgcaactt tatccgcctc catccagtct attaattgtt gccgggaagc 4860
tagagtaagt agttcgccag ttaatagttt gcgcaacgtt gttgccattg ctacaggcat 4920
cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc tccggttccc aacgatcaag 4980
gcgagttaca tgatccccca tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat 5040
cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa 5100
ttctcttact gtcatgccat ccgtaagatg cttttctgtg actggtgagt actcaaccaa 5160
gtcattctga gaatagtgta tgcggcgacc gagttgctct tgcccggcgt caatacggga 5220
taataccgcg ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg 5280
gcgaaaactc tcaaggatct tacgctgttg agatccagtt cgatgtaacc cactcgtgca 5340
cccaactgat cttcagcatc ttttactttc accagcgttt ctgggtgagc aaaaacagga 5400
aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat actcatactc 5460
ttcctttttc aatattattg aagcatttat cagggttatt gtctcatgag cggatacata 5520
tttgaatgta tttagaaaaa taaacaaata ggggttccgc gcacatttcc ccgaaaagtg 5580
ccacctg 5587
<210> 10
<211> 1407
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
atggagacag acacactcct gctatgggta ctgctgctct gggttccagg ttccactggt 60
gaggtgcagc tggtggaatc aggaggagga ctggtgcagc caggaggatc tctgagactg 120
tcttgcgccg ccagcggctt tacattcagc gactcttgga tccattgggt gcgccaggct 180
ccaggaaaag gactggagtg ggtggcttgg atcagccctt acggcggcag cacctactac 240
gccgatagcg tgaagggcag gttcaccatc agcgccgata ccagcaagaa caccgcctac 300
ctgcagatga acagcctgag ggccgaggat accgccgtgt actattgcgc caggaggcat 360
tggccaggcg gatttgacta ttggggccag ggaacactgg tgacagtgtc agccgccagc 420
accaagggac ctagcgtgtt tcctctggcc cctagcagca agtctacaag cggcggcaca 480
gccgctctgg gttgtctggt gaaggactac ttccccgagc cagtgaccgt gtcttggaac 540
agcggagctc tgacaagcgg agtgcacaca tttccagccg tgctgcagag ctcaggactg 600
tacagcctgt ccagcgtggt gacagtgcct tctagcagcc tgggcaccca gacctacatc 660
tgcaacgtga accacaagcc cagcaacacc aaggtggaca agcgggtgga gcccaagtct 720
tgcgacaaga cccacacttg ccccccttgt ccagctccag aactgctggg aggaccatca 780
gtgttcctgt tcccccctaa gcccaaggac accctgatga tcagccggac cccagaagtg 840
acttgcgtgg tggtggacgt gtctcacgag gaccccgagg tcaagttcaa ttggtacgtg 900
gacggagtgg aggtgcacaa cgctaagacc aagcccaggg aggagcagta caacagcacc 960
tacagggtgg tgtccgtgct gacagtgctg caccaggatt ggctgaacgg caaggagtac 1020
aagtgcaagg tgtccaacaa ggccctgcca gctcccatcg agaagaccat cagcaaggcc 1080
aagggccagc ctagagagcc tcaggtgtac acactgcccc ctagcagaga ggagatgacc 1140
aagaaccagg tgtccctgac ttgcctcgtg aagggcttct accccagcga tatcgccgtc 1200
gagtgggaat ctaacggcca gcccgagaac aactacaaga ccaccccccc cgtgctggat 1260
agcgacggca gcttcttcct gtacagcaag ctgaccgtgg acaaaagtcg ctggcagcag 1320
ggcaacgtgt tctcttgcag cgtgatgcac gaggccctgc acaaccacta cacccagaag 1380
agcctgagcc tgagcccagg aaagtag 1407
<210> 11
<211> 705
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
atggagacag acacactcct gctatgggta ctgctgctct gggttccagg ttccactggt 60
gacatccaga tgacccagag ccctagcagc ctgagcgcca gcgtgggaga tagagtgacc 120
atcacctgca gggcctctca ggacgtgtct acagccgtgg cttggtacca gcagaagcca 180
ggaaaggccc ccaagctgct gatctacagc gcctctttcc tgtacagcgg cgtgccttct 240
agattcagcg gcagcggaag cggcaccgat ttcaccctga ccatcagcag cctgcagcca 300
gaggacttcg ccacctacta ctgccagcag tacctgtacc acccagccac attcggccag 360
ggcaccaagg tggagatcaa gaggaccgtg gccgccccta gcgtgtttat cttccctcct 420
agcgacgagc agctgaaaag cggaacagcc agcgtcgtct gcctgctgaa caacttctac 480
cccagggagg ccaaagtcca gtggaaagtg gacaacgccc tgcagagcgg caattctcag 540
gagagcgtga ccgagcagga tagcaaggac agcacctaca gcctgagcag cacactgacc 600
ctgagcaagg ccgactacga gaagcacaag gtgtacgctt gcgaggtcac acaccaggga 660
ctgagcagcc ccgtgaccaa gagcttcaac cgcggcgagt gttag 705
<210> 12
<211> 861
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
atgtaccgca tgcagctgct gtcttgcatc gccctgtctc tggctctggt gaccaatagc 60
cggatcaccc tgaaggagag cggacctcct ctggtgaaac ctacccagac cctgaccctg 120
acttgcacct tcagcggctt ctctatgagc gatccagagg ccggagtggc ttggatcaga 180
cagccaccag gcaaggcact cgagtggctg gctatcatct acgccgacgg aagcgccgcc 240
tattctcctt ctctgaacac ccggctgacc atcaccaagg acaccagcaa gaaccaggtg 300
gtgctggtca tgaccagagt gtccccagtg gataccgcca cctacttttg cgcccacaga 360
ccaggcagct tcaggctgaa caacgtgtcc ctggacagca gcgtgtcagc aggatttgcc 420
gtgtggggtc caggaatcac cgtgaccatc tctagcggag gaggaggaag cggaggagga 480
ggatctggag gaggaggaag cggaggagga ggagcatctg ccctgcagct gacacagtct 540
ccttctagcc tgagcgctag cgtgggcgat agaatcacca tcacttgcgt cgccgacaag 600
aaggtcggct actacatggc ttggtaccgg cagaagccag gatctcctcc tcagctgctg 660
gtgtacggaa gcgatcagct gtacgagggc gtgcctagca gattcagcgg cagcggaagc 720
ggaaccgagt tcaccctgac catcagcacc ctgagacccg aggacttcgc cacctactat 780
tgcgcagccc tgcacgccct gccttatgtg tttggaccag gcaccagagt ggacgtcaga 840
catcatcatc atcatcatta a 861
<210> 13
<211> 14
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 13
Met Leu Leu Thr Leu Ile Ile Leu Leu Pro Val Val Ser Lys
1 5 10
<210> 14
<211> 17
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 14
Met Trp Leu Gln Ser Leu Leu Leu Leu Gly Thr Val Ala Cys Ser Ile
1 5 10 15
Ser
<210> 15
<211> 20
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 15
Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ser Leu Ala Leu
1 5 10 15
Val Thr Asn Ser
20
<210> 16
<211> 20
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 16
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly
20

Claims (35)

1. A method for producing an attenuated viral vector, comprising the steps of:
(S1) mixing the nucleotide sequence of the gene encoding the vesicular stomatitis virus matrix protein, as shown in SEQ ID NO:1, with a first vector, and adding a transposase to perform a transposition reaction;
(S2) mixing the transposition product obtained in the step (S1) with competent bacteria, and transforming;
(S3) extracting the plasmid of the bacterium obtained by the step (S2) to obtain the gene encoding the vesicular stomatitis virus matrix protein after transposition;
(S4) recombining the gene obtained in the step (S3) into a second vector to obtain the attenuated viral vector;
wherein the sequence encoding the second vector comprises the genomic sequence of vesicular stomatitis virus;
wherein the first vector is selected from a vector having a transposition function;
the first vector comprises a sequence shown as SEQ ID NO. 2;
the second vector comprises a sequence as shown in GENBANK numbering EU 849003.1;
the sequence encoding the attenuated viral vector comprises the sequence set forth as SEQ ID NO:4, or a sequence shown in the figure.
2. An attenuated virus vector obtained by the production method according to claim 1.
3. A cloning scaffold vector system, wherein the cloning scaffold vector system recombines the sequence as shown in SEQ ID No. 5 into the vector of claim 2; wherein, the insertion site of the sequence shown in SEQ ID NO. 5 into the vector as described in claim 2 is shown in SEQ ID NO:4, position 4632 of the sequence shown in fig. 4.
4. The cloning scaffold vector system according to claim 3, wherein the sequence encoding the cloning scaffold vector system comprises the sequence shown in SEQ ID NO 6.
5. A method of producing an attenuated monoclonal virus strain comprising the steps of:
(S1) culturing the first cell to be transfected;
(S2) co-transfecting a plasmid comprising the sequence shown as SEQ ID NO:3, and a plasmid pN comprising the sequence shown as SEQ ID NO:7, a plasmid pL comprising the sequence shown as SEQ ID NO:8, a plasmid mixture of a plasmid pP comprising the sequence shown as SEQ ID NO:9, into the cells to be transfected in the step (S1);
(S3) extracting the supernatant of the cell mixture obtained after the co-transfection in the step (S2), and transfecting the cell mixture into a second cell to be transfected;
(S4) culturing the second cell to be transfected after being transfected in the step (S3), and screening to obtain an attenuated monoclonal virus strain.
6. The method according to claim 5, wherein the weight ratio of the plasmid comprising the sequence shown as SEQ ID NO. 3, the plasmid pN comprising the sequence shown as SEQ ID NO. 7, the plasmid pL comprising the sequence shown as SEQ ID NO. 8 and the plasmid pP comprising the sequence shown as SEQ ID NO. 9 is 10:4:1: 5.
7. The method according to any one of claims 5 to 6, wherein the plasmid comprising the sequence shown as SEQ ID NO. 3 is a plasmid comprising the sequence shown as SEQ ID NO. 4.
8. The method of claim 7, wherein the second cell to be transfected is selected from the group consisting of Vero cells; the first cells to be transfected are selected from BSR-T7 cells.
9. The method according to claim 7, wherein the plasmid comprising the sequence shown as SEQ ID NO. 4 in step (S2) is selected from the group consisting of plasmids comprising the sequence shown as SEQ ID NO. 6.
10. The method according to claim 9, wherein the coding sequence of the plasmid comprising the sequence shown as SEQ ID NO. 6 in step (S2) further comprises the sequence shown as SEQ ID NO. 10 and the sequence shown as SEQ ID NO. 11.
11. The method according to claim 9, wherein the coding sequence of the plasmid comprising the sequence shown as SEQ ID NO. 6 in step (S2) further comprises the sequence shown as SEQ ID NO. 12.
12. The method of claim 11, wherein the 5' end comprising the sequence set forth in SEQ ID NO 12 further comprises a signal peptide sequence; the sequence of the signal peptide is selected from the sequences shown as SEQ ID NO. 13, SEQ ID NO. 14, SEQ ID NO. 15 or SEQ ID NO. 16.
13. The method of claim 12, wherein the signal peptide sequence is selected from the group consisting of SEQ ID NO 15.
14. An attenuated monoclonal virus strain produced by the method of producing an attenuated monoclonal virus strain according to any one of claims 5 to 6.
15. A monoclonal antibody secreted by the attenuated monoclonal virus strain of claim 14.
16. A monoclonal antibody comprising a fragment encoded by the sequence shown as SEQ ID NO. 4, the sequence shown as SEQ ID NO. 10 and the coding sequence shown as SEQ ID NO. 11.
17. The monoclonal antibody according to claim 16, wherein the sequence comprising SEQ ID NO. 4 is selected from the group consisting of the sequences comprising SEQ ID NO. 6.
18. The monoclonal antibody of claim 17, wherein the coding sequence further comprises the sequence set forth in SEQ ID NO 13, SEQ ID NO 14, SEQ ID NO 15 or SEQ ID NO 16.
19. A pharmaceutical composition comprising the monoclonal antibody of any one of claims 15-18.
20. Use of the monoclonal antibody of any one of claims 15-18 or the pharmaceutical composition of claim 19 in the preparation of a medicament for killing hyperproliferative cells, inducing promotion of an anti-tumor immune response, or eliminating microenvironment immunosuppression of tumor tissue.
21. The use of claim 20, wherein the hyperproliferative cell is contained in a patient.
22. The use of claim 21, wherein the hyperproliferative cell is selected from a tumor cell or a tumor tissue-associated cell.
23. The use of claim 22, wherein the tumor cell is a cancer cell.
24. The use of claim 23, wherein the cancer cell is a metastatic cancer cell.
25. Use of a monoclonal antibody according to any one of claims 15-18 or a pharmaceutical composition according to claim 19 for the preparation of a medicament for slow and sustained killing of a dysplastic cell comprising the step of contacting said dysplastic cell with a monoclonal antibody according to any one of claims 15-18 or a pharmaceutical composition according to claim 19.
26. The use of claim 25, wherein the hyperproliferative cell is contained in a patient.
27. The use of claim 25, wherein the hyperproliferative cell is selected from a tumor cell or a tumor tissue-associated cell.
28. The use of claim 27, wherein the tumor cell is a cancer cell.
29. The use of claim 28, wherein the cancer cell is a metastatic cancer cell.
30. The use according to claim 25, wherein the monoclonal antibody of any one of claims 15-18 or the pharmaceutical composition of claim 19 is administered to a patient.
31. The use of claim 25, wherein the monoclonal antibody of any one of claims 15-18 or the pharmaceutical composition of claim 19 is administered by a mode of administration comprising one or more of intraperitoneal, intravenous, intraarterial, intramuscular, intradermal, intratumoral, subcutaneous, or intranasal administration.
32. The use of claim 31, wherein the administration route of the administration means comprises one or more of endoscopy, intervention, minimally invasive, and traditional surgery.
33. The use of claim 25, further comprising the step of administering a second anti-tumor therapy.
34. The use of claim 33, wherein the second anti-tumor therapy is selected from one or more of chemotherapy, radiation therapy, immunotherapy, surgical therapy.
35. A polynucleotide comprising the sequence shown in SEQ ID NO. 6.
CN201810913350.5A 2018-08-10 2018-08-10 Preparation method and application of attenuated rhabdovirus Active CN110819657B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810913350.5A CN110819657B (en) 2018-08-10 2018-08-10 Preparation method and application of attenuated rhabdovirus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810913350.5A CN110819657B (en) 2018-08-10 2018-08-10 Preparation method and application of attenuated rhabdovirus

Publications (2)

Publication Number Publication Date
CN110819657A CN110819657A (en) 2020-02-21
CN110819657B true CN110819657B (en) 2021-11-19

Family

ID=69546736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810913350.5A Active CN110819657B (en) 2018-08-10 2018-08-10 Preparation method and application of attenuated rhabdovirus

Country Status (1)

Country Link
CN (1) CN110819657B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769433A (en) * 2004-11-04 2006-05-10 张庆勇 Recombinant vesicular stomatitis virus and its uses
WO2010080909A1 (en) * 2009-01-08 2010-07-15 Yale University Compositions and methods of use of an oncolytic vesicular stomatitis virus
WO2017156349A1 (en) * 2016-03-10 2017-09-14 Cold Genesys, Inc. Methods of treating solid or lymphatic tumors by combination therapy
WO2018006005A1 (en) * 2016-06-30 2018-01-04 Oncorus, Inc. Pseudotyped oncolytic viral delivery of therapeutic polypeptides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769433A (en) * 2004-11-04 2006-05-10 张庆勇 Recombinant vesicular stomatitis virus and its uses
WO2010080909A1 (en) * 2009-01-08 2010-07-15 Yale University Compositions and methods of use of an oncolytic vesicular stomatitis virus
WO2017156349A1 (en) * 2016-03-10 2017-09-14 Cold Genesys, Inc. Methods of treating solid or lymphatic tumors by combination therapy
WO2018006005A1 (en) * 2016-06-30 2018-01-04 Oncorus, Inc. Pseudotyped oncolytic viral delivery of therapeutic polypeptides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A novel oncolytic virus engineered with PD-L1 scFv effectively inhibits tumor growth in a mouse model;Chuanjian Wu 等;《Cellular & Molecular Immunology》;20190730;第16卷;780-782 *
Highly attenuated recombinant vesicular stomatitis virus VSV-12"GFP displays immunogenic and oncolytic activity;Anthony N van den Pol 等;《J. Virol.》;20121107;第87卷(第2期);1019-1034 *

Also Published As

Publication number Publication date
CN110819657A (en) 2020-02-21

Similar Documents

Publication Publication Date Title
ES2819976T3 (en) Compositions and medical uses for reprogramming TCR with fusion proteins
AU2018229561B2 (en) Recombinant adenoviruses and use thereof
KR102609858B1 (en) Adeno-Associated Viral Vectors for the Treatment of Mucopolysaccharidosis
KR101761709B1 (en) Site-specific integration
AU2013221187B9 (en) Virus like particle composition
US20030119104A1 (en) Chromosome-based platforms
KR20180081527A (en) Genetic tools for transformation of Clostridium bacteria
CN101868241A (en) Express therapeutic gene switch constructs and the bioreactor and their application of Biotherapeutics molecule
CN113396222A (en) Adeno-associated virus (AAV) producing cell lines and related methods
KR20110126586A (en) Single recombination system and method of use
KR20230019063A (en) Triple function adeno-associated virus (AAV) vectors for the treatment of C9ORF72 associated diseases
CN114026242A (en) AAV vector having myelin protein zero promoter and use thereof for treating Schwann cell-related diseases such as CHARCOT-MARIE-TOOTH disease
TW202308669A (en) Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
JP2000350590A (en) Growth hormone and growth hormone releasing hormone composition
CN116763909B (en) Preparation of medicine for treating osteosarcoma by combining berberine and HER2-CAR-T cells
CN110819657B (en) Preparation method and application of attenuated rhabdovirus
KR20240021906A (en) Expression vectors, bacterial sequence-free vectors, and methods of making and using the same
CN114231562A (en) Lymphatic choroid meningitis virus expressing luciferase gene and construction method and application thereof
KR20230117327A (en) An expression vector comprising a soluble alkaline phosphatase construct and a polynucleotide encoding the soluble alkaline phosphatase construct.
CN116726154B (en) Preparation of medicine for treating osteosarcoma by combining schisandrin and HER2-CAR-T cells
KR20220150323A (en) Fully Synthetic Long-Chain Nucleic Acids for Production of Vaccines Against Coronavirus
KR20230153437A (en) Fully synthetic long-chain nucleic acid for producing vaccines against coronavirus
CA2522166C (en) Lambda integrase mutein for use in recombination
KR20230007808A (en) Method for preparing a reassortant virus of the family Reoviridae and vector library therefor
CN117881788A (en) Expression vectors, bacterial sequence-free vectors, and methods of making and using the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200327

Address after: 311200 4th floor, building 2, ChuanHua Kechuang building, ningwei street, Xiaoshan District, Hangzhou City, Zhejiang Province

Applicant after: Huijun biomedical technology (Hangzhou) Co.,Ltd.

Address before: 215123 4th Floor, B5 Building, Biotechnology Nano Park, Suzhou Industrial Park, Jiangsu Province

Applicant before: SUZHOU ULTRAIMMUNE Co.,Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210106

Address after: 321000 office 1201-1, innovation building, 1000 Linjiang East Road, bailongqiao Town, Wucheng District, Jinhua City, Zhejiang Province

Applicant after: Ruifengkang biomedical technology (Zhejiang) Co.,Ltd.

Address before: 311200 4th floor, building 2, ChuanHua science and technology building, ningwei street, Xiaoshan District, Hangzhou City, Zhejiang Province

Applicant before: Huijun biomedical technology (Hangzhou) Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Preparation and application of an attenuated rod-shaped virus

Effective date of registration: 20221220

Granted publication date: 20211119

Pledgee: Bank of Jinhua Limited by Share Ltd. Wucheng branch

Pledgor: Ruifengkang biomedical technology (Zhejiang) Co.,Ltd.

Registration number: Y2022980028346

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20231221

Granted publication date: 20211119

Pledgee: Bank of Jinhua Limited by Share Ltd. Wucheng branch

Pledgor: Ruifengkang biomedical technology (Zhejiang) Co.,Ltd.

Registration number: Y2022980028346

PC01 Cancellation of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A preparation method and application of attenuated rod-shaped virus

Granted publication date: 20211119

Pledgee: Bank of Jinhua Limited by Share Ltd. Wucheng branch

Pledgor: Ruifengkang biomedical technology (Zhejiang) Co.,Ltd.

Registration number: Y2024980002578

PE01 Entry into force of the registration of the contract for pledge of patent right