CN110815465A - Treatment method for improving moisture resistance and use stability of fibraurea recisa pierre - Google Patents

Treatment method for improving moisture resistance and use stability of fibraurea recisa pierre Download PDF

Info

Publication number
CN110815465A
CN110815465A CN201911063880.6A CN201911063880A CN110815465A CN 110815465 A CN110815465 A CN 110815465A CN 201911063880 A CN201911063880 A CN 201911063880A CN 110815465 A CN110815465 A CN 110815465A
Authority
CN
China
Prior art keywords
fibraurea recisa
recisa pierre
pierre
treatment
fibraurea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911063880.6A
Other languages
Chinese (zh)
Other versions
CN110815465B (en
Inventor
李明
李东猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Angshuo Smart Home Co ltd
Original Assignee
FUNAN COUNTY MENGFA ARTS & CRAFTS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUNAN COUNTY MENGFA ARTS & CRAFTS Co Ltd filed Critical FUNAN COUNTY MENGFA ARTS & CRAFTS Co Ltd
Priority to CN201911063880.6A priority Critical patent/CN110815465B/en
Publication of CN110815465A publication Critical patent/CN110815465A/en
Application granted granted Critical
Publication of CN110815465B publication Critical patent/CN110815465B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K9/00Chemical or physical treatment of reed, straw, or similar material
    • B27K9/002Cane, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K1/00Damping wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/007Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process employing compositions comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/02Processes; Apparatus
    • B27K3/025Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/02Processes; Apparatus
    • B27K3/08Impregnating by pressure, e.g. vacuum impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/16Inorganic impregnating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/52Impregnating agents containing mixtures of inorganic and organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • B27K5/0015Treating of wood not provided for in groups B27K1/00, B27K3/00 by electric means
    • B27K5/002Electric discharges, plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • B27K5/0085Thermal treatments, i.e. involving chemical modification of wood at temperatures well over 100°C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • B27K5/04Combined bleaching or impregnating and drying of wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K2240/00Purpose of the treatment
    • B27K2240/20Removing fungi, molds or insects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K2240/00Purpose of the treatment
    • B27K2240/70Hydrophobation treatment

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

The invention discloses a treatment method for improving moisture resistance and use stability of fibraurea recisa pierre, which comprises the following steps: (1) cleaning treatment, (2) primary drying treatment, (3) soaking treatment of composite treatment liquid, (4) secondary drying treatment, (5) impregnating modification treatment of impregnant, and (6) humidity-regulating curing treatment. The treatment method has simple steps and reasonable process matching, is extremely suitable for treating the fibraurea recisa pierre, can obviously improve the moisture resistance, the mechanical strength and the use stability of the fibraurea recisa pierre, prolongs the service life of the fibraurea recisa pierre, and has extremely high market competitiveness.

Description

Treatment method for improving moisture resistance and use stability of fibraurea recisa pierre
Technical Field
The invention belongs to the technical field of fibraurea recisa pierre processing, and particularly relates to a processing method for improving moisture resistance and use stability of fibraurea recisa pierre.
Background
Rattan is a tough and tough vine with extremely long body, and is commonly used for weaving wicker products due to the qualities of smooth hand feeling, smooth appearance and the like. However, the rattan is easy to crack and brittle fracture when being actually woven and used, the storage time is not long, the rattan is easy to mildew and moth-eaten, the use quality is reduced, the service life is prolonged, and the use performance is enhanced by processing and modifying the rattan for people.
At present, a plurality of methods for rattan modification treatment are available, one of which is to perform grease impregnation treatment on the rattan, that is, to perform pressure impregnation on the rattan by using resin components, so that the rattan contains a certain amount of resin components, thereby improving the mechanical and corrosion-resistant qualities of the rattan. If the application number is: 201710845490.9 discloses a processing method for improving the dimensional stability of palm rattan, wherein the palm rattan is impregnated with modified urea-formaldehyde resin, and the effect of improving the mechanical quality and other characteristics of the palm rattan is achieved. However, the method has the problems that the impregnation amount is usually large, on one hand, raw material resources are wasted, on the other hand, the method is not beneficial to environmental protection, and along with the continuous improvement of the product performance requirements of people, the treatment method needs to be continuously improved.
Disclosure of Invention
The invention aims to provide a treatment method for improving the moisture resistance and the use stability of fibraurea recisa pierre aiming at the existing problems.
The invention is realized by the following technical scheme:
a treatment method for improving moisture resistance and use stability of fibraurea recisa pierre comprises the following steps:
(1) firstly, removing leaves and peels of fibraurea recisa pierre, then boiling the fibraurea recisa pierre in boiling water for 40-50 min, then taking the fibraurea recisa pierre out and immersing in acid liquor for soaking for 10-15 min, and finally taking the fibraurea recisa pierre out and washing with clear water for one time for later use;
(2) putting the fibraurea recisa pierre treated in the step (1) into a vacuum drying oven for drying treatment, and taking the fibraurea recisa pierre out for later use after 3-4 hours; the drying treatment is carried out, so that the fibraurea recisa pierre contains a small amount of water, the fibraurea recisa pierre can better absorb components in the composite treatment liquid in the next step, a humidity gradient is generated, and the processing treatment is convenient;
(3) immersing the fibraurea recisa pierre treated in the step (2) into the composite treatment liquid, immediately introducing alternating current into the composite treatment liquid after 1-1.5 min, stopping after 3-5 min, taking out the fibraurea recisa pierre, and washing the fibraurea recisa pierre with clear water for later use; the composite treatment liquid comprises the following components in parts by weight: 20-25 parts of sodium chloride, 10-15 parts of dodecyl trimethyl ammonium bromide, 5-8 parts of nano silver powder, 8-14 parts of fatty alcohol-polyoxyethylene ether and 500-600 parts of water; the sodium chloride added into the composite treatment liquid can play a role in improving the electric conduction capability of the solution, the nano silver powder can permeate into the surface layer of the fibraurea recisa pierre wood material, the nano silver powder has good electric conductivity, the surface activity of the nano silver powder is improved during alternating current treatment, the cell wall gap in the surface layer of the fibraurea recisa pierre wood is increased, the lignin is subjected to degradation and condensation reaction, the number of active groups is increased, the compatibility and the associativity between the active groups and high polymer components are improved, the treated nano silver powder is uniformly dispersed in the tissue gap of the surface layer of the fibraurea recisa pierre, so that anchor points are provided for the subsequent resin immersion, the binding strength is enhanced, and;
(4) placing the fibraurea recisa pierre treated in the step (3) into a constant temperature and humidity box, controlling the temperature of a dry bulb to be 32-35 ℃ and the relative humidity to be 70-75%, drying the fibraurea recisa pierre until the water content is 11-13%, and taking out for later use;
(5) putting the fibraurea recisa pierre treated in the step (4) into a vacuum pressure impregnation tank containing an impregnant, carrying out impregnation treatment on the fibraurea recisa pierre, and taking the fibraurea recisa pierre out for later use after 2-2.5 hours;
(6) and (4) placing the fibraurea recisa pierre treated in the step (5) into a constant-temperature constant-humidity box for humidifying and curing, and taking out the fibraurea recisa pierre after 1-2 hours.
Further, the acid solution in the step (1) is a hydrochloric acid solution with the mass fraction of 6-8%.
Further, the temperature in the vacuum drying oven is controlled to be 70-75 ℃ during the drying treatment in the step (2).
Further, the control current intensity is 25-30 mA/cm when the alternating current is processed in the step (3)2
Further, the particle size of the nano silver powder in the step (3) is 10-30 nm.
Further, the impregnant in the step (5) comprises the following components in parts by weight: 90-100 parts of urea-formaldehyde resin and 5-8 parts of polyvinyl alcohol.
Further, the pressure in the vacuum pressure impregnation tank is kept at 2.5-3 MPa during the impregnation treatment in the step (5).
Further, the temperature in the constant temperature and humidity chamber is kept at 110-115 ℃ and the relative humidity is kept at 65-70% during the humidity conditioning and curing treatment in the step (6).
The fibraurea recisa pierre as a wood material is easy to crack and break in the process of processing, weaving and using, and is easy to mildew, moth, age and the like in rainy days or wet places, and the service life is obviously shortened. The prior resin impregnation treatment method has large usage amount of resin, which is about 50 percent of the weight of the rattan material, and the performance of the treated material can not reach the satisfaction of people in the prior art. The method for treating the fibraurea recisa pierre is specially improved, particularly, the fibraurea recisa pierre is soaked by preparing the composite treatment liquid, so that the activity and the reaction capability of a fibraurea recisa pierre surface material can be improved, the bonding strength between the fibraurea recisa pierre surface material and a high polymer component is improved, the effect of impregnation treatment is enhanced, the use performance of the material is improved, the use amount of resin is reduced, the cost is saved, and the environment is protected.
Compared with the prior art, the invention has the following advantages:
the treatment method has simple steps and reasonable process matching, is extremely suitable for treating the fibraurea recisa pierre, can obviously improve the moisture resistance, the mechanical strength and the use stability of the fibraurea recisa pierre, prolongs the service life of the fibraurea recisa pierre, and has extremely high market competitiveness.
Detailed Description
Example 1
A treatment method for improving moisture resistance and use stability of fibraurea recisa pierre comprises the following steps:
(1) firstly, removing leaves and peels of fibraurea recisa pierre, then boiling the fibraurea recisa pierre in boiling water for 40min, then taking the fibraurea recisa pierre out and immersing in acid liquor for soaking for 10min, and finally taking the fibraurea recisa pierre out and washing with clear water for one time for later use;
(2) putting the fibraurea recisa pierre treated in the step (1) into a vacuum drying oven for drying treatment, and taking the fibraurea recisa pierre out for later use after 3 hours;
(3) immersing the fibraurea recisa pierre treated in the step (2) into the composite treatment liquid, immediately introducing alternating current into the composite treatment liquid after 1min, stopping after 3min, taking out the fibraurea recisa pierre, and washing the fibraurea recisa pierre with clear water for later use; the composite treatment liquid comprises the following components in parts by weight: 20 parts of sodium chloride, 10 parts of dodecyl trimethyl ammonium bromide, 5 parts of nano silver powder, 8 parts of fatty alcohol-polyoxyethylene ether and 500 parts of water;
(4) placing the fibraurea recisa pierre treated in the step (3) into a constant temperature and humidity box, controlling the temperature of a dry bulb at 32 ℃ and the relative humidity at 70%, drying the fibraurea recisa pierre until the water content is 11%, and taking out the fibraurea recisa pierre for later use;
(5) putting the fibraurea recisa pierre treated in the step (4) into a vacuum pressure impregnation tank containing an impregnant, impregnating the fibraurea recisa pierre, and taking the fibraurea recisa pierre out for later use after 2 hours;
(6) and (4) placing the fibraurea recisa pierre treated in the step (5) into a constant temperature and humidity box for humidifying and curing, and taking out the fibraurea recisa pierre after 1 h.
Further, the acid solution in the step (1) is a hydrochloric acid solution with a mass fraction of 6%.
Further, the temperature in the vacuum drying oven was controlled to 70 ℃ during the drying treatment in the step (2).
Further, the control current intensity is 25mA/cm when the alternating current is processed in the step (3)2
Further, the particle size of the nano silver powder in the step (3) is 10-30 nm.
Further, the impregnant in the step (5) comprises the following components in parts by weight: 90 parts of urea-formaldehyde resin and 5 parts of polyvinyl alcohol.
Further, the pressure in the vacuum pressure impregnation tank was maintained at 2.5MPa during the impregnation treatment in the step (5).
Further, the temperature in the constant temperature and humidity chamber is maintained at 110 ℃ and the relative humidity is maintained at 65% during the humidity conditioning and curing treatment in step (6).
Example 2
A treatment method for improving moisture resistance and use stability of fibraurea recisa pierre comprises the following steps:
(1) firstly, removing leaves and peels of fibraurea recisa pierre, then boiling the fibraurea recisa pierre in boiling water for 45min, taking the fibraurea recisa pierre out, soaking in acid liquor for 13min, and finally taking the fibraurea recisa pierre out and washing with clear water for one time for later use;
(2) putting the fibraurea recisa pierre treated in the step (1) into a vacuum drying oven for drying treatment, and taking the fibraurea recisa pierre out for later use after 3.5 hours;
(3) immersing the fibraurea recisa pierre treated in the step (2) into the composite treatment liquid, immediately introducing alternating current into the composite treatment liquid after 1.3min, stopping after 4min, taking out the fibraurea recisa pierre, and washing with clear water for later use; the composite treatment liquid comprises the following components in parts by weight: 22 parts of sodium chloride, 13 parts of dodecyl trimethyl ammonium bromide, 7 parts of nano silver powder, 12 parts of fatty alcohol-polyoxyethylene ether and 550 parts of water;
(4) placing the fibraurea recisa pierre treated in the step (3) into a constant temperature and humidity box, controlling the temperature of a dry bulb at 34 ℃ and the relative humidity at 72%, drying the fibraurea recisa pierre until the water content is 12%, and taking out the fibraurea recisa pierre for later use;
(5) putting the fibraurea recisa pierre treated in the step (4) into a vacuum pressure impregnation tank containing an impregnant, impregnating the fibraurea recisa pierre, and taking the fibraurea recisa pierre out for later use after 2.3 h;
(6) and (4) placing the fibraurea recisa pierre treated in the step (5) into a constant temperature and humidity box for humidifying and curing, and taking out the fibraurea recisa pierre after 1.5 h.
Further, the acid solution in the step (1) is a hydrochloric acid solution with a mass fraction of 7%.
Further, the temperature in the vacuum drying oven was controlled to 73 ℃ during the drying treatment in the step (2).
Further, the current intensity is controlled during the alternating current treatment in the step (3)The size is 28mA/cm2
Further, the particle size of the nano silver powder in the step (3) is 10-30 nm.
Further, the impregnant in the step (5) comprises the following components in parts by weight: 95 parts of urea-formaldehyde resin and 7 parts of polyvinyl alcohol.
Further, the pressure in the vacuum pressure impregnation tank was maintained at 2.8MPa during the impregnation treatment in the step (5).
Further, the temperature in the constant temperature and humidity chamber during the humidity conditioning and curing treatment in step (6) was maintained at 113 ℃ and the relative humidity was 6%.
Example 3
A treatment method for improving moisture resistance and use stability of fibraurea recisa pierre comprises the following steps:
(1) firstly, removing leaves and peels of fibraurea recisa pierre, then boiling the fibraurea recisa pierre in boiling water for 50min, then taking the fibraurea recisa pierre out and immersing in acid liquor for soaking for 15min, and finally taking the fibraurea recisa pierre out and washing with clear water for one time for later use;
(2) putting the fibraurea recisa pierre treated in the step (1) into a vacuum drying oven for drying treatment, and taking the fibraurea recisa pierre out for later use after 4 hours;
(3) immersing the fibraurea recisa pierre treated in the step (2) into the composite treatment liquid, immediately introducing alternating current into the composite treatment liquid after 1.5min, stopping after 5min, taking out the fibraurea recisa pierre, and washing the fibraurea recisa pierre with clear water for later use; the composite treatment liquid comprises the following components in parts by weight: 25 parts of sodium chloride, 15 parts of dodecyl trimethyl ammonium bromide, 8 parts of nano silver powder, 14 parts of fatty alcohol-polyoxyethylene ether and 600 parts of water;
(4) placing the fibraurea recisa pierre treated in the step (3) into a constant temperature and humidity box, controlling the temperature of a dry bulb to be 35 ℃ and the relative humidity to be 75%, drying the fibraurea recisa pierre until the water content is 13%, and taking out the fibraurea recisa pierre for later use;
(5) putting the fibraurea recisa pierre treated in the step (4) into a vacuum pressure impregnation tank containing an impregnant, impregnating the fibraurea recisa pierre, and taking the fibraurea recisa pierre out for later use after 2.5 hours;
(6) and (4) placing the fibraurea recisa pierre treated in the step (5) into a constant-temperature constant-humidity box for humidifying and curing, and taking out the fibraurea recisa pierre after 2 hours.
Further, the acid solution in the step (1) is a hydrochloric acid solution with a mass fraction of 8%.
Further, the temperature in the vacuum drying oven was controlled to 75 ℃ during the drying treatment in the step (2).
Further, the current intensity is controlled to be 30mA/cm during the alternating current treatment in the step (3)2
Further, the particle size of the nano silver powder in the step (3) is 10-30 nm.
Further, the impregnant in the step (5) comprises the following components in parts by weight: 100 parts of urea-formaldehyde resin and 8 parts of polyvinyl alcohol.
Further, the pressure in the vacuum pressure impregnation tank was maintained at 3MPa during the impregnation treatment in the step (5).
Further, the temperature in the constant temperature and humidity chamber during the humidity conditioning and curing treatment in step (6) was maintained at 115 ℃ and the relative humidity was 70%.
In order to compare the effects of the invention, the same batch of 12-year-old caulis Fibraureae harvested from a certain forest farm of Fuyang of Anhui province is selected as an experimental object, the average diameter of the caulis Fibraureae is 14mm, the length of the caulis Fibraureae is 10-11 m, and the internode length of the caulis Fibraureae is about 20cm, then the caulis Fibraureae is processed by the method of the above example 2, and then the performance test is carried out on each group of the processed caulis Fibraureae, and the specific comparative:
TABLE 1
Modulus of elasticity along grain under compression: (MPa) Bending strength (MPa) Water swelling Rate (%) Amount of impregnation (%)
Example 2 1693.4 88.9 4.0 22.5
Blank control group 1213.6 55.7 12.4 /
Note: the experimental data described in table 1 above are the average of the experimental results for each group; the compression elastic modulus along the grain is determined by referring to GB/T3356-; the bending strength is determined by reference to GB/T15780-1995, wherein the length of a test piece is controlled to be 160 mm; the water absorption expansion rate is determined by reference to GB/T1933-2009 and GB/T15780-1995; the impregnation amount is the percentage of the impregnated components such as resin and the like to the weight of the fibraurea recisa pierre, and specifically is (the weight of the treated fibraurea recisa pierre-the weight of the untreated fibraurea recisa pierre) ÷ the weight of the untreated fibraurea recisa pierre multiplied by 100%, so as to represent the impregnation amount; the blank control group was obtained without any treatment of fibraurea recisa.
As can be seen from the above table 1, the fibraurea recisa pierre treated by the method of the invention has obvious enhancement in waterproof, moistureproof and mechanical quality, and is still improved obviously compared with a control group method, and the method uses less dipping raw materials, reduces the use cost of the raw materials, protects the environment and has great market competitiveness.

Claims (8)

1. A treatment method for improving the moisture resistance and the use stability of fibraurea recisa pierre is characterized by comprising the following steps:
(1) firstly, removing leaves and peels of fibraurea recisa pierre, then boiling the fibraurea recisa pierre in boiling water for 40-50 min, then taking the fibraurea recisa pierre out and immersing in acid liquor for soaking for 10-15 min, and finally taking the fibraurea recisa pierre out and washing with clear water for one time for later use;
(2) putting the fibraurea recisa pierre treated in the step (1) into a vacuum drying oven for drying treatment, and taking the fibraurea recisa pierre out for later use after 3-4 hours;
(3) immersing the fibraurea recisa pierre treated in the step (2) into the composite treatment liquid, immediately introducing alternating current into the composite treatment liquid after 1-1.5 min, stopping after 3-5 min, taking out the fibraurea recisa pierre, and washing the fibraurea recisa pierre with clear water for later use; the composite treatment liquid comprises the following components in parts by weight: 20-25 parts of sodium chloride, 10-15 parts of dodecyl trimethyl ammonium bromide, 5-8 parts of nano silver powder, 8-14 parts of fatty alcohol-polyoxyethylene ether and 500-600 parts of water;
(4) placing the fibraurea recisa pierre treated in the step (3) into a constant temperature and humidity box, controlling the temperature of a dry bulb to be 32-35 ℃ and the relative humidity to be 70-75%, drying the fibraurea recisa pierre until the water content is 11-13%, and taking out for later use;
(5) putting the fibraurea recisa pierre treated in the step (4) into a vacuum pressure impregnation tank containing an impregnant, carrying out impregnation treatment on the fibraurea recisa pierre, and taking the fibraurea recisa pierre out for later use after 2-2.5 hours;
(6) and (4) placing the fibraurea recisa pierre treated in the step (5) into a constant-temperature constant-humidity box for humidifying and curing, and taking out the fibraurea recisa pierre after 1-2 hours.
2. The treatment method for improving the moisture resistance and the use stability of the fibraurea recisa pierre as claimed in claim 1, wherein the acid solution in the step (1) is 6-8% by weight of hydrochloric acid solution.
3. The method as claimed in claim 1, wherein the temperature in the vacuum drying oven is controlled to be 70-75 ℃ during the drying process in step (2).
4. The method as claimed in claim 1, wherein the current intensity of the alternating current treatment in step (3) is controlled to be 25-30 mA/cm2
5. The processing method for improving moisture resistance and use stability of fibraurea recisa pierre as claimed in claim 1, wherein the particle size of the silver nanoparticles in step (3) is 10-30 nm.
6. The treatment method for improving the moisture resistance and the use stability of the fibraurea recisa pierre as claimed in claim 1, wherein the impregnant in the step (5) comprises the following components in parts by weight: 90-100 parts of urea-formaldehyde resin and 5-8 parts of polyvinyl alcohol.
7. The method as claimed in claim 1, wherein the pressure in the vacuum pressure impregnation tank is maintained at 2.5-3 MPa during the impregnation treatment in step (5).
8. The treatment method for improving the moisture resistance and the use stability of the fibraurea recisa pierre as claimed in claim 1, wherein the temperature in the constant temperature and humidity chamber is maintained at 110-115 ℃ and the relative humidity is maintained at 65-70% during the humidity conditioning and curing treatment in step (6).
CN201911063880.6A 2019-11-04 2019-11-04 Treatment method for improving moisture resistance and use stability of fibraurea recisa pierre Active CN110815465B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911063880.6A CN110815465B (en) 2019-11-04 2019-11-04 Treatment method for improving moisture resistance and use stability of fibraurea recisa pierre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911063880.6A CN110815465B (en) 2019-11-04 2019-11-04 Treatment method for improving moisture resistance and use stability of fibraurea recisa pierre

Publications (2)

Publication Number Publication Date
CN110815465A true CN110815465A (en) 2020-02-21
CN110815465B CN110815465B (en) 2023-03-21

Family

ID=69552259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911063880.6A Active CN110815465B (en) 2019-11-04 2019-11-04 Treatment method for improving moisture resistance and use stability of fibraurea recisa pierre

Country Status (1)

Country Link
CN (1) CN110815465B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999092A (en) * 2007-01-05 2007-07-18 南京林业大学 Manufacturing method of bamboo strip laminated board
CN101417457A (en) * 2008-12-01 2009-04-29 赵斌 Production method bamboo strip side pressing bamboo board
CN104441132A (en) * 2014-09-25 2015-03-25 阜南县猛发工艺品有限公司 Method for processing wicker products for straw weaving
CN110202649A (en) * 2019-05-30 2019-09-06 南京林业大学 A kind of bamboo and timber material method of modifying and a kind of bamboo and wood lumber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999092A (en) * 2007-01-05 2007-07-18 南京林业大学 Manufacturing method of bamboo strip laminated board
CN101417457A (en) * 2008-12-01 2009-04-29 赵斌 Production method bamboo strip side pressing bamboo board
CN104441132A (en) * 2014-09-25 2015-03-25 阜南县猛发工艺品有限公司 Method for processing wicker products for straw weaving
CN110202649A (en) * 2019-05-30 2019-09-06 南京林业大学 A kind of bamboo and timber material method of modifying and a kind of bamboo and wood lumber

Also Published As

Publication number Publication date
CN110815465B (en) 2023-03-21

Similar Documents

Publication Publication Date Title
CN105252620B (en) A kind of bamboo wood oil hot submersion handling process
CN104985657A (en) Enhanced high-temperature heat treated wood and manufacturing method thereof
CN102172940A (en) Method for producing high-density recombined wood
CN103240780A (en) Method for improving carbonized wood property by silica sol impregnation pretreatment
CN106393364A (en) Paulownia wood softening processing method capable of improving hand feel of paulownia wood
CN102303331A (en) Drying process for preventing eucalyptus wood shrinkage
CN108162105A (en) A kind of method for improving bamboo recombined material glue performance
CN107471356A (en) A kind of processing method of metasequoia woodwork
CN102011320A (en) Polyester impregnation technology
CN109249499A (en) A kind of processing method of furniture wooden boards
CN103321101A (en) Formula and preparation method of vulcanized fiber paper
CN110815465B (en) Treatment method for improving moisture resistance and use stability of fibraurea recisa pierre
CN110722652B (en) Hydrophobic modification treatment method for cedar
CN107379162A (en) A kind of recombined bamboo plate production technology
CN105856779A (en) Decorative laminated board with bacteriostatic function and preparation method thereof
CN106977876B (en) Carbon fiber felt-carbon fiber cloth composite material and preparation method thereof
CN107116637A (en) It is a kind of to strengthen the processing method of bamboo cane resistance to ag(e)ing
CN107471345A (en) A kind of preparation method of antibacterial and mouldproof raw bamboo handicraft
CN108908605B (en) Drying method of resin-impregnated modified wood
CN108058254B (en) A kind of method of poplar anoxic heat treatment impregnated melamine urea-formaldehyde resin enhancing processing
CN110421663A (en) A kind of high-efficiency machining method for the anti-oxidant bamboo wood of antibacterial
CN101974846A (en) Method for preparing bamboo charcoal-based activated carbon fibers
CN114888913A (en) Production process method of in-situ crosslinking self-toughening braided wicker
CN107379176A (en) A kind of method of modifying of anti-corrosion crack resistence American elm plank
CN113370335A (en) Organic-inorganic composite functional modified wood and processing technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230227

Address after: 236300 # Plant 3, Liumu Industrial Park, the intersection of Wangjiaba Road and Yingshui Road, Funan County Economic Development Zone, Fuyang City, Anhui Province

Applicant after: Anhui Angshuo Smart Home Co.,Ltd.

Address before: 236300 Bao Zhuang Wei, Cao Ji Town, Funan County, Fuyang, Anhui

Applicant before: FUNAN MENGFA CRAFTS CO.,LTD.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant